Advertisement

Hydrogeology Journal

, Volume 21, Issue 1, pp 79–91 | Cite as

Noble gas and isotope geochemistry in western Canadian Arctic watersheds: tracing groundwater recharge in permafrost terrain

  • Nicholas UttingEmail author
  • Bernard Lauriol
  • Neil Mochnacz
  • Werner Aeschbach-Hertig
  • Ian Clark
Paper

Abstract

In Canada’s western Arctic, perennial discharge from permafrost watersheds is the surface manifestation of active groundwater flow systems with features including the occurrence of year-round open water and the formation of icings, yet understanding the mechanisms of groundwater recharge and flow in periglacial environments remains enigmatic. Stable isotopes (δ18O, δD, δ13CDIC), and noble gases have proved useful to study groundwater recharge and flow of groundwater which discharges along rivers in Canada’s western Arctic. In these studies of six catchments, groundwater recharge was determined to be a mix of snowmelt and precipitation. All systems investigated show that groundwater has recharged through organic soils with elevated PCO2, which suggests that recharge occurs largely during summer when biological activity is high. Noble gas concentrations show that the recharge temperature was between 0 and 5 °C, which when considered in the context of discharge temperatures, suggests that there is no significant imbalance of energy flux into the subsurface. Groundwater circulation times were found to be up to 31 years for non-thermal waters using the 3 H-3He method.

Keywords

Groundwater age Canada Stable isotopes Noble gas Permafrost 

Gaz rares et géochimie isotopique sur des bassins versants de l’Arctique Canadien : traçage de recharge de nappe dans le permafrost

Résumé

Dans l’Arctique de l’Ouest canadien, une décharge pérenne de bassins versants gelés est la manifestation de surface d’un système actif de flux d’eau souterraine avec des caractéristiques incluant l’entrée d’eau durant toute l’année et la formation de glace, encore que la compréhension des mécanisme de recharge de nappe et du flux dans l’environnement périglaciaire reste énigmatique. Les isotopes stables (δ18O, δD, δ13CDIC) et des gaz rares se sont avérés utiles pour étudier la recharge de nappe et le flux souterrain qui se décharge le long de rivières dans l’arctique de l’Ouest canadien. Dans ces études de six basins versants, on a établi que la recharge de nappe est un mixte de neige fondue et de précipitation. Les investigations sur tous les systèmes montrent que la nappe se recharge à travers des sols organiques à PCO2 élevée, ce qui suggère que la recharge a lieu largement durant l’été quand l’activité biologique est élevée. Les concentrations en gaz rares montrent que la température de recharge était comprise entre 0 et 5 °C, ce qui, considéré dans le contexte des températures de décharge, signifie qu’il n’y a pas de déséquilibre des flux énergétiques en sub-surface. On a trouvé des durées de circulation de l’eau de nappe jusqu’à 31 ans pour des eaux non thermales en utilisant la méthode 3H-3He.

Gases nobles y geoquímica isotópica en cuencas del Ártico Occidental de Canadá: trazadores de recarga de agua subterránea en terrenos permafrost

Resumen

En el Ártico Occidental de Canadá, la descarga perenne de cuencas de permafrost es la manifestación superficial de sistemas activos de flujos de agua subterránea con características que incluyen durante el año la presencia de aguas libres y la formación de hielos, sin embargo el entendimiento de los mecanismos de la recarga de agua subterránea y el flujo en ambientes periglaciales siguen siendo enigmáticos. Los isótopos estables (δ18O, δD, δ13CDIC), y los gases nobles han demostrado ser útiles para estudiar la recarga de agua subterránea y el flujo de agua subterránea que descarga a lo largo de ríos en el Ártico occidental de Canadá. En estos estudios de seis cuencas, la recarga del agua subterránea se determinó que era una mezcla del derretimiento de la nieve y de la precipitación. Todos los sistemas investigados muestran que el agua subterránea se recarga a través de suelos orgánicos con elevada PCO2, lo cual sugiere que la recarga ocurre mayormente durante el verano cuando la actividad biológica es alta. Las concentraciones de gases nobles muestra que la temperatura de recarga fue entre 0 y 5 °C, lo cual cuando se considera en el contexto de las temperaturas de descarga, sugiere que no hay un desequilibro significativo en el flujo de energía en el subsuelo. Los tiempos de circulación de agua subterránea resultaron ser de hasta 31 años para agua no termales usando el método 3H-3He.

稀有气体和同位素地球化学应用于加拿大西部寒区流域:示踪多年冻土地带地下水补给

摘要

在加拿大西部的寒区,来自多年冻土流域的常年地下水排泄是活跃的地下水流系统在地表的表现,在地表可以看到全年开放的水域和冰的形成,然而要弄清楚冰川边缘地带地下水的补给和径流机制仍然存在很多疑惑。稳定同位素(δ18O, δD, δ13CDIC)和稀有气体被证明用来研究地下水补给和径流是很有用的,在加拿大西部寒区地下水就是沿着河流向外排泄。在本次对六个盆地研究中,地下水补给被确定为是融雪和降雨的混合。所有调查过的地下水系统显示地下水在径流过程中经过二氧化碳分压比较高的有机土壤,这表明地下水补给主要发生在生物活动比较活跃的夏季。稀有气体浓度显示地下水补给温度在0~5°C之间,在考虑到地下水排泄温度的情况下,这表明流向地下的能量流并不存在严重的不平衡。利用3H-3He方法研究发现非热水的循环时间长达31年。

Geoquímica isotópica e de gases nobres em bacias hidrográficas do Ártico Canadiano ocidental: traçagem da recarga de águas subterrâneas em terrenos de permafrost

Resumo

No Ártico ocidental do Canadá, a descarga perene das bacias hidrográficas com permafrost é a manifestação superficial de sistemas de escoamento de águas subterrâneas ativos com caraterísticas que incluem a ocorrência durante todo o ano de águas abertas e a formação de gelos, apesar da compreensão dos mecanismos de recarga de águas subterrâneas e do fluxo subterrâneo em ambientes periglaciais permanecer enigmática. Os isótopos estáveis (δ18O, δD, δ13CDIC) e os gases nobres têm sido úteis no estudo da recarga e do fluxo de águas subterrâneas que descarregam nos rios do Ártico ocidental do Canadá. Nos estudos de seis bacias hidrográficas, determinou-se que a recarga de águas subterrâneas era uma mistura de águas do degelo e da precipitação. Todos os sistemas investigados mostram que as águas subterrâneas recarregaram através de solos orgânicos com elevado PCO2, o que sugere que a recarga ocorre largamente durante o verão, quando a atividade biológica é alta. As concentrações de gases nobres mostram que a temperatura de recarga foi entre 0 e 5 °C, o que, quando considerado no contexto das temperaturas de descarga, sugere que não há um desequilíbrio significativo de fluxo de energia para a subsuperfície. Utilizando o método 3H-3He, os tempos de circulação de águas subterrâneas foram calculados em até 31 anos para águas não-termais.

Notes

Acknowledgements

Thanks to Brewster Conant Jr. for help in the field and ideas during this research. Also thanks to Paul Middlestead, Wendy Abdi, Patricia Wickham, Ping Zhang, Ratan Mohapatra and Monika Wilk who assisted with isotopic and geochemical analyses. Thanks to all those who helped with field work including André Pellerin, Billy Nukon, Geoff Cramond, Angelina Buchar, Lisa Tellier and Marielle Fortin-McCuaig. Funding for student travel to N.W.T. and Yukon and was provided by the Northern Scientific Training Program. Funding for helicopter transport was provided by the Yukon Geological Survey, the Polar Continental Shelf Project and Fisheries and Oceans Canada. This work was funded through NSERC Discovery and Northern Supplement grants to I.D. Clark.

Supplementary material

10040_2012_913_MOESM1_ESM.pdf (369 kb)
ESM 1 (PDF 368 kb)

References

  1. Aeschbach-Hertig W, Solomon DK (2012) Noble gas thermometry in groundwater hydrology. In: Burnard P (ed) The noble gases as geochemical tracers. Advances in Isotope Geochemistry. Springer, Heidelberg, GermanyGoogle Scholar
  2. Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (1999) Interpretation of dissolved atmospheric noble gases in natural waters. Water Resour Res 35:2779–2792CrossRefGoogle Scholar
  3. Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (2000) Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air. Nature 405:1040–1044CrossRefGoogle Scholar
  4. Anisimova N, Nikitina N, Piguzova V, Shepelyev V (1973) Water sources in central Yakutia. In: Proc. Second International Conference on Permafrost, Yakutsk, USSR, July 1973Google Scholar
  5. Bennett M, Huddart D, Hambrey M, Chienne J (1998) Modification of braided outwash surfaces by aufeis: an example from Pedersenbreen, Svalbard. Z Geomorphol 42:1–20Google Scholar
  6. Brook G, Ford D (1980) Hydrology of the Nahanni Karst, northern Canada and the importance of extreme summer storms. J Hydrol 46:103–121CrossRefGoogle Scholar
  7. Carey KL (1970) Icing occurrence, control and prevention, an annotated bibliography. Cold Region Research and Engineering Laboratory special report, US Army Corps of Engineers, Washington, DC, 151 ppGoogle Scholar
  8. Carey SK, Woo M (2005) Freezing of subarctic hillslopes, Wolf Creek Basin, Yukon, Canada. Arctic Antarct Alpine Res 37(1):1–10CrossRefGoogle Scholar
  9. Cinq-Mars J, Lauriol B (1985) Le karst de Tsi-it-toh-Choh: notes préliminaires sur quelques phénomènes kastiques de Yukon septentrional [The karst Tsi-it-toh-Choh: perliminary notes on some karst phenomena of northern Yukon]. Ann Soc Geol Belg 107:185–195Google Scholar
  10. Clark I, Fritz P (1997) Environmental Isotopes in hydrogeology. Lewis, New YorkGoogle Scholar
  11. Clark I, Lauriol B (1997) Aufeis of the Firth River Basin, northern Yukon, Canada: insights into permafrost hydrology and karst. Arct Alp Res 29:240–252CrossRefGoogle Scholar
  12. Clark ID, Douglas M, Raven K, Bottomley DJ (2000) Recharge and preservation of glacial meltwater in the Canadian Shield. Ground Water 38:735–742CrossRefGoogle Scholar
  13. Clark ID, Lauriol B, Harwood L, Marschner M (2001) Groundwater contributions to discharge in a permafrost setting: Big Fish River, NWT. Arct Antarct Alp Res 33:62–69CrossRefGoogle Scholar
  14. Craig P, McCart P (1975) Classification of stream types in Beaufort Sea drainages between Prudhoe Bay, Alaska, and the Mackenzie delta, N.W.T., Canada. Arct Alp Res 7:183–198CrossRefGoogle Scholar
  15. Duk-Rodkin A (1999) Glacial limits map of Yukon Territory. Open file report 3694. Geological Survey of Canada, OttawaGoogle Scholar
  16. Eley F (1974) Mesoscale climatic study of Norman Wells, NWT Canada, Environmental-Social Committee, northern pipeline, Department of Indian and Northern Affairs, Ottawa, pp 56Google Scholar
  17. Environment Canada (2010) National Climate Data and Information Archive. Environment Canada, OttawaGoogle Scholar
  18. Ford D, William P (2007) Karst hydrogeology and geomorphology. Wiley, West Sussex, UKGoogle Scholar
  19. French H (1996) The periglacial environment. Addison Wesley Longman, Vancouver, CanadaGoogle Scholar
  20. Friedrich R (2007) Grundwassercharakterisierung mit Umwelttracern: Erkundung des Grundwassers der Odenwald-Region sowie Implementierung eines neuen Edelgas-Massenspektrometersystems [Groundwater characterization by environmental tracers: exploration of groundwater in the Odenwald region, as well as implementation of a new noble gas mass spectrometer system]. PhD Thesis, University of Heidelberg, GermanyGoogle Scholar
  21. Grasby SE, Allen CC, Longazo TG, Lisle JT, Griffin DW, Beauchamp B (2003) Supraglacial sulfur springs and associated biological activity in the Canadian High Arctic: signs of life beneath the ice. Astrobiology 3:583–596CrossRefGoogle Scholar
  22. Hamilton J, Ford D (2002) Karst geomorphology and hydrogeology of the Bear Rock Formation: a remarkable dolostone and gypsum megabreccia in the continuous permafrost zone of Northwest Territories, Canada. Carbonates Evaporites 17:114–115CrossRefGoogle Scholar
  23. Hayashi M, Quinton WL, Pietroniro A, Gibson JJ (2004) Hydrologic functions of wetlands in a discontinuous permafrost basin indicated by isotopic and chemical signatures. J Hydrol 296:81–97CrossRefGoogle Scholar
  24. Hu X, Pollard W (1997) The hydrologic analysis and modelling of river icing growth, North Fork Pass, Yukon Territory, Canada. Permafr Periglac Process 8:279–294CrossRefGoogle Scholar
  25. Kipfer R, Aeschback-Hertig W, Peeters F, Stute M (2002) Noble gases in lakes and groundwaters. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Mineralogical Society of America, Washington, DC, 642 ppGoogle Scholar
  26. Lacelle D, Lauriol B, Clark I (2006) Effect of chemical composition of water on the oxygen-18 and carbon-13 signature preserved in cryogenic carbonates, Arctic Canada: implications in paleoclimatic studies. Chem Geol 234:1–16CrossRefGoogle Scholar
  27. Lauriol B, Gray JT (1990) Drainage karstique en milieu de pergélisol: le cas de l’île d’Apakok, T.N.O, Canada [Karst drainage in permafrost: the case of Apakok Island, NWT, Canada]. Permafr Periglac Process 1:129–144CrossRefGoogle Scholar
  28. Lucas LL, Unterweger MP (2000) Comprehensive review and critical evaluation of the half-life of Tritium. J Res Nat Inst Stand Technol 105(4):541–549CrossRefGoogle Scholar
  29. Manning AH, Solomon DK, Sheldon AL (2003) Applications of a total dissolved gas pressure probe in ground water studies. Ground Water 41:440–448CrossRefGoogle Scholar
  30. McFadden T (1990) The Kilpisjärvi Project. J Cold Regions Eng 4(2)Google Scholar
  31. McKay C, Anderson D, Pollard WH, Heldman JL, Doran PT, Fritsen C, Priscu J (2005) Polar lakes, streams and springs as analogs for the hydrological cycle on Mars. In: Water on mars and life [Advances in astrobiology and biogeophysics]. Springer, Berlin, pp 219–233Google Scholar
  32. Michel FA (1977) Hydrogeologic studies of springs in the Central Mackenzie Valley, Northwest Territories, Canada. MSc Thesis, University of Waterloo, CanadaGoogle Scholar
  33. Michel FA (1986) Hydrogeology of the Central Mackenzie Valley. J Hydrol 85:379–405CrossRefGoogle Scholar
  34. Mochnacz NJ, Schroeder BS, Sawatzky CD, Reist JD (2010) Assessment of northern Dolly Varden, Salvelinus malma malma (Walbaum, 1792), habitat in Canada. Canadian Manuscript Report of Fisheries and Aquatic Sciences 2926, Fisheries and Oceans Canada, Ottawa, vi + 48 ppGoogle Scholar
  35. Mohapatra RK, Murty SVS (2000) Search for the mantle nitrogen in the ultramafic xenoliths from San Carlos, Arizona. Chem Geol 164:305–320CrossRefGoogle Scholar
  36. Muller S (1947) Permafrost or permanently frozen ground and related engineering problems. Military Intelligence Division, Ann Arbor, MIGoogle Scholar
  37. Mutch RA, McCart P (1974) Springs within the northern Yukon drainage system (Beaufort Sea Drainage). In: McCart P (ed) Fisheries research associated with proposed gas pipeline routes in Alaska, Yukon and Northwest Territories.. Canadian Arctic Gas Study, pp 34Google Scholar
  38. Omelon C, Pollard W, Andersen D (2006) A geochemical evaluation of perennial spring activity and associated mineral precipitates at Expedition Fjord, Axel Heiberg Island, Canadian High Arctic. Appl Geochem 21:1–15CrossRefGoogle Scholar
  39. Peeters F, Beyerle U, Aeschbach-Hertig W, Holocher J, Brennwald MS, Kipfer R (2003) Improving noble gas based paleoclimate reconstruction and groundwater dating using 20Ne/22Ne ratios. Geochim Cosmochim Acta 67:587–600CrossRefGoogle Scholar
  40. Pollard WH (2005) Icing processes associated with high Arctic perennial springs, Axel Heiberg Island, Nunavut, Canada. Permafr Periglac Process 16:51–68CrossRefGoogle Scholar
  41. Poole JC, McNeill GW, Langman SR, Dennis F (1997) Analysis of noble gases in water using a quadrapole mass spectrometer in static mode. Appl Geochem 12:707–714CrossRefGoogle Scholar
  42. Power G, Brown RS, Imhof JG (1999) Groundwater and fish: insights from northern North America. Hydrol Process 13:401–422CrossRefGoogle Scholar
  43. Prowse TD, Wrona FJ, Reist JD, Gibson JJ, Hobbie JE, Le’vesque LMJ, Vincent WF (2006) Climate change effects on hydroecology of arctic freshwater ecosystems. Ambio 35(7):347–358CrossRefGoogle Scholar
  44. NRCan (Natural Resources Canada) (2003) The atlas of Canada: permafrost. Government of Canada, OttawaGoogle Scholar
  45. NRCan (Natural Resources Canada) (2004) The atlas of Canada: geological provinces. Government of Canada, OttawaGoogle Scholar
  46. Sanford WE, Shropshire RG, Solomon DK (1996) Dissolved gas tracers in groundwater: simplified injection, sampling and analysis. Water Resour Res 32:1635–1642CrossRefGoogle Scholar
  47. Scholz H, Baumann M (1997) An ‘open system pingo’ near Kangerlussuaq (Søndre Strømfjord), West Greenland. Geol Greenl Surv Bull 176:104–108Google Scholar
  48. Smith S, Burgess M (2002) A digital database of permafrost thickness in Canada. Open file 4173, Geological Survey of Canada, OttawaGoogle Scholar
  49. Stotler RL, Frape SK, Ruskeeniemi T, Ahonen L, Onstott TC, Hobbs MY (2009) Hydrogeochemistry of groundwaters in and below the base of thick permafrost at Lupin, Nunavut, Canada. J Hydrol 373:80–95CrossRefGoogle Scholar
  50. Taylor A, Nixon M, Eley J, Burgess M, Egginton P (1998) Effects of atmospheric inversions on ground surface temperatures and discontinuous permafrost, Norman Wells, Mackenzie valley, Canada. In: Lewkowicz A, Allard M (eds) Proceedings of the 7th International Conference on Permafrost, Yellowknife, NT, June 1998, pp 1043–1047Google Scholar
  51. Tolstikhin IN, Kamenskiy IL (1969) Determination of ground-water ages by the T-3He Method. Geochem Int 6:810–811Google Scholar
  52. Tolstikhin N, Tolstikhin O (1976) Groundwater and surface water in the permafrost region (translation). Inland Waters Directorate, Government of Canada, Ottawa, 22 ppGoogle Scholar
  53. Utting N (2012) Geochemistry and noble gases of permafrost groundwater and ground ice in Yukon and the Northwest Territories, Canada. PhD Thesis, University of Ottawa, CanadaGoogle Scholar
  54. Utting N, Clark ID, Lauriol B, Wieser M, Aeschbach-Hertig W (2012) Origin and flow dynamics of perennial groundwater in continuous permafrost terrain using isotopes and noble gases: case study of the Fishing River, Northern Yukon, Canada. Permafr Perigl Process 23(2):91–106. doi: 10.1002/ppp.1732
  55. van Everdingen RO (1981) Morphology, hydrology and hydrochemistry of karst in permafrost terrain near Great Bear Lake, Northwest Territories. Government of Canada, Ottawa, 53 ppGoogle Scholar
  56. Venzke J (1988) Observation on icings phenomena in the Icelandic subarctic-oceanic environment. Geookodynamik 9:207–220Google Scholar
  57. Vogel JC (1993) Variablity of carbon isotope fractionation during photosynthesis. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. Academic, San Diego, CA, pp 29–38Google Scholar
  58. White DE (1957) Thermal waters of volcanic origin. Geol Soc Am Bull 68:1637–1658CrossRefGoogle Scholar
  59. Woo M, Marsh P (2005) Snow, frozen soils and permafrost hydrology in Canada, 1999–2002. Hydrol Process 19:215–229CrossRefGoogle Scholar
  60. Wrangel F (1841) A journey to the northern shores of Siberia and along the Arctic Ocean made in 1820–1924. Harper, New YorkGoogle Scholar
  61. Yoshikawa K, Hinzman L, Kane D (2007) Spring and aufeis (icing) hydrology in Brooks Range, Alaska. J Geophys Res 112:1–14CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nicholas Utting
    • 1
    • 5
    Email author
  • Bernard Lauriol
    • 2
  • Neil Mochnacz
    • 3
  • Werner Aeschbach-Hertig
    • 4
  • Ian Clark
    • 1
  1. 1.Department of Earth ScienceUniversity of OttawaOttawaCanada
  2. 2.Department of GeographyUniversity of OttawaOttawaCanada
  3. 3.Arctic Science Division, Central and Arctic Region, Fisheries and OceansWinnipegCanada
  4. 4.Institut für UmweltphysikHeidelberg UniversityHeidelbergGermany
  5. 5.BGC Engineering Inc.VancouverCanada

Personalised recommendations