Hydrogeology Journal

, Volume 21, Issue 2, pp 331–340 | Cite as

Aquifer-yield continuum as a guide and typology for science-based groundwater management

  • Suzanne A. Pierce
  • John M. SharpJr.
  • Joseph H. A. Guillaume
  • Robert E. Mace
  • David J. Eaton
Paper

Abstract

Groundwater availability is at the core of hydrogeology as a discipline and, simultaneously, the concept is the source of ambiguity for management and policy. Aquifer yield has undergone multiple definitions resulting in a range of scientific methods to calculate and model availability reflecting the complexity of combined scientific, management, policy, and stakeholder processes. The concept of an aquifer-yield continuum provides an approach to classify groundwater yields along a spectrum, from non-use through permissive sustained, sustainable, maximum sustained, safe, permissive mining to maximum mining yields, that builds on existing literature. Additionally, the aquifer-yield continuum provides a systems view of groundwater availability to integrate physical and social aspects in assessing management options across aquifer settings. Operational yield describes the candidate solutions for operational or technical implementation of policy, often relating to a consensus yield that incorporates human dimensions through participatory or adaptive governance processes. The concepts of operational and consensus yield address both the social and the technical nature of science-based groundwater management and governance.

Keywords

Groundwater management Decision support Integrated modelling Socio-economic aspects Sustainable yield 

Le continuum aquifère-débit comme guide typologique pour une gestion scientifique de l’eau souterraine

Résumé

La disponibilité de l’eau souterraine est au centre de l’hydrogéologie en tant que discipline, et simultanément le concept est source d’ambiguïté pour les processus de gestion et de police de l’eau. Le terme débit d’un aquifère a connu de multiples définitions résultant de la gamme des méthodes scientifiques de calcul et modèles disponibles, reflétant la difficulté de concilier science, processus de gestion, police de l’eau et dépositaires d’enjeux. Le concept d’un continuum aquifère-débit fournit une approche pour classer les prélèvements d’eau souterraine dans un spectre s’étendant de la non utilisation au débit exploitable assuré, débit exploitable, débit maximum exploitable, débit de sécurité, débit d’exploitation toléré des réserves, jusqu’à l’exploitation des réserves ultimes, spectre à la base de la littérature existante. De plus, le continuum aquifère-débit fournit une vision systémique de la disponibilité de l’eau souterraine pour intégrer des aspects physiques et sociaux dans l’évaluation des options de gestion exploitation selon les catégories d’aquifères. Le débit opérationnel décrit les solutions candidates pour une mise en place opérationnelle ou technique d’une politique de l’eau, souvent en relation avec une production consensuelle incluant des dimensions humaines à travers des processus de gouvernance participative ou adaptative. Les concepts de débit opérationnel et consensuel concernent à la fois la nature sociale et technique de la gestion et la gouvernance scientifique de l’aquifère.

La continuidad del rendimiento del acuífero como una guía y tipología para la gestión del agua subterránea basada en la ciencia

Resumen

La disponibilidad del agua subterránea es el centro de la hidrogeología como disciplina y, simultáneamente, el concepto es una fuente de ambigüedad para su gestión y la política. El rendimiento de un acuífero ha sido objeto de múltiples definiciones que derivan en un abanico de métodos científicos para calcular y modelar la disponibilidad reflejando la complejidad de los procesos combinados, científicos, de la gestión, de la política y de las partes interesadas. El concepto de continuidad del rendimiento de un acuífero proporciona una aproximación para clasificar los rendimientos del agua subterránea a lo largo de un espectro, desde el no uso, a través de rendimientos, permisivos sostenidos, sostenibles, máximos sostenidos, seguro, permisivos mineros a máximo minero, que se basan en la literatura existente. Adicionalmente, el rendimiento continuo del acuífero proporciona una visión de los sistemas de la disponibilidad de agua subterránea para integrar aspectos físicos y sociales al evaluar las opciones de gestión a través de la configuración de los acuíferos. El rendimiento operacional describe las soluciones candidatas para la implementación operacional o técnicas de la política, a menudo relacionadas a un rendimiento de consensuado que incorpora dimensiones humanas través de procesos adaptativos y participativos de gobernanza. Los conceptos de rendimiento operacional y de consenso satisfacen la naturaleza social y técnica de la gestión y la gobernanza del agua subterránea basada en la ciencia.

出水量连续作为以科学为基础地下水管理的指导和示范

摘要

地下水可用性是水文地质学科的核心,同时也是管理与政策模糊不清的根源。出水量经历了很多定义,导致一系列计算和模拟可用性的科学方法,表明了联合科学、管理、政策以及涉众过程的复杂性。含水层产量连续的概念为出水量分类提供了一种方法,根据不同范围,基于已有文献,分为不能使用,大致可持续出水量,可持续出水量,最大程度可持续出水量,安全出水量,可出水量到最大程度出水量。另外,含水层产量连续提供了地下水可用性的一个系统视图,可整合含水层设置的管理选项评价中物理和社会方面。运营出水量描述了可操作的或者技术上可行的政策候选方案,通常与包含有可参与的或者可适当控制处理的人文因素的共识出水量相关。运营出水量和共识出水量的概念均记有以科学为基础的地下水管理和调控的社会和技术性质。

Continuum aquífero-produtividade como um guia e uma tipologia para a gestão cientificamente fundamentada da água subterrânea

Resumo

A disponibilidade da água subterrânea é nuclear na hidrogeologia como disciplina e, simultaneamente, o conceito é origem de ambiguidade para a gestão e para as políticas da água. A produtividade dos aquíferos teve múltiplas definições, de que resultaram diversos métodos científicos para o cálculo e modelação da disponibilidade, refletindo a complexidade da combinação dos processos científicos, gestionários, políticos e os parceiros envolvidos. O conceito de continuum aquífero-produtividade fornece uma abordagem para classificar as produções de água subterrânea ao longo de todo um espetro, tal como se encontra na literatura, desde o não-uso, passando pelo uso permitido permanente, a produção sustentável, a produção máxima sustentável, a produção segura, o esgotamento permitido e o esgotamento máximo. Adicionalmente, o conceito de continuum aquífero-produção proporciona uma visão em sistema da disponibilidade da água subterrânea para a integração de aspetos físicos e sociais na avaliação de opções de gestão através de cenários no aquífero. A produção operacional descreve as soluções candidatas para implementação técnica e operacional de políticas, frequentemente relacionada com uma produção consensual que incorpora as dimensões humanas através de processos de governância participativa ou adaptativa. Os conceitos de produção operacional e consensual respondem ambos à natureza social e à natureza técnica da gestão e da governância cientificamente fundamentada da água subterrânea.

Notes

Acknowledgments

These concepts were developed through thoughtful conversations with a wide range of groundwater scientists, managers, decision support researchers, practitioners, and community stakeholders. The authors are particularly indebted to Marios Sophocleous, Steve Barnett, Stuart Richardson, Ray Evans, Bill Mullican, Rima Petrossian, Brian Smith, Kirk Holland, Brian Hunt, John Dupnik, Bridget Scanlon, Craig Simmons, Sondoss El Sawah, Tony Jakeman and Andrew Ross for their collegial dialogue. Conceptual development was initially completed as part of Dr. Pierce’s doctoral thesis with funding from The Jackson School of Geosciences, The University of Texas at Austin and the STAR Fellows program of the U.S. Environmental Protection Agency (Agreement number FP91632001-0).

References

  1. Ahlfeld DP, Mulligan AE (2000) Optimal management of flow in groundwater systems: an introduction to combining simulation models and optimization methods. Academic, San DiegoGoogle Scholar
  2. Alley WM, Leake SA (2004) The journey from safe yield to sustainability. Ground Water 42:1CrossRefGoogle Scholar
  3. Alley WM, Reilly, TE, Franke OL (1999) Sustainability of ground-water resources. US Geol Surv Circ 1186Google Scholar
  4. Banta ER, Poeter EP, Doherty JE, Hill MC (2006) JUPITER: Joint Universal Parameter Identification and Evaluation of Reliability—an application programming interface (API) for model analysis. US Geol Surv Tech Methods TM 6-E1Google Scholar
  5. Bobeck P (2004) The public fountains of the city of Dijon, Henry Darcy,1856. Kendall/Hunt, Austin, TXGoogle Scholar
  6. Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water 40:340–345CrossRefGoogle Scholar
  7. Bredehoeft JD (2005) The conceptualization model problem: surprise. Hydrogeol J 13:37–46CrossRefGoogle Scholar
  8. Bredehoeft JD, Young RA (1970) The temporal allocation of groundwater: a simulation approach. Water Resour Res 6:3–21CrossRefGoogle Scholar
  9. Conkling H (1945) Utilization of groundwater storage in stream system development. Proc Am Soc Civ Eng 33–62Google Scholar
  10. Custodio E (2002) Aquifer exploitation: what does it mean? Hydrogeol J 10:254–277CrossRefGoogle Scholar
  11. Darcy H (1856) The oublic fountains of the city of Dijon (Bobeck P, trans.). Victor Dalmont, Paris (republished, 2004, in English by Kendall/Hunt, Dubuque, IW), 506 pp plus platesGoogle Scholar
  12. Devlin J, Sophocleous M (2005) The persistence of the water budget myth and its relationship to sustainability. Hydrogeol J 13(4):549–554CrossRefGoogle Scholar
  13. Dietz F, Ostrom E, Stern PC (2003) The struggle to govern the commons. Science 302:1907–1912CrossRefGoogle Scholar
  14. Doherty J (2003) Ground water model calibration using pilot points and regularization. Ground Water 41(2):170–177CrossRefGoogle Scholar
  15. Doherty J (2004) PEST: model-independent parameter estimation. User manual, 5th edn. Watermark, Brisbane, AustraliaGoogle Scholar
  16. Doherty J, Skahill BE (2006) An advanced regularization methodology for use in watershed model calibration. J Hydrol 327(3–4):564–577CrossRefGoogle Scholar
  17. Domenico PA (1972) Concepts and models in groundwater hydrology. McGraw-Hill, New YorkGoogle Scholar
  18. Eaton D, Schwarz, S, Sharp JM (2007) Groundwater management in Texas: the future of groundwater in Texas’ Hill Country. Policy research practicum course, Lyndon B. Johnson School of Public Affairs, The University of Texas at AustinGoogle Scholar
  19. El Sawah S (2010) The use of integrated modelling for learning and communicating about water issues in the Australian Capital Territory. University of New South Wales, Australian Defence Force Academy, Sydney, May 2010Google Scholar
  20. Focazio MJ, Reilly TE, Rupert MG, Helsel DR (2002) Assessing ground-water vulnerability to contamination providing scientifically defensible information for decision makers. US Geol Surv Circ 1224Google Scholar
  21. Galloway DL, Alley WM, Barlow PM, Reilly TE, Tucci P (2003) Evolving issues and practices in managing ground-water resources. US Geol Surv Circ 1247Google Scholar
  22. Georgopoulos PG, Lioy PJ (2006) From a theoretical framework of human exposure and dose assessment to computational system implementation: the modeling environment for total risk studies (MENTOR). J Toxicol Environ Health Part B 9(6):457–483CrossRefGoogle Scholar
  23. Gleeson T, VanderSteen J, Sophocleous MA, Taniguchi M, Alley WM, Allen DM, Zhou YX (2010) Groundwater sustainability strategies. Nat Geosci 3(6):378–379CrossRefGoogle Scholar
  24. Gorelick SM (1983) A review of distributed parameter groundwater management models and methodologies. Water Resour Res 19(2):305–319CrossRefGoogle Scholar
  25. Gregory RS, McDaniels T, Fields D (2001) Decision aiding, not dispute resolution: creating insights through structured environmental decisions. J Policy Anal Manag 20(3):415–432CrossRefGoogle Scholar
  26. Gregory RS, Fischoff B, McDaniels T (2005) Acceptable input: using decision analysis to guide public policy deliberations. Decis Anal 2(1):4–16CrossRefGoogle Scholar
  27. Guillaume JHA, Pierce SA (2011) Groundwater management: what methods have we used to address uncertainty when making decisions? MODFLOW and More 2011, Golden, CO, June 2011Google Scholar
  28. Guillaume JHA, Qureshi ME, Jakeman AJ (2012) A structured analysis of uncertainty surrounding modeled impacts of groundwater extraction rules. Hydrogeol J. doi: 10.1007/s10040-012-0864-0
  29. Hamby DM (1994) A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32(2):135–154CrossRefGoogle Scholar
  30. Hill MC (1998) Methods and guidelines for effective model calibration. US Geol Surv Water Resour Invest Rep 98–4005Google Scholar
  31. Jakeman AJ, Letcher RA (2003) Integrated assessment and modeling: features, principles and examples for catchment management. Environ Model Softw 18:491–501CrossRefGoogle Scholar
  32. Kalf FR, Wooley DR (2005) Applicability and methodology of determining sustainable yield in groundwater systems. Hydrogeol J 13:295–312CrossRefGoogle Scholar
  33. Kazmann RG (1956) “Safe Yield’ in groundwater development, reality or illusion? Proc Am Soc Civ Eng 82(3):12Google Scholar
  34. Kazmann RG (1968) From water mining to water management. Ground Water 6(1):26–28CrossRefGoogle Scholar
  35. Lee CH (1915) The determination of safe yield of underground reservoirs of the closed basin type. Trans Am Soc Civ Eng 78:148–151Google Scholar
  36. Loáiciga HA (2006) Comment on “The persistence of the water budget myth and its relationship to sustainability” by J.F. Devlin and M. Sophocleous. Hydrogeol J 13:549–554Google Scholar
  37. Luce RD, Raiffa H (1985) Games and decisions: introduction and critical survey. Duncan, New YorkGoogle Scholar
  38. Mace RE, Mullican WF,Way TS-C (2001) Estimating groundwater availability in Texas. In: 1st annual Texas Rural Water Association and Texas Water Conservation Association Water Law Seminar: Water Allocation in Texas: The Legal Issues, Austin, January 2001Google Scholar
  39. Mace RE, Petrossian R, Bradley R, Mullican WF (2006) A streetcar named desired future conditions: the new groundwater availability for texas. In: The changing face of water rights in Texas. San Antonio: State Bar, Texas Water Development Board, Austin, TXGoogle Scholar
  40. Mandel S, Shiftan ZL (1981) Groundwater resources: investigation and development. Academic, New YorkGoogle Scholar
  41. Margerum RD (2008) A typology of collaboration efforts in environmental management. Environ Manag 41(4):487–500CrossRefGoogle Scholar
  42. Matott LS, Babendreier JE, Purucker ST (2009) Evaluating uncertainty in integrated environmental models: a review of concepts and tools. Water Resour Res 45Google Scholar
  43. Meinzer OE (1920) Quantitative methods of estimating groundwater supplies. Geol Soc Am Bull 31(2):329–338Google Scholar
  44. Meinzer OE (1923) Outline of groundwater hydrology, with definitions. US Geol Surv Water Supply Pap 494Google Scholar
  45. Moore EA, Koontz TM (2003) A typology of collaborative watershed groups: citizen-based, agency-based, and mixed partnerships. Soc Nat Resour 16(5):451–460CrossRefGoogle Scholar
  46. Mysiak JC, Henrikson HJ, Sullivan C, Bromley J, Pahl-Wostl C (2009) The adaptive water resource management handbook. Earthscan/James and James, LondonGoogle Scholar
  47. Newman BD, Wilcox BP, Archer SR, Breshears DD, Dahm CN, Duffy CJ, McDowell NG, Phillips FM, Scanlon BR, Vivoni ER (2006) Ecohydrology of water-limited environments: a scientific vision. Water Resour Res 42(6)Google Scholar
  48. NRC (2008) Public participation in environmental assessment and decision making. National research council. The National Academies Press, Washington, DCGoogle Scholar
  49. Ostrom E (1990) Governing the commons: the evolution of institutions for collective action. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  50. Ostrom E (2005) Understanding institutional diversity. Princeton University Press, Princeton, NJGoogle Scholar
  51. Pahl-Wostl C (2007) The implications of complexity for integrated resources management. Environ Model Softw 22(5):561–569CrossRefGoogle Scholar
  52. Pereira AG, Quintana SC, Funtowicz S (2005) GOUVERNe: new trends in decision support for groundwater governance issues. Environ Model Softw 20:111–118CrossRefGoogle Scholar
  53. Pierce SA (2006) Groundwater decision support: linking causal narratives, numerical models, and combinatorial search techniques to determine available yield for an aquifer system. PhD Thesis, The University of Texas at Austin, USAGoogle Scholar
  54. Pierce SA, Sharp, JM, Lowry TS, Tidwell VC, Dulay M (2006) Defining tenable groundwater management: Integrating stakeholder preferences, distributed parameter models, and systems dynamics to aid groundwater resource allocation. In: Proceedings of MODFLOW and More International Groundwater Modeling Center, Golden, CO, May 2006, pp 409–413Google Scholar
  55. Poeter EP, Hill MC (1998) Documentation of UCODE: a computer code for universal inverse modeling. US Geol Surv Water Resour Invest Rep 98–4080Google Scholar
  56. Refsgaard JC, Hojberg AL, Moller I, Hansen M, Sondergaard V (2010) Groundwater modeling in integrated water resources management-visions for 2020. Ground Water 48(5):633–648CrossRefGoogle Scholar
  57. Richardson S, Evans R, Harrington G (2011) Connecting science and engagement: setting groundwater extraction limits using a stakeholder-led decision-making process. In: Connell D, Grafton RQ (eds) Basin futures water reform in the Murray-Darling Basin. ANU E, Canberra, AustraliaGoogle Scholar
  58. Ross A, Martinez-Santos P (2011) The challenge of groundwater governance: case studies from Spain and Australia. Reg Environ Chang 10:299–310CrossRefGoogle Scholar
  59. Sophocleous M (1997) Managing water systems: why ‘safe yield’ is not sustainable. Ground Water 35(4):561CrossRefGoogle Scholar
  60. Sophocleous M (2000) From safe yield to sustainable development of water resources: the Kansas experience. J Hydrol 235(1–2):27–43CrossRefGoogle Scholar
  61. Sophocleous M (2007) The science and practice of environmental flows and the role of hydrogeologists. Ground Water 45(4):393–401CrossRefGoogle Scholar
  62. SWAQ (2004) Science and technology to support freshwater availability in the United States. National Science and Technology Council, Washington, DCGoogle Scholar
  63. Theis CV (1940) The source of water derived from wells: essential factors controlling the response of an aquifer to development. Civ Eng 10:277–280Google Scholar
  64. Thomas HE (1951) The conservation of groundwater. McGraw-Hill Book Company, New YorkGoogle Scholar
  65. Todd DK (1959) Groundwater hydrology. Wiley, New YorkGoogle Scholar
  66. USC (1972) Federal water pollution control act, Title 33: navigation and navigable waters, chap 26, water pollution prevention and control. 33 U.S.C., § 1251 et seq, United States Congress, Washington, DCGoogle Scholar
  67. USGS (2002) Report to congress: concepts for national assessment of water availability and use. US Geological Survey, Reston, VAGoogle Scholar
  68. Villa F, Athanasiadis IN, Rizzoli AE (2009) Modelling with knowledge: a review of emerging semantic approaches to environmental modeling. Environ Model Softw 24:577–587CrossRefGoogle Scholar
  69. Voinov A, Bousquet F (2010) Modelling with stakeholders. Environ Model Softw 25(11):1268–1281CrossRefGoogle Scholar
  70. Walton WC (1964) Future water-level declines in deep sandstone wells in Chicago region. Ground Water 2(1):13–20CrossRefGoogle Scholar
  71. Walton WC (1970) Groundwater resource evaluation. McGraw-Hill, New YorkGoogle Scholar
  72. Wright G, Farrow S, Gutmann MP (2006) Geography and the environment, chap Cf. In: Carter SB, Gartner SS, Haines MR, Olmstead AL, Sutch R, Wright G (eds) Historical statistics of the United States. Cambridge University Press, Washington, DCGoogle Scholar
  73. Zheng C, Wang PP (1999) An integrated global and local optimization approach for remediation system design. Water Resour Res 35(1):137–146CrossRefGoogle Scholar
  74. Zheng CM, Wang PP (2002) A field demonstration of the simulation optimization approach for remediation system design. Ground Water 40(3):258–265CrossRefGoogle Scholar
  75. Zhou Y (2009) A critical review of groundwater budget myth, safe yield and sustainability. J Hydrogeol 370:207–213Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Suzanne A. Pierce
    • 1
  • John M. SharpJr.
    • 2
  • Joseph H. A. Guillaume
    • 3
  • Robert E. Mace
    • 4
  • David J. Eaton
    • 5
  1. 1.Center for International Energy and Environmental Policy, Jackson School of GeosciencesThe University of Texas at AustinAustinUSA
  2. 2.Department of Geological Sciences, Jackson School of GeosciencesThe University of Texas at AustinAustinUSA
  3. 3.National Centre for Groundwater Research and Training, Integrated Catchment Assessment and Management Centre, Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralia
  4. 4.Water Science and Conservation DivisionThe Texas Water Development BoardAustinUSA
  5. 5.Lyndon B. Johnson School of Public AffairsThe University of Texas at AustinAustinUSA

Personalised recommendations