Advertisement

Hydrogeology Journal

, Volume 21, Issue 1, pp 225–237 | Cite as

Exchange and pathways of deep and shallow groundwater in different climate and permafrost conditions using the Forsmark site, Sweden, as an example catchment

  • Emma BossonEmail author
  • Jan-Olof Selroos
  • Martin Stigsson
  • Lars-Göran Gustafsson
  • Georgia Destouni
Paper

Abstract

This study simulates and quantifies the exchange and the pathways of deep and shallow groundwater flow and solute transport under different climate and permafrost conditions, considering the example field case of the coastal Forsmark catchment in Sweden. A number of simulation scenarios for different climate and permafrost condition combinations have been performed with the three-dimensional groundwater flow and transport model MIKE SHE. Results show generally decreasing vertical groundwater flow with depth, and smaller vertical flow under permafrost conditions than under unfrozen conditions. Also the overall pattern of both the vertical and the horizontal groundwater flow, and the water exchange between the deep and shallow groundwater systems, change dramatically in the presence of permafrost relative to unfrozen conditions. However, although the vertical groundwater flow decreases significantly in the presence of permafrost, there is still an exchange of water between the unfrozen groundwater system below the permafrost and the shallow groundwater in the active layer, via taliks. ‘Through taliks’ tend to prevail in areas that constitute groundwater discharge zones under unfrozen conditions, which then mostly shift to net recharge zones (through taliks with net downward flow) under permafrost conditions.

Keywords

Groundwater flow Numerical modelling Permafrost hydrology Climate change 

Echanges et cheminements d’eau souterraine profonde et superficielle dans différentes conditions de climat et de pergélisol sur le site de Forsmark, Suède, pris comme exemple de bassin versant

Résumé

Cette étude simule les cheminements et quantifie les échanges d’eau profonde, d’eau de surface et de soluté, dans différentes conditions climatiques et de pergélisol en considérant le cas du bassin versant côtier de Forsmark, en Suède. On a simulé un certain nombre de scénarios pour différentes combinaisons de climat et de pergélisol avec le modèle tridimensionnel d’écoulement de nappe souterraine et de transfert MIKE SHE. Les résultats montrent dans l’ensemble un débit vertical décroissant avec la profondeur, et plus petit dans les sols gelés que dans les sols non gelés. De même, le modèle global à la fois du flux vertical et du flux horizontal et les transferts entre les systèmes souterrains profond et peu profond changent spectaculairement en présence de pergélisol comparativement aux conditions du hors gel. Cependant, bien que le flux vertical décroisse sensiblement en présence de pergélisol, il y a encore un échange entre le système souterrain non gelé sous le pergélisol et la nappe superficielle productive via des taliks. Les taliks remontants tendent à prédominer dans les zones constituant des domaines de décharge de nappe en condition de hors gel qui évoluent en général en zones de recharge nette (par des taliks à flot descendant net) en condition de pergélisol.

Intercambio y trayectorias de aguas subterránea somera y profunda en distintas condiciones de climas y de permafrost usando el sitio Forsmark, Suecia, como cuenca ejemplo

Resumen

Este estudio simula y cuantifica el intercambio y la trayectoria del flujo de agua subterránea profunda y somera y el transporte de soluto bajo diferentes condiciones de climas y permafrost, considerando el ejemplo del caso de campo de la cuenca costera de Forsmark en Suecia. Se ha realizado la simulación de algunos escenarios para distintas combinaciones de condiciones de clima y permafrost con el modelo de transporte y flujo tridimensional MIKE SHE. Los resultados muestran generalmente un decrecimiento del flujo vertical de agua subterránea con la profundidad y un menor flujo vertical bajo condiciones de permafrost que bajos condiciones de no congelamiento. Asimismo, el esquema general del flujo subterráneo vertical y horizontal, y el intercambio de agua entre los sistemas de agua subterránea profundos y someros, cambian drásticamente en la presencia de un permafrost en relación a condiciones de no congelamiento. Sin embargo, aunque el flujo vertical de agua subterránea decrece significativamente en la presencia de permafrost, existe aún un intercambio entre el sistema de agua subterránea sin congelar por debajo del permafrost y la capa activa del agua subterránea somera, a través de los taliks. El proceso ‘a través de los taliks’ tiende a prevalecer en áreas que constituyen zonas de descarga de aguas subterráneas bajo condiciones de no congelamiento, las cuales mayormente se desplazan a zonas netas de recarga (a través de los taliks con un flujo neto descendente) bajo condiciones de permafrost.

Percursos e intercâmbios de águas subterrâneas profundas e subsuperficiais em diferentes condições de climas e de permafrost usando como exemplo de bacia o local de Forsmark, na Suécia

Resumo

Este estudo simula e quantifica os percursos e trocas entre fluxos de água subterrânea profunda e subsuperficial e o transporte de solutos sob diferentes condições climáticas e de permafrost, considerando como exemplo de campo o caso da bacia costeira de Forsmark, na Suécia. Um número de cenários de simulação para diferentes combinações de condições climáticas e de permafrost foram admitidos e trabalhados com o fluxo tridimensional de águas subterrâneas e o modelo de transporte MIKE SHE. Os resultados mostram geralmente um decréscimo do fluxo vertical de águas subterrâneas com a profundidade, e um fluxo menor sob condições de permafrost em relação a condições de solo não congelado. Também o quadro geral de ambos os fluxos vertical e horizontal de água subterrânea, e a troca de água entre os sistemas profundo e subsuperficial, mudam drasticamente na presença de permafrost, em relação a condições de não congelação. No entanto, apesar do fluxo de água subterrânea vertical decrescer significativamente na presença de permafrost, ainda existe uma troca de água entre o sistema de água subterrânea líquida debaixo do permafrost e a água subterrânea subsuperficial na camada ativa, via taliks (volume de solo não congelado dentro do permafrost). ‘Taliks verdadeiros’ tendem a prevalecer em áreas que constituem zonas de descarga sob condições de não congelação, as quais tendem, na sua maioria, a readaptarem-se como zonas de recarga (através de taliks com fluxo bruto orientado para baixo) sob condições de permafrost.

Notes

Acknowledgments

The second (JOS) and the last (GD) authors gratefully acknowledge financial support from the Swedish Foundation for Strategic Research.

References

  1. Bense VF, Ferguson G, Kooi H (2009) Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Lett 36(L22401). doi: 10.1029/2009GL039225
  2. Berglund S, Selroos J-O, Kautsky U, Lindborg T (2009) Integration of hydrological and ecological modelling for the assessment of a nuclear waste repository. Hydrogeol J 17(1):95–113CrossRefGoogle Scholar
  3. Bosson E, Gustafsson L-G, Sassner M (2008) Numerical modelling of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling, SDM-Site Forsmark. SKB R-08-09, SKB, StockholmGoogle Scholar
  4. Bosson E, Sassner M, Sabel U, Gustafsson L-G (2010) Modelling of present and future hydrology and solute transport at Forsmark. SR-Site Biosphere. SKB R-10-02, SKB, StockholmGoogle Scholar
  5. Bosson E, Sabel U, Gustafsson L-G, Sassner M, Destouni G (2012) Influences of shifts in climate, landscape, and permafrost on terrestrial hydrology. J Geophys Res 117(D05120):12. doi: 10.1029/2011JD016429 Google Scholar
  6. Brydsten L, Strömgren M (2010) A coupled regolith-lake development model applied to the Forsmark site. SKB TR-10-56, SKB, StockholmGoogle Scholar
  7. Follin S (2008) Bedrock hydrogeology Forsmark. Site descriptive modelling, SDM-Site Forsmark. SKB R-08-95, SKB, StockholmGoogle Scholar
  8. Frampton A, Painter S, Lyon SW, Destouni G (2011) Non-isothermal, three-phase simulations of near-surface flows in a model permafrost system under seasonal variability and climate change. J Hydrol 403(3–4):352–359. doi: 10.1016/j.jhydrol.2011.04.010 CrossRefGoogle Scholar
  9. French HM (2007) The periglacial environment, 3rd edn. Wiley, Chichester, UKGoogle Scholar
  10. Ge S, McKenzie J, Voss C, Wu Q (2011) Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation. Geophys Res Lett 38(L14402). doi: 10.1029/2011GL047911
  11. Graham DN, Butts MB (2005) Flexible, integrated watershed modelling with MIKE SHE. In: Singh VP, Frevert DK (eds) Watershed models. CRC, Boca Raton, FL, pp 245–272Google Scholar
  12. Hartikainen J, Kouhia R,Wallroth T (2010) Permafrost simulations at Forsmark using a numerical 2D thermo-hydro-chemical model. SKB TR-09-17, SKB, StockholmGoogle Scholar
  13. Hedenström A, Sohlenius G (2008) Description of the regolith at Forsmark. Site descriptive modelling, SDM-Site Forsmark. SKB R-08-04, SKB, StockholmGoogle Scholar
  14. Johansson P-O (2008) Description of surface hydrology and near surface hydrogeology at Forsmark. Site descriptive modelling, SDM-Site Forsmark. SKB R-08-08, SKB, StockholmGoogle Scholar
  15. Joyce S, Simpson T, Hartley L, Applegate D, Hoek J, Swan D, Marsic N, Follin S (2010) Groundwater flow modelling of periods with temperate climate conditions: SR-Site Forsmark. SKB R-09-20, SKB, StockholmGoogle Scholar
  16. Kjellström E, Strandberg G, Brandefelt J, Näslund J-O, Smith B, Wohlfarth B (2009) Climate conditions in Sweden in a 100,000-year time perspective. SKB TR-09-04, SKB, StockholmGoogle Scholar
  17. Nyberg J, Elhammer A, Sohlenius G, Kjellin B, Nordgren P (2011) Results from Marine geological investigations outside Forsmark. SKB P-11-39, SKB, StockholmGoogle Scholar
  18. Påsse T (2001) An empirical model of glacio-isostatic movements and shore-level displacement in Fennoscandia. SKB R-01-41, SKB, StockholmGoogle Scholar
  19. Prieto C, Destouni G (2011) Is submarine groundwater discharge predictable? Geophys Res Lett 38:L01402. doi: 10.1029/2010GL045621 CrossRefGoogle Scholar
  20. Refsgaard JC, Storm B, Clausen T (2010) Systèm Hydrologique Europeén (SHE): Review and perspectives after 30 years development in distributed physically-based hydrological modeling. Hydrol Res 41:355–377. doi: 10.2166/nh.2010.009 CrossRefGoogle Scholar
  21. Selroos J-O, Follin S (2010) SR-Site groundwater flow modelling methodology, setup and result. SKB R-09-22, SKB, StockholmGoogle Scholar
  22. Swedish Nuclear Fuel and Waste Management Company (SKB) (2006), Climate and climate-related issues for the safety assessment SR-Can. SKB TR-06-23, SKB, StockholmGoogle Scholar
  23. Swedish Nuclear Fuel and Waste Management Company (SKB) (2010a) Biosphere analyses for the safety assessment SR-Site: synthesis and summary of results. SKB TR-10-09, SKB, StockholmGoogle Scholar
  24. Swedish Nuclear Fuel and Waste Management Company (SKB) (2010b) Climate and climate-related issues for the safety assessment SR-Site. SKB TR-10-49, SKB, StockholmGoogle Scholar
  25. Swedish Nuclear Fuel and Waste Management Company (SKB) (2011) Long-term safety for the final repository for spent nuclear fuel at Forsmark. SKB TR-11-01, SKB, StockholmGoogle Scholar
  26. Vidstrand P, Follin S, Zugec N (2010) Groundwater flow modelling of periods with periglacial and glacial climate conditions: Forsmark. SKB R-09-21, SKB, StockholmGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Emma Bosson
    • 1
    • 2
    Email author
  • Jan-Olof Selroos
    • 1
    • 2
  • Martin Stigsson
    • 2
  • Lars-Göran Gustafsson
    • 3
  • Georgia Destouni
    • 1
  1. 1.Department of Physical Geography and Quaternary Geology, Bert Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
  2. 2.Swedish Nuclear Fuel and Waste Management CoStockholmSweden
  3. 3.DHI Sweden ABGöteborgSweden

Personalised recommendations