Hydrogeology Journal

, Volume 20, Issue 8, pp 1651–1668 | Cite as

Estimates of groundwater discharge to a coastal wetland using multiple techniques: Taylor Slough, Everglades National Park, USA

Report

Abstract

Quantifying water exchange between a coastal wetland and the underlying groundwater is important for closing water, energy and chemical budgets. The coastal wetlands of the Florida Everglades (USA) are at the forefront of a large hydrologic restoration project, and understanding of groundwater/surface-water interactions is needed to comprehend the effects of the project. Four independent techniques were used to identify water exchange at varying spatial and temporal scales in Taylor Slough, Everglades National Park. The techniques included a water-budget study and measurements of hydraulic head gradients, geochemical tracers, and temperature. During the 18-month study, the four methods converged as to the timing of groundwater discharge, typically between June and September, contemporaneous with the wet season and increasing surface-water levels. These results were unexpected, as groundwater discharge was predicted to be greatest when surface-water levels were low, typically during the dry season. Either a time lag of 1–5 months in the response of groundwater discharge to low surface-water levels or precipitation-induced groundwater discharge may explain the results. Groundwater discharge was a significant contributor (27 %) to the surface water in Taylor Slough with greater rates of discharge observed towards the coastline in response to seawater intrusion.

Keywords

Groundwater/surface-water relations Salt-water/fresh-water relations Tracers Groundwater recharge/water budget USA 

Évaluations des apports d’eaux souterraines vers une zone humide côtière à l’aide de techniques multiples : Taylor Slough, Everglades National Park, USA

Résumé

La quantification des échanges d’eau entre une zone humide côtière et l’eau souterraine sous-jacente est importante pour boucler les bilans hydrologiques, énergétiques et chimiques. Les zones humides côtières des Everglades en Floride (Etas Unis) sont au premier rang d’un grand projet hydrologique de restauration, et la compréhension des interactions des eaux souterraines et de surface est nécessaire pour comprendre les effets du projet. Quatre techniques indépendantes ont été employées pour identifier les échanges d’eau à diverses échelles spatiales et temporelles à Taylor Slough, Everglades National Park. Les techniques ont inclus une étude de bilan d’eau et des mesures de gradients de charge hydraulique, de traceurs géochimiques, et de température. Pendant les dix-huit mois d’étude, les quatre méthodes ont concordé sur la période de l’alimentation par les eaux souterraines, typiquement entre juin et septembre, contemporains de la saison des pluies et de l’augmentation des niveaux des eaux de surface. Ces résultats étaient inattendus, car l’alimentation par les eaux souterraines était supposée être la plus grande quand les niveaux d’eaux de surface étaient bas, typiquement pendant la saison sèche. Un délai de 1–5 mois dans la réponse des eaux souterraines aux niveaux bas des eaux de surface ou une alimentation des eaux souterraines induite par les précipitations peut expliquer les résultats. L’alimentation par les eaux souterraines était un contributeur significatif (27%) à l’eau de surface à Taylor Slough avec des débits plus importants observés vers la côte en réponse à l’intrusion saline.

Estimación de la descarga de agua subterránea a un humedal costero usando múltiples técnicas: Taylor Slough, Everglades National Park, EEUU

Resumen

Cuantificar el intercambio de agua entre un humedal costero y el agua subterránea subyacente es importante para cerrar los balances de agua, energía y químico. Los humedales costeros del Florida Everglades (EEUU) están a la vanguardia de un gran proyecto de restauración hidrológica, y es necesario entender las interacciones agua superficial – agua subterránea para abarcar los efectos del proyecto. Se usaron cuatro técnicas independientes para identificar el intercambio de agua en varias escalas espaciales y temporales en Taylor Slough, Everglades National Park. Las técnicas incluyeron un estudio del balance de agua y las mediciones de gradientes de carga hidráulica, trazadores geoquímicos, y temperatura. Durante los 18 meses del estudio, los cuatro métodos convergieron en cuanto al momento de la descarga de agua subterránea, típicamente entre junio y septiembre, contemporáneo con la estación húmeda y los niveles crecientes de agua superficial. Estos resultados fueron inesperados, porque la descarga de agua subterránea se predijo que sería mayor cuando los niveles de agua superficial estarían bajos, típicamente durante la estación seca. Tanto un tiempo de retardo de 1–5 meses en la respuesta de la descarga de agua subterránea hacia niveles bajos de agua superficial o la descarga de agua subterránea inducida por la precipitación pueden explicar los resultados. La descarga de agua subterránea fue un contribuyente significativo (27%) al agua superficial en Taylor Slough con mayores tasas de descarga observada hacia la línea de costa en respuesta a la intrusión de agua de mar.

多种方法估计地下水向沿海湿地排泄量:以美国Everglades国家公园Taylor沼泽为例

摘要

海岸湿地与下伏地下水之间的水量交换定量化对于水、能量和化学平衡至关重要。美国佛罗里达Everglades的海岸湿地为大规模水文修复工程的前沿,为了解本工程的效果,把握地下水地表水之间的相互作用是必需的。在Everglades国家公园Taylor沼泽不同时间空间尺度上应用四种独立技术确定交换水量。技术包括水均衡研究、水力梯度、地球化学及温度测量。在18个月的研究中,四种方法同样收敛于地下水排泄时间,六月和九月间的雨季尤为典型,地表水位上升。这这一结果很意外,因为通常旱季地表水位低地下水排泄量最大。原因可能为地下水向低地表水位排泄1-5个月的滞后响应或者降水诱发地下水排泄。地下水排泄是Taylor沼泽地表水的主要来源(占27%),且作为海水入侵的响应,越靠近海岸线,排泄量增大。

Estimativas da descarga de água subterrânea para uma zona húmida costeira utilizando várias técnicas: Taylor Slough, Parque Nacional de Everglades, EUA

Resumo

Quantificar a troca de água entre uma zona húmida costeira e as águas subterrâneas subjacentes é importante para estimar o balanço final da água, energia e da componente química. As zonas húmidas costeiras dos Everglades, na Flórida (EUA), são a frente visível de um grande projeto de restauro hidrológico, e o entendimento das interações água subterrânea-água superficial é necessário para compreender os efeitos do projeto. Foram utilizadas quatro técnicas independentes para identificar a troca de água a diferentes escalas espaciais e temporais em Taylor Slough, no Parque Nacional de Everglades. As técnicas incluíram um estudo do custo da água, medições do gradiente hidráulico, traçadores geoquímicos e temperatura. Durante o estudo de 18 meses, os quatro métodos convergiram quanto ao momento da descarga de águas subterrâneas, normalmente entre junho e setembro, contemporaneamente com a estação das chuvas e a subida dos níveis da água superficial. Estes resultados foram inesperados, na medida em que era previsto que a descarga de água subterrânea fosse maior durante a estação seca, quando os níveis de água superficial se encontravam baixos. Os resultados podem ser explicados quer por haver um tempo de atraso de 1-5 meses na resposta da descarga de água subterrânea aos níveis baixos de água superficial, quer por a descarga de água subterrânea ser induzida pela precipitação. A descarga de água subterrânea foi um contribuinte significativo (27%) para a água superficial em Taylor Slough, com maiores taxas de descarga observadas para o litoral, em resposta à intrusão salina.

Supplementary material

10040_2012_907_MOESM1_ESM.pdf (117 kb)
ESM 1(PDF 117 kb)

References

  1. Abtew W (1996) Evapotranspiration measurements and modeling for three wetland systems in south Florida. Water Resour Bull 32:465–473CrossRefGoogle Scholar
  2. Abtew W, Obeysekera J, Irizzary-Ortiz M, Lyons D, Reardon A (2003) Evapotranspiration estimation for south Florida. Technical paper EMA no. 407, South Florida Water Management District, West Palm Beach, FLGoogle Scholar
  3. Araujo RJ, Jaramillo JC, Snedaker SC (1997) LAI and leaf size differences in two red mangrove forest types in south Florida. Bull Mar Sci 60:643–647Google Scholar
  4. Armentano TV, Sah JP, Ross MS, Jones D, Cooley H, Smith C (2006) Rapid responses of vegetation to hydrological changes in Taylor Slough, Everglades National Park, Florida, USA. Hydrobiologia 569:293–309CrossRefGoogle Scholar
  5. Bouwer H, Rice RC (1976) Slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12:423–428CrossRefGoogle Scholar
  6. Burnett WC, Aggarwal PK, Aureli A et al (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367:498–543CrossRefGoogle Scholar
  7. Chen E, Gerber J (1991) Climate. In: Myers R, Ewel J (eds) Ecosystems of Florida, chap. 2. University of Central Florida Press, Orlando, FLGoogle Scholar
  8. Childers DL (2006) A synthesis of long-term research by the Florida Coastal Everglades LTER Program. Hydrobiologia 569:531–544CrossRefGoogle Scholar
  9. Craighead FC (1971) The trees of South Florida, vol 1: the natural environments and their succession. University of Miami Press, Coral Gables, FL, 212 ppGoogle Scholar
  10. Davis SM, Ogden JC, (1994) Everglades: the ecosystem and its restoration. St. Lucie, Delray Beach, FLGoogle Scholar
  11. Duever M, Meeder J, Meeder L, McCollom J (1994) The Climate of South Florida and its role in shaping the Everglades Ecosystem. In: Davis S, Ogden J (eds) Everglades: the ecosystem and its restoration. St. Lucie, Delray Beach, FLGoogle Scholar
  12. ENP (2009) DataForEVER Dataset. South Florida Natural Resources Center. Everglades National Park Data request made to www.EVER_data_request@nps.gov. Cited 30 November 2009
  13. Ewe SML, Gaiser EE, Childers DL, Iwaniec D, Rivera-Monroy VH, Twilley RR (2006) Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia 569:459–474CrossRefGoogle Scholar
  14. FCE-LTER (2009) FCE Data Resources. Florida Coastal Everglades. Long Term Ecological Research. http://fce.lternet.edu/data/. Cited 30 November 2009
  15. Fetter CW (2001) Applied hydrogeology. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  16. Fish JE, Stewart MT (1991) Hydrogeology of the surficial aquifer system, Dade County, Florida. US Geol Surv Water Resour Invest Rep 90-4108Google Scholar
  17. Fitterman D, Deszcz-Pan M (1998) Helicopter EM mapping of saltwater intrusion in Everglades National Park, Florida. Explor Geophys 29:240–243CrossRefGoogle Scholar
  18. Genereux D, Slater E (1999) Water exchange between canals and surrounding aquifer and wetlands in the southern Everglades, USA. J Hydrol 219:153–168CrossRefGoogle Scholar
  19. German ER (2000) Regional evaluation of evapotranspiration in the Everglades. US Geol Surv Water Resour Invest Rep 00-4217Google Scholar
  20. Harvey JW, McCormick PV (2009) Groundwater’s significance to changing hydrology, water chemistry, and biological communities of a floodplain ecosystem, Everglades, south Florida, USA. Hydrogeol J 17:185–201CrossRefGoogle Scholar
  21. Harvey JW, Choi J, Mooney RH (2000) Hydrologic interactions between surface water and ground water in Taylor Slough, Everglades National Park. In: Eggleston JR et al (eds) U.S. Geological Survey Program on the South Florida Ecosystem: 2000 Proceedings, US Geol Surv Open-File Rep 00-449, 24–26 ppGoogle Scholar
  22. Harvey JW, Krupa SL, Gefvert C, Mooney RH, Choi J, King SA, Giddings JB (2002) Interaction between surface water and groundwater and effects on mercury transport in the north-central Everglades. US Geol Surv Water Resour Invest Rep 02-4050Google Scholar
  23. Harvey JW, Krupa SL, Krest JM (2004) Ground water recharge and discharge in the central Everglades. Ground Water 42:1090–1102CrossRefGoogle Scholar
  24. Hittle C, Patino E, Zucker M (2001) Freshwater flow from estuarine creeks into northeastern Florida Bay. US Geol Surv Water Resour Invest Rep 01-4164Google Scholar
  25. Jacobs JM, Mergelsberg SL, Lopera AF (2002) Evapotranspiration from a wet prairie wetland under drought conditions: Paynes Prairie Preserve, Florida, USA. Wetlands 22:374–385CrossRefGoogle Scholar
  26. Jacobs JM, Anderson MC, Friess LC (2004) Solar radiation, longwave radiation and emergent wetland evapotranspiration estimates from satellite data in Florida, USA. Hydrol Sci J 49:461–476CrossRefGoogle Scholar
  27. Koch GR, Childers DL, Staehr PA, Price RM, Davis SE, Gaiser EE (2012) Hydrological conditions control P loading and aquatic metabolism in an oligotrophic, subtropical estuary. Estuaries Coasts 35:292–307CrossRefGoogle Scholar
  28. Li L, Barry DA, Stagnitti F, Parlange JY (1999) Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour Res 35:3253–3259CrossRefGoogle Scholar
  29. Light SS, Dineen JW (1994) Water control in the Everglades: a historical perspective. In: Davis SM, Odgen JC (eds) Everglades: the ecosystem and its restoration. St. Lucie, Delray Beach, FLGoogle Scholar
  30. Michael HA, Mulligan AE, Harvey CF (2005) Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 436:1145–1148CrossRefGoogle Scholar
  31. Michot B, Meselhe EA, Rivera-Monroy VH, Coronado-Molina C, Twilley RR (2011) A tidal creek water budget: estimation of groundwater discharge and overland flow using hydrologic modeling in the southern Everglades. Estuarine Coastal Shelf Sci 93:438–448CrossRefGoogle Scholar
  32. NCDC (2009) NOAA Satellite and Information Service. National Climatic Data Center. US Department of Commerce. http://www.ncdc.noaa.gov/oa/ncdc.html. Cited 30 November 2009
  33. Noe GB, Childers DL, Jones RD (2001) Phosphorus biogeochemistry and the impact of phosphorus enrichment: Why is the Everglades so unique? Ecosystems 4:603–624CrossRefGoogle Scholar
  34. Nungesser MK, Chimney MJ (2006) A hydrologic assessment of the Everglades Nutrient Removal Project, a subtropical constructed wetland in south Florida (USA). Ecol Eng 27:331–344CrossRefGoogle Scholar
  35. Nuttle WK, Harvey JW (1995) Fluxes of water and solute in a coastal wetland sediment. 1. The contribution of regional groundwater discharge. J Hydrol 164:89–107CrossRefGoogle Scholar
  36. Park Y-J, Sudicky EA, Brookfield AE, Jones JP (2011) Hydrologic response of catchments to precipitation: quantification of mechanical carriers and origins of water. Water Resour Res 47:W12515CrossRefGoogle Scholar
  37. Price RM, Swart PK, Fourqurean JW (2006) Coastal groundwater discharge: an additional source of phosphorus for the oligotrophic wetlands of the Everglades. Hydrobiologia 569:23–36CrossRefGoogle Scholar
  38. Price RM, Nuttle WK, Cosby BJ, Swart P (2007) Variation and uncertainty in evaporation from a subtropical estuary: Florida Bay. Estuaries Coasts 30:497–506CrossRefGoogle Scholar
  39. Rivera-Monroy VH, Twilley RR, Davis SE III et al (2011) The role of the Everglades Mangrove Ecotone Region (EMER) in regulating nutrient cycling and wetland productivity in south Florida. Crit Rev Environ Sci Technol 41:633–669CrossRefGoogle Scholar
  40. Ross MS, Meeder JF, Sah JPL, Ruiz PL, Telesnicki GJ (2000) The Southeast Saline Everglades revisited: 50 years of coastal vegetation change. J Veg Sci 11:101–112CrossRefGoogle Scholar
  41. Saha AK, Moses CS, Price RM, Engel V, Smith TJ III, Anderson G (2012) A hydrological budget (2002–2008) for a large subtropical wetland ecosystem indicates marine groundwater discharge accompanies diminished freshwater flow. Estuaries Coasts 35:459–474CrossRefGoogle Scholar
  42. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39CrossRefGoogle Scholar
  43. SFWMD (2009) DBHYDRO (environmental data). South Florida Water Management District. http://www.sfwmd.gov/portal/page/portal/xweb environmentalmonitoring/dbhydro application. Cited 30 November 2009
  44. Shuttleworth J (1992) Evaporation. In: Maidment D (ed) Handbook of hydrology. McGraw-Hill, New YorkGoogle Scholar
  45. Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67CrossRefGoogle Scholar
  46. Sutula M, Day JW, Cable J, Rudnick D (2001) Hydrological and nutrient budgets of freshwater and estuarine wetlands of Taylor Slough in southern Everglades, Florida (USA). Biogeochemistry 56:287–310CrossRefGoogle Scholar
  47. Tobias CR, Harvey JW, Anderson IC (2001) Quantifying groundwater discharge through fringing wetlands to estuaries: Seasonal variability, methods comparison, and implications for wetland-estuary exchange. Limnol Oceanogr 46:604–615CrossRefGoogle Scholar
  48. USGS (2009) Site Inventory for the Nation. In: NWIS Site Information for USA: Site Inventory. US Department of the Interior. US Geological Survey. http://waterdata.usgs.gov/nwis/inventory?. Cited 30 November 2009
  49. Wang JD, van de Kreeke J, Krishnan N, DeWitt S (1994) Wind and tide response in Florida Bay. Bull Mar Sci 54:579–601Google Scholar
  50. Winsberg MD (2003) Florida weather. University Press of Florida, Gainesville, FLGoogle Scholar
  51. Younger PL (1996) Submarine groundwater discharge. Nature 382:121–122CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Earth and EnvironmentFlorida International UniversityMiamiUSA
  2. 2.Southeast Environmental Research CenterFlorida International UniversityMiamiUSA
  3. 3.Department of Hydrology and Water ResourcesUniversity of ArizonaTucsonUSA

Personalised recommendations