Advertisement

Hydrogeology Journal

, Volume 20, Issue 8, pp 1463–1466 | Cite as

The relationship between seismic and aseismic motions induced by forced fluid injections

  • François Henri Cornet
Paper

Abstract

The injection of fluid into a rock mass results in variations of effective stresses that sometimes generate induced seismicity. These effective stress field variations depend on the diffusion process, which depends, in turn, on the magnitude of the pore pressure variation relative to the total stress. Four diffusion mechanisms are distinguished: diffusion through a poroelastic rock mass, and diffusion in preferential directions controlled either by slip along preexisting fractures, or by the development of fresh shear zones, or by hydraulic fracturing. More importantly, in some instances, this diffusion process also generates non-seismic motions that, in turn, influence the seismic activity, in particular when injection stops.

Keywords

Earthquake Groundwater monitoring Geophysical methods Fractured rocks 

Relation entre des mouvements sismiques et non sismiques induits par des injections de fluides sous pression.

Résumé

L'injection d’un fluide dans une masse rocheuse entraine des variations de contraintes effectives qui produisent parfois une séismicité induite. Ces variations du champ de contraintes effectives dépendent des processus de diffusion, qui dépendent à leur tour, de l’ordre de grandeur de la variation de la pression de pore par rapport à la contrainte totale. Quatre mécanismes de diffusion sont distingués: diffusion à travers une masse rocheuse poroélastique, et diffusion selon des directions préférentielles contrôlées soit par glissement le long de fractures préexistantes, soit par développement de nouvelles zones de cisaillement, soit par fracturation hydraulique. De manière plus importante, dans certains cas, ce processus de diffusion génère aussi des mouvements non sismiques qui, à leur tour, influencent l’activité sismique, en particulier lorsque l’injection s’arrête.

La relación entre los movimientos sísmicos y asísmico inducidos por inyecciones forzadas de fluidos

Resumen

La inyección de fluido en una masa rocosa provoca variaciones de las tensiones efectivas que algunas veces genera sismicidad inducida. Estas variaciones del campo de las tensiones efectivas dependen de los procesos de difusión, que depende, a su vez, de la magnitud de las variaciones de la presión de poros relativa a la tensión total. Se distinguieron cuatro mecanismos de difusión: difusión a través de una masa de roca poroelástica, y difusión en direcciones preferenciales controladas, tanto sea por deslizamientos a lo largo de fracturas persistentes, o por el desarrollo de zonas nuevas de cizalla, o por fracturación hidráulica. Más importante aún, en algunas instancias, este proceso de difusión también genera movimientos no sísmicos que, a su vez, influyen en la actividad sísmica, en particular la inyección se detiene.

由强制性流体注入诱发的地震活动及地震行为之间的关系

摘要

岩石中的流体注入导致有效压力的变化,有时会诱发地震活动。有效压力的变化取决于扩散过程,而扩散过程反过来又取决于孔隙压力相对于总压力的变化大小。本文区分出四个扩散机制:通过多孔介质的扩散,由沿着先前存在的断裂滑动或者新鲜节理面的发育,或者水压致裂控制的方向优先扩散。更重要的是,比如扩散过程还会引起非地震行为,反过来影响地震活动,尤其是在注入停止后。

Relação entre movimentações sísmicas e assísmicas induzidas por injeções fluidas forçadas

Resumo

A injeção de fluido num maciço rochoso origina variações da tensão efetiva que, por vezes, dão origem a sismicidade induzida. Estas variações do campo de estado de tensão dependem do processo de difusão, que por sua vez depende da grandeza da variação da pressão porosa em relação à tensão total. Distinguem-se quatro mecanismos de difusão: difusão através do maciço rochoso poroelástico, difusão em direções preferenciais, controlada quer pelo deslizamento em fraturas preexistentes, quer pelo desenvolvimento de novas zonas de cisalhamento, ou ainda por fraturação hidráulica. Mais importante ainda, em alguns casos, este processo de difusão gera também movimentações assísmicas, que, por sua vez, influenciam a atividade sísmica, em particular quando a injeção é interrompida.

Notes

Acknowledgements

Sincere thanks go to Prof. Auli Niemi and Chin Fu Tsang for organizing the deep hydrogeology workshop in Upsala in September 2011 and for inspiring me in writing this article.

References

  1. Calo M, Dorbath C, Cornet FH, Cuenot N (2011) Large scale aseismic motion identified through 4D P-wave tomography. Geophys J Int 186:1295–1314. doi: 10.1111/j.1365-246X.2011.05108.x CrossRefGoogle Scholar
  2. Cornet FH, Yin J (1995) Analysis of induced seismicity for stress field determination and pore pressure mapping. PAGEOPH 145:677–700CrossRefGoogle Scholar
  3. Cornet FH, Helm J, Poitrenaud H, Etchecopar A (1997) Seismic and aseismic slips induced by large-scale fluid injections. PAGEOPH 150:563–583CrossRefGoogle Scholar
  4. Cornet FH, Berard T, Bourouis S (2007) How close to failure is a natural granite rock mass. Int J Rock Mech Min Sci 44:47–66. doi: 10.1016/j.ijrmms.2006.04.008 CrossRefGoogle Scholar
  5. Fehler M, House L, Kaieda L (1987) Determining planes along which earthquakes occur: method and application to earthquakes accompanying hydraulic fracturing. J Geophys Res 92:9407–9414CrossRefGoogle Scholar
  6. Gupta HK, Narim H, Rastogi BK, Moham I (1969) A study of the Koyna earthquake of December 10, 1967. Bull Seismol Soc Am 59:1149–1162Google Scholar
  7. Healy JH, Rubey WW, Griggs DT, Raleigh CB (1968) The Denver earthquakes. Science 161:1301–1310CrossRefGoogle Scholar
  8. Hill DP (1977) A model for earthquake swarms. J Geophys Res 82:1347–1352CrossRefGoogle Scholar
  9. Holcomb DJ (1993) General theory of the Kaiser effect. Int J Rock Mech Min Sci Geomech Abstr 30:929–935CrossRefGoogle Scholar
  10. Julian BR, Foulger GR (2012) Geothermal seismology: the state of the art. Proceedings of the 37th Workshop On Geothermal Reservoir Engineering, Stanford University, Stanford, CA, 30 January–1 February 2012Google Scholar
  11. Julian BR, Miller AD, Foulger GR (1998) Non double couple earthquakes, I: theory. Rev Geophys 36:525–549CrossRefGoogle Scholar
  12. Miller AD, Foulger GR, Julian B (1998) Non double couple earthquakes, 2: observations. Rev Geophys 36:551–567CrossRefGoogle Scholar
  13. Nolen-Hoeksema RC, Ruff LJ (2001) Moment tensor inversion of microseims from the B-sand propped hydrofracture, M-site, Colorado. Tectonophysics 336:163–181CrossRefGoogle Scholar
  14. Pearson CJ (1981) The relationship between microseismicity and high pore pressures during hydraulic stimulation experiments in low permeability granitic rocks. J Geophys Res 86:7855–7864CrossRefGoogle Scholar
  15. Roeloffs E (1988) Fault stability changes induced beneath a reservoir with cyclic variations in water level. J Geophys Res 93:2107–2124CrossRefGoogle Scholar
  16. Scotti O, Cornet FH (1994) In situ evidence for fluid induced aseismic slip events along fault zones. Int J Rock Mech Min 31:347–358CrossRefGoogle Scholar
  17. Shapiro SA, Rothert E, Rath V, Rindschwentner J (2002) Characterization of fluid transport properties of reservoirs using induced microseismicity. Geophysics 67:212–220Google Scholar
  18. Sileny J, Milev A (2008) Source mechanism of mining induced seismic events: resolution of double couple and non double couple models. Tectonophys 456:3–15. doi: 10.1016/j.tecto.2006.09.021 CrossRefGoogle Scholar
  19. Sileny J, Hill DP, Eisner L, Cornet FH (2009) Non-double-couple mechanisms of microearthquakes induced by hydraulic fracturing. J Geophys Res 114:B08307. doi: 10.1029/2008JB005987 CrossRefGoogle Scholar
  20. Simpson W, Leith WS, Scholtz CH (1988) Two types of reservoir induced seismicity. Bull Seismol Soc Am 78:2025–2040Google Scholar
  21. Talwani P, Acree S (1984) Pore pressure diffusion and the mechanism of reservoir-induced seismicity. PAGEOPH 122:947–965CrossRefGoogle Scholar
  22. Wang H (2000) Theory of linear poroelasticity. Princeton Univ Press, Princeton, NJGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institut de Physique du Globe de StrasbourgUniversity de StrasbourgStrasbourg cedexFrance

Personalised recommendations