Hydrogeology Journal

, Volume 20, Issue 8, pp 1441–1461 | Cite as

Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico

  • Reza Ghasemizadeh
  • Ferdinand Hellweger
  • Christoph Butscher
  • Ingrid Padilla
  • Dorothy Vesper
  • Malcolm Field
  • Akram Alshawabkeh
Paper

Abstract

Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination.

Keywords

Karst Groundwater flow Contaminant transport modeling Puerto Rico (USA) 

Revue : Flux de nappe et modélisation de l’écoulement d’aquifères karstiques, avec référence particulière au système aquifère du Calcaire Côtier Nord de Porto-Rico

Résumé

Les systèmes karstiques ont un grand degré d’hétérogénéité et d’anisotropie, qui les fait se comporter de façon très différente des autres aquifères. D’une lente infiltration à travers la matrice rocheuse et d’un flux rapide à travers les conduits et fractures résulte une grande variation dans la réponse de la source aux événements pluvieux. Une rétention de polluant a lieu dans la matrice rocheuse et dans l’épikarst, mais le transport de polluants a lieu principalement suivant des cheminements préférentiels qui sont typiquement localisés de façons inaccessibles, ce qui fait de la modélisation des systèmes karstiques un challenge. Les modèles informatiques pour la compréhension et la prévision dynamique du transport du polluant dans les aquifères font que les hypothèses sur la distribution des structures géologiques et leurs propriétés hydrauliques peuvent ne pas toujours s’appliquer aux aquifères karstiques. Cet article passe en revue les concepts basiques, descriptions mathématiques et approches de modélisation des systèmes karstiques. Le système aquifère Calcaire Côtier Nord de Porto-Rico (USA) est introduit comme cas d’étude pour illustrer et discuter de l’application des modèles d’aquifères aux systèmes karstiques pour en évaluer la contamination.

Übersichtsartikel: Modellierung von Grundwasserfluss und Transport in Karstgrundwasserleitern, mit besonderer Berücksichtigung des North Coast Limestone Grundwassersystems in Puerto Rico

Zusammenfassung

Karstsysteme sind hochgradig heterogen und anisotrop, weshalb ihr Verhalten sich sehr von anderen Grundwasserleitern unterscheidet. Langsames Durchsickern der Gesteinsmatrix und schnelles Durchfließen von Karströhren und Klüften führen zu einer hohen Variabilität der Reaktion von Quellen auf Niederschlagsereignisse. Die Speicherung von Schadstoffen findet in der Gesteinsmatrix und im Epikarst statt, der Transport von Schadstoffen hingegen überwiegend entlang von präferenziellen Fließwegen. Weil diese in der Regel unzugänglich sind, ist die Modellierung von Karstsystemen eine Herausforderung. Computermodelle zum Verständnis und zur Vorhersage der Hydraulik und des Schadstofftransports in Grundwasserleitern machen Annahmen über die Verteilung der hydraulischen Eigenschaften von geologischen Strukturen, die in Karstgrundwasserleitern nicht unbedingt gültig sind. Dieser Beitrag bespricht grundlegende Konzepte, mathematische Beschreibungen und Ansätze zur Modellierung von Karstgrundwasserleitern. Das North Coast Limestone Grundwassersystem in Puerto Rico (USA) wird als Fallbeispiel vorgestellt, um die Anwendung von Grundwassermodellen zur Beurteilung von Grundwasserverschmutzungen in Karstsystemen zu veranschaulichen und zu diskutieren.

Revisión: Modelado del flujo y transporte de agua subterránea de acuíferos kársticos, con particular referencia al sistema acuífero de North Coast Limestone de Puerto Rico

Resumen

Los sistemas kársticos tienen un alto grado de heterogeneidad y anisotropía, lo que los hace que se comporten muy diferentes de otros acuíferos. El escurrimiento lento a través de la matriz de la roca y el flujo rápido a través de los conductos y fracturas dan como resultado una alta variación en la respuesta de los manantiales a los eventos de precipitación. El almacenamiento de los contaminantes ocurre en la matriz de la roca y en el epikarstico, pero el transporte de contaminantes ocurre mayormente a lo largo de trayectorias preferenciales que son de ubicación típicamente inaccesibles, lo cual convierte al modelado de los sistemas kársticas en un desafío. Los modelos de computadoras para entender y predecir el transporte hidráulico y de contaminantes en acuíferos hacen suposiciones acerca de la distribución y propiedades hidráulicas de los aspectos geológicos que no pueden siempre aplicarse a acuíferos kársticos. Este trabajo revisa los conceptos básicos, las descripciones matemáticas, y los enfoques de modelados para sistemas kársticas. Se introduce el sistema acuífero de North Coast Limestone de Puerto Rico (EEUU) como un caso de estudio para ilustrar y discutir la aplicación de modelos de agua subterránea en sistemas acuíferos kársticas para evaluar la contaminación del acuífero.

综述:岩溶含水层地下水的水流与迁移模型,以波多黎各北海岸灰岩含水层系统为例

摘要

岩溶系统具有高度的非均质性与各向异性,这使得它与其它含水层的差别很大。流过岩石介质的慢速流与流过导水管道和裂隙的快速流导致泉对降水事件的响应大有不同。污染物储存在岩石介质和表层岩溶中,但污染物的迁移大多沿着优先流径发生,通常情况下这样的优先流径都处于人力无法达到的地方,这给岩溶含水层系统的模拟带来了很大的挑战。为了了解和预测含水层的水力学特性和污染物的迁移,电脑模型会假设地质体的分布和水力学性质,然而这种假设并不总能应用到岩溶含水层中。本文综述了可用于岩溶含水层的基本概念、数学描述方法与模拟方法。波多黎各(美国)的北海岸灰岩含水层系统作为本文一个实例,解释并讨论了应用地下水模型评估岩溶含水层系统中的污染。

Análise: Modelação de fluxo e de transporte de águas subterrâneas em aquíferos cársicos, com especial referência para o sistema aquífero Carbonatado do Litoral Norte de Porto Rico

Resumo

Os sistemas cársicos têm um elevado grau de heterogeneidade e anisotropia, o que faz com que se comportem de maneira muito diferente da dos outros aquíferos. O escoamento lento através da matriz da rocha e o rápido fluxo através de condutas e de fraturas resulta numa elevada variação das respostas das emergências a eventos de precipitação. O armazenamento de contaminantes ocorre na matriz da rocha e no epicarso, mas o transporte de contaminantes ocorre principalmente ao longo de caminhos preferenciais, que são tipicamente locais inacessíveis, o que faz da modelação de sistemas cársicos um desafio. Os modelos de computador, para entenderem e preverem a hidráulica e o transporte de contaminantes em aquíferos, assumem suposições sobre a distribuição e as propriedades hidráulicas das caraterísticas geológicas, as quais nem sempre podem ser aplicadas aos aquíferos cársicos. Este trabalho faz a revisão dos conceitos básicos, das descrições matemáticas e das abordagens de modelação de sistemas cársicos. O sistema aquífero Carbonatado do Litoral Norte de Porto Rico (EUA) é apresentado como um caso de estudo, de forma a ilustrar e discutir a aplicação de modelos de águas subterrâneas em sistemas aquíferos cársicos para avaliação da contaminação de aquíferos.

References

  1. Andersson J, Dverstorp B (1987) Conditional simulations of fluid flow in three-dimensional networks of discrete fractures. Water Resour Res 23(10):1876–1886CrossRefGoogle Scholar
  2. Angelini P, Dragoni W (1997) The problem of modeling limestone springs: the case of Bagnara (North Apennines, Italy). Ground Water 35(4):612–618CrossRefGoogle Scholar
  3. Annable WL, Sudicky EA (1998) Simulation of karst genesis: hydrodynamic and geochemical rock-water interactions in partially-filled conduits. Bull Hydrogéol 16:211–221Google Scholar
  4. Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). J Hydrol 35:93–110CrossRefGoogle Scholar
  5. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13(1):148–160CrossRefGoogle Scholar
  6. Barenblatt G, ZheltovIu KI (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J Appl Math Mech 24(5):1286–1303CrossRefGoogle Scholar
  7. Barrett ME, Charbeneau RJ (1996) A parsimonious model for simulation of flow and transport in a karst aquifer. Technical Report 269, Center for Research in Water Resources, Austin, TX, 149 ppGoogle Scholar
  8. Bauer S, Liedl R, Sauter M (2000) Modeling of karst development considering conduit-matrix exchange flow, calibration and reliability in groundwater modeling: coping with uncertainty. IAHS Publ. 265, IAHS, Wallingford, UK, pp 10–15Google Scholar
  9. Bauer S, Liedl R, Sauter M (2003) Modeling of karst aquifer genesis: influence of exchange flow. Water Resour Res 39:1285CrossRefGoogle Scholar
  10. Beavers G, Joseph D (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30:197–207CrossRefGoogle Scholar
  11. Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25:861–884CrossRefGoogle Scholar
  12. Bezes C (1976) Contribution a la modélisation des systèmes aquifères karstiques [Contribution to the modeling of karst aquifer systems]. PhD Thesis, Université des Sciences et Techniques du Languedoc, MontpellierGoogle Scholar
  13. Birk S, Liedl R, Sauter M, Teutsch G (2003) Hydraulic boundary conditions as a controlling factor in karst genesis. Water Resour Res 39(1):1004CrossRefGoogle Scholar
  14. Blavoux B, Mudry J (1983) Séparation des composantes de l’écoulement d’un exutoire karstique à l’aide des méthodes physico-chimiques [Separation of components of a karst outlet flow using physico-chemical methods]. Hydrogéol Géol Ing 4:269–278Google Scholar
  15. Burdon DJ, Papakis N (1963) Handbook of karst hydrogeology. United Nations Special Fund, Institute for Geology and Subsurface Research, Athens, GreeceGoogle Scholar
  16. Butscher C, Huggenberger P (2008) Intrinsic vulnerability assessment in karst areas: a numerical modeling approach. Water Resour Res 44, W03408Google Scholar
  17. Cacas MC, Ledoux E, de Marsily G, Tilie B, Barbreau A, Durand E, Feuga B, Peaudecerf P (1990) Modeling fracture flow with a stochastic discrete fracture network model: calibration and validation: 1, the flow model. Water Resour Res 26:479–489Google Scholar
  18. Cao Y, Wang H, Xie X (1988) Dual-media flow models of karst areas and their application in north China. In: Zhang H (ed) Karst Hydrogeology and Karst Environment Protection, 21st Congress of the International Association of Hydrogeologists, Guilin, China. IAHS publication, 704, IAHS, Wallingford, UKGoogle Scholar
  19. Chen M (1988) Some experiences in compiling hydrogeological maps of karstic terrains in China [abs]. In: Karst hydrogeology and karst environment protection. Proc. of the 21st International Association of Hydrogeologists, vol 2, Guilin, China, September, 1988, pp 1221–1228Google Scholar
  20. Cherry GS (2001) Simulation of flow in the upper North Coast limestone aquifer, Manatí-Vega Baja area, Puerto Rico. US Geol Surv Water Resour Invest Rep 00-4266, 82 ppGoogle Scholar
  21. De Marsily G (1986) Quantitative hydrogeology-groundwater hydrology for engineers. Academic, Orlando, FLGoogle Scholar
  22. Delleur JW (1999) The handbook of groundwater engineering. CRC, Boca Raton, FLGoogle Scholar
  23. Dewandel B, Lachassagne P, Bakalowicz M, Weng PH, Al-Malki A (2003) Evaluation of aquifer thickness by analyzing recession hydrographs: application to the Oman ophiolite hard-rock aquifer. J Hydrol 274:248–269CrossRefGoogle Scholar
  24. Dou C, Woldt W, Dahab M, Bogardi I (1997a) Transient groundwater flow simulation using a fuzzy set approach. Ground Water 35(2):205–215CrossRefGoogle Scholar
  25. Dou C, Woldt W, Bogardi I, Dahab M (1997b) Numerical solute transport simulation using fuzzy set approach. J Contam Hydrol 27(1–2):107–126CrossRefGoogle Scholar
  26. Drogue C (1972) Analyse statistique des hydrogrammes de décrues des sources karstiques [Statistical analysis of hydrograph recessions of karst springs]. J Hydrol 15:49–68CrossRefGoogle Scholar
  27. Drogue C (1974) Structure de certains aquifères karstiques d’après les résultats de travaux de forage [Structure of some karst aquifers based on the drilling results]. Compt Rendus Acad Sci Paris D 278:2621–2624Google Scholar
  28. Drogue C (1980) Essai d’identification d’un type de structure de magasins carbonates fissures: application à l’interprétation de certains aspects du fonctionnement hydrogéologique [Test for identifying the type of structure of carbonates fissures’ storages: application in the interpretation of certain aspects of practical hydrogeology]. Mém sér Soc Géol France 11:101–108Google Scholar
  29. Dverstorp B, Andersson J, Nordqvist W (1992) Discrete fracture network interpretation of field tracer migration in sparsely fractured rock. Water Resour Res 28:2327–2343CrossRefGoogle Scholar
  30. Eisenlohr L, Király L, Bouzelboudjen M, Rossier I (1997) Numerical simulation as a tool for checking the interpretation of karst springs hydrographs. J Hydrol 193:306–315CrossRefGoogle Scholar
  31. Faulkner J, Hu BX, Kish S, Hua F (2009) Laboratory analog and numerical study of groundwater flow and solute transport in a karst aquifer with conduit and matrix domains. J Contam Hydrol 110:34–44CrossRefGoogle Scholar
  32. Field MS (1992–1993) Karst hydrology and chemical contamination. J Environ Syst 22(1):1–26Google Scholar
  33. Field MS (1997) Risk assessment methodology for karst aquifers: 2, solute-transport modeling. Environ Model Assess 47:23–37CrossRefGoogle Scholar
  34. Field MS, Pinsky PF (2000) A two-region nonequilibrium model for solute transport in solution conduits in karstic aquifers. J Contam Hydrol 44(3–4):329–351CrossRefGoogle Scholar
  35. Fleury P, Plagnes V, Bakalowicz M (2007) Modelling of the functioning of karst aquifers with a reservoir model: application to Fontaine de Vaucluse (South of France). J Hydrol 345:38–49CrossRefGoogle Scholar
  36. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UK, 576 ppGoogle Scholar
  37. Forkasiewicz J, Paloc H (1967) Le régime de tarissement de la foux-de-la-Vis. Etude préliminaire [First study on the depletion curve of the foux-de-la-Vis spring]. Chron Hydrogéol 3(10):61–73Google Scholar
  38. Geyer T, Birk S, Liedl R, Sauter M (2008) Quantification of temporal distribution of recharge in karst systems from spring hydrographs. J Hydrol 348:452–463CrossRefGoogle Scholar
  39. Giusti EV (1978) Hydrogeology of the karst of Puerto Rico. US Geol Surv Prof Pap 1012, 68 ppGoogle Scholar
  40. Giusti EV, Bennett GD (1976) Water resources of the North Coast limestone area.US Geol Surv Water Resour Invest Rep 42–75, 42 ppGoogle Scholar
  41. Gómez GF, Torres-Sierra H (1988) Hydrology and effects of development on the water-table aquifer in the Vega Alta quadrangle. US Geol Surv Water Resour Invest Rep 87–4105, 53 ppGoogle Scholar
  42. Graf T, Therrien R (2007a) A method to discretize non-planar fractures for 3D subsurface flow and transport simulations. Int J Numer Meth Fluid 56:2069–2090CrossRefGoogle Scholar
  43. Graf T, Therrien R (2007b) Variable-density groundwater flow and solute transport in irregular 2D fracture networks. Adv Water Resour 30:455–468CrossRefGoogle Scholar
  44. Greene EA (1992) Hydrologic properties of the Madison aquifer system in the Western Rapid City area, South Dakota. US Geol Surv Water Resour Invest Rep 93-4008, 56 ppGoogle Scholar
  45. Guilbot A (1975) Modélisation des écoulement d’un aquifère karstique (liaisons pluie-debit), application aux bassins de Saugras et du Lez [Modeling of flow in a karst aquifer (rainfall-discharge relations), application to Saugras and Lez basins]. PhD Thesis, Université des Sciences et Techniques du Languedoc, MontpellierGoogle Scholar
  46. Guzmán RS, Quiñones MF (1984) Ground-water quality at selected sites throughout Puerto Rico, September 1982-July 1983. US Geol Surv Open-File Rep 84-058Google Scholar
  47. Hergarten S, Birk S (2007) A fractal approach to the recession of spring hydrographs. Geophys Res Lett 34, L11401Google Scholar
  48. Hill ME, Martin A, Stewart MT (2008) Performance Evaluation of the Modflow-2005 Conduit Flow Process Applied to a Karst Aquifer Underlying West-Central Florida, Kuniansky EL (ed) US Geological Survey Karst Interest Group Proceedings, Bowling Green, Kentucky, May 27–29, 2008. US Geol Surv Sci Invest Rep 2008-5023, pp 93–98Google Scholar
  49. Hu BX (2010) Examining a coupled continuum pipe-flow model for groundwater flow and solute transport in a karst aquifer. Acta Carsolog 39(2):347–359Google Scholar
  50. Hu CH, Hao YH, Yeh TCJ, Pang B, Wu ZN (2008) Simulation of spring flows from a karst aquifer with an artificial neural network. Hydrol Process 22:596–604CrossRefGoogle Scholar
  51. Hunter JM, Arbona SI (1995) Paradise lost: an introduction to the geography of water pollution in Puerto Rico. Soc Sci Med 40:1331–1355CrossRefGoogle Scholar
  52. Huntoon PW (1995) Is it appropriate to apply porous media groundwater circulation models to karstic aquifers? El-Kadi AI (ed) Groundwater models for resources analysis and management, Pacific Northwest/Oceania Conference, Honolulu, HI, March 1994, pp 339–358Google Scholar
  53. Jeannin PY (2001) Modeling flow in phreatic and epiphreatic karst conduits in the Hölloch Cave (Muotathal, Switzerland). Water Resour Res 37(2):191–200CrossRefGoogle Scholar
  54. Jeannin PY, Maréchal JC (1995) Lois de pertes de charge dans les conduits karstiques: base théorique et observations (Law of pressure loss in karst conduits: theoretical basis and observations). Bull Hydrogéol Neuchatel 14:149–176Google Scholar
  55. Jukić D, Denić-Jukić V (2009) Groundwater balance estimation in karst by using a conceptual rainfall-runoff model. J Hydrol 373(3–4):302–315Google Scholar
  56. Kaufmann G, Braun J (2000) Karst aquifer evolution in fractured, porous rocks. Water Resour Res 36(6):1381–1391CrossRefGoogle Scholar
  57. Keeler RR, Zhang YK (1997) Modeling of groundwater flow in a fractured-karst aquifer in the Big Springs Basin, Iowa. Geol Soc Am Abs with Programs 29(4):25Google Scholar
  58. Kipp KL (1987) HST3D: a computer code for simulation of heat and solute transport in three dimensional groundwater flow systems. US Geol Surv Water Resour Invest Rep 86-4095, 597 ppGoogle Scholar
  59. Király L (1985) FEM-301, A three dimensional model for groundwater flow simulation. NAGRA Technical Report 84-49, NAGRA, WettingenSwitzerland, 96 ppGoogle Scholar
  60. Király L (1988) Large-scale 3D groundwater flow modeling in highly heterogeneous geologic medium. In Custodio (ed) Groundwater flow and quality modeling, Riedel, Dordrecht, The Netherlands, pp 761–776Google Scholar
  61. Király L (1998) Modeling karst aquifers by the combined discrete channel and continuum approach. Bull Centre Hydrogeol 16:77–98Google Scholar
  62. Király L (2003) Karstification and groundwater flow. Speleogenesis Evol Karst Aquifers 1:1–26Google Scholar
  63. Király L, Morel G (1976) Remarques sur hydrogramme des sources karstiques simulé par modèles mathématiques [Remarks on karst springs hydrographs simulated with mathematical models]. Bull Hydrogéol Univ Neuchâtel 1:37–60Google Scholar
  64. Király L, Perrochet P, Rossier Y (1995) Effect of epikarst on the hydrograph of karst springs: a numerical approach. Bull Hydrogéol 14:199–220Google Scholar
  65. Kourtulus B, Razack M (2010) Modeling daily discharge responses of a large karstic aquifer using soft computing methods: artificial neural network and neuro-fuzzy. J Hydrol 381:101–111CrossRefGoogle Scholar
  66. Kovacs A (2003) Geometry and hydraulic parameters of karst aquifers: a hydrodynamic modeling approach. PhD Thesis, CHYN, Univ de Neuchâtel, SwitzerlandGoogle Scholar
  67. Kovacs A, Sauter M (2007) Modeling karst hydrodynamics. In: Goldscheider N, Drew D (eds) Methods in Karst Hydrogeology. IAH: International Contribution to Hydrogeology, vol 26, Taylor and Francis, London, pp 201–222Google Scholar
  68. Kumar CP (2006) Groundwater flow models: an overview. In: Ghosh NC, Sharma KD (eds) Groundwater modelling and management. Capital, New Delhi, pp 153–178Google Scholar
  69. Kuniansky EL (1993) Multilayer finite-element model of the Edwards and Trinity aquifers, central Texas. In: Dutton AR (ed) Toxic substances and the hydrologic sciencesGoogle Scholar
  70. Kuniansky EL, Holligan KQ (1994) Simulations of flow in the Edwards-Trinity aquifer system and contiguous hydraulically connected units, west-central Texas. US Geol Surv Water Resour Invest Rep 93-4039, 40 ppGoogle Scholar
  71. Kuniansky EL, Fahlquist, L, Ardis, AF (2001) Travel times along selected flow paths of the Edwards aquifer, central Texas. In Kuniansky EL (ed) US Geological Survey Karst Interest Group Proceedings, St. Petersburg, FL, February 13–16, 2001. US Geol Surv Water Resour Invest Rep 01-4011, pp 69–77Google Scholar
  72. Kurtulus B, Razack M (2007) Evaluation of the ability of an artificial neural network model to simulate the input-output responses of a large karstic aquifer: the La Rochefoucauld aquifer, Charente, France. Hydrogeol J 15:241–254CrossRefGoogle Scholar
  73. Kurtulus B, Razack M (2010) Modeling daily discharge responses of a large karstic aquifer using soft computing methods: artificial neural network and neuro-fuzzy. J Hydrol 381:101–111CrossRefGoogle Scholar
  74. Lallahem S, Mania J (2003) A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media. Math Comput Model 37:1047–1061CrossRefGoogle Scholar
  75. Lapcevic PA, Novakowski KS, Sudicky EA (1999) Groundwater flow and solute transport in fractured media. In: Delleur JW (ed) The handbook of groundwater engineering. CRC, New YorkGoogle Scholar
  76. Larocque M, Banton O, Ackerer P, Razack M (1999) Determining karst transmissivities with inverse modeling and an equivalent porous media. Ground Water 37:897–903CrossRefGoogle Scholar
  77. Lee ES, Krothe NC (2001) A four-component mixing model for water in a karst terrain in south-central Indiana, USA using solute concentration and stable isotopes as tracers. Chem Geol 179:129–143CrossRefGoogle Scholar
  78. Li G (2009) Analytical solution of advective mixing in a conduit. Ground Water 47(5):714–722CrossRefGoogle Scholar
  79. Liedl R, Sauter M, Hückinghaus D, Clemens T, Teutsch G (2003) Simulation of the development of karst aquifers using a coupled continuum pipe flow model. Water Resour Res 39(3):1057CrossRefGoogle Scholar
  80. Long JCS, Gilmour P, Witherspoon PA (1985) A model for steady fluid flow in random three-dimensional networks of disc shaped fractures. Water Resour Res 21(8):1105–1115CrossRefGoogle Scholar
  81. Loop CM, White WB (2001) A conceptual model for DNAPL transport in karst ground water basins. Ground Water 39(1):119–127Google Scholar
  82. Mahler BJ, Personné JC, Lynch FL, Van Metre PC (2003) Sediment and sediment-associated contaminant transport through karst. In: Sasowsky ID, Mylroie JE (eds) Studies of cave sediments. Kluwer, New York, pp 23–46Google Scholar
  83. Maillet E (1905) Essais d’hydraulique souterraine & fluviale [Hydraulic tests in the subsurface and in rivers]. Hermann, ParisGoogle Scholar
  84. Mangin A (1975) Contribution à l’etude hydrodynamique des aquifères karstiques [Contribution to the hydrodynamic study of karst aquifers]. PhD Thesis, Institut des Sciences de la Terre de l’Université de DijonGoogle Scholar
  85. Mathews TJ, MacDorman MF (2011) Infant mortality statistics from the 2007 period linked birth/infant death data set. Natl Vital Stat Rep 59:6Google Scholar
  86. Matthäi SK, Belayneh M (2004) Fluid flow partitioning between fractures and a permeable rock matrix. Geophys Res Lett 31:1–5CrossRefGoogle Scholar
  87. McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. US Geol Surv Techniques of Water-Resources Investigations, book 6, chap A1. USGS, Reston, VA, 586 ppGoogle Scholar
  88. Mero F (1963) Application of the groundwater depletion curves in analyzing and forecasting spring discharges influenced by well fields. Symposium on surface waters, General assembly of Berkeley of IUGG, IAHS Publication, 63, IAHS, Wallingford, UK, pp 107–117Google Scholar
  89. Mero F (1969) An approach to daily hydrometeorological water balance computations for surface and groundwater basins. Proceedings ITC-UNESCO, Seminar for Integrated River Basin Development, Delft, The Netherlands, October 1969Google Scholar
  90. Mero F, Gilboa Y (1974) A methodology for the rapid evaluation of groundwater resources. Sao Paulo state, Brazil. Bull Sci Hydrogéol 19(3):347–358CrossRefGoogle Scholar
  91. Moghaddamnia A, Ghafari Gousheh M, Piri J, Amin S, Han D (2009) Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv Water Resour 32:88–97CrossRefGoogle Scholar
  92. Monroe WH (1980) Geology of the Middle Tertiary formations of Puerto Rico. US Geol Surv Prof Pap 953Google Scholar
  93. Mutch RD, Scott JI, Wilson DJ (1993) Cleanup of fractured rock aquifers: implications of matrix diffusion. Environ Monit Assess 24(1):45–70CrossRefGoogle Scholar
  94. Neuman SP (1987) Stochastic continuum representation of fractured rock permeability as an alternative to the REV and fracture network concepts. In: Custodio E, Gurgui A, Lobo-Ferreira JP (eds) Groundwater flow and quality modeling. Reidel, Dordrecht, The Netherlands, pp 331–362Google Scholar
  95. Newell CJ, Ross RR (1992) Estimating potential for occurrence of DNAPL at Superfund sites. US EPA Quick Reference Fact Sheet, US EPA, ORD, RS Kerr Environmental Research Laboratory, Ada, OKGoogle Scholar
  96. Newell CJ, Acree SD, Ross RR, Scott GH (1995) Light Nonaqueous Phase Liquids, EPA Technical Support Project Issue Papers. Available online at http://www.epa.gov/tio/tsp/issue.htm. Accessed 30 March 2012
  97. Palmer AN, Palmer MV, Sasowsky ID (1999) Karst modeling. Special publication 5. Karst Waters Institute, Akron OhioGoogle Scholar
  98. Pankow JF, Johnson RL, Hewetson JP, Cherry JA (1986) An evaluation of contaminant migration patterns at two waste disposal sites on fractured porous media in terms of the equivalent porous medium (EPM) model. J Contam Hydrol 1:65–76CrossRefGoogle Scholar
  99. Perrin J (2003) A conceptual model of flow and transport in a karst aquifer based on spatial and temporal variations of natural tracers. PhD Thesis, University of Neuchâtel, Switzerland, 227 ppGoogle Scholar
  100. Quinlan J (1978) Types of karst, with emphasis on cover beds in their classification and development. PhD Thesis, University of Texas, Austin, USAGoogle Scholar
  101. Quinlan JF, Ewers RO (1989) Subsurface drainage in the Mammoth Cave area. In White WB, White EL (eds) Karst hydrology: concepts from the Mammoth Cave area. Reinhold, New York, pp 65–103Google Scholar
  102. Reimann T, Hill ME (2009) MODFLOW-CFP: a new conduit flow process for MODFLOW-2005. Ground Water 47:321–325CrossRefGoogle Scholar
  103. Renken RA, Ward WC, Gill IP, Gómez GF, Rodríguez JM et al (2002) Geology and hydrogeology of the Caribbean Islands aquifer system of the commonwealth of Puerto Rico and the US Virgin Islands. U S Geol Surv Prof Pap 1419:1–139Google Scholar
  104. Rodríguez JM (1995) Hydrology of the North Coast limestone aquifer system in Puerto Rico. US Geol Surv Water Resour Invest Rep 94-4249, 22 ppGoogle Scholar
  105. Rodríguez JM (1998) Characterization of springflow in the north coast limestone of Puerto Rico using physical, chemical, and stable isotopic methods. US Geological Survey, San Juan, Peurto RicoGoogle Scholar
  106. Rodríguez JM, Hartley JR (1994) Geologic and Hydrologic Data Collected at Test Holes NC-6 and NC-11, Hatillo and Isabela, Northwestern Puerto Rico. US Geol Surv Open-File Rep 93-465, 39 ppGoogle Scholar
  107. Rodríguez JM, Richards RT (2000) Detection of conduit-controlled ground-water flow in northwestern Puerto Rico using aerial photograph interpretation and geophysical methods, US Geol Surv Water Resour Invest Rep 00-4147, 45 ppGoogle Scholar
  108. Ryder PD (1985) Hydrology of the Floridan aquifer system in west-central Florida. U S Geol Surv Prof Pap 1403-F:63Google Scholar
  109. Sauter M (1992) Quantification and forecasting of regional groundwater flow and transport in a karst aquifer (Gallusquelle, Malm SW Germany). PhD Thesis, Univ of Tübingen, Germany, Arb C13, 150 ppGoogle Scholar
  110. Sauter M (1993) Double porosity models in karstified limestone aquifers: field validation and data provision, in hydrogeological process in karst terranes. Intl Assoc Hydrolog Sci 207:261–279Google Scholar
  111. Sauter M, Kovacs A, Geyer T, Teutsch G (2006) Modellierung der hydraulik von karst grundwasserleiter: eine übersicht [Modeling of the hydraulics of karst aquifers: an overview]. Grundwasser 11(3):143–156CrossRefGoogle Scholar
  112. Scanlon BR, Mace RE, Barret ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models?: Case study, Barton springs Edwards aquifer, USA. J Hydrol 276(1–4):137–158CrossRefGoogle Scholar
  113. Schuster ET, White WB (1971) Seasonal fluctuations in the chemistry of limestone springs: a possible means for characterizing carbonate aquifers. J Hydrol 14:93–128CrossRefGoogle Scholar
  114. Sepúlveda N (1999) Ground-water flow, solute transport, and simulation of remedial alternatives for the water-table aquifer in Vega Alta, Puerto Rico. US Geol Surv Water Resour Invest Rep 97-4170, 96 ppGoogle Scholar
  115. Sepúlveda N (2008) Analysis of methods to estimate spring flows in a karst aquifer. Ground Water 47(3):337–349CrossRefGoogle Scholar
  116. Shoemaker WB, Kuniansky EL, Birk S, Bauer S, Swain ED (2008) Documentation of a conduit flow process (CFP) for MODFLOW-2005. Techniques and Methods, book 6, chap A24, US Geological Survey, Reston, VA, 50 ppGoogle Scholar
  117. Singhal BBS, Gupta RP (1999) Applied hydrogeology of fracture rocks. Kluwer, Dordrecht, The Netherlands, pp 166–167Google Scholar
  118. Streltsova TD (1977) Storage properties of fractured formations. In: Dilamarter RR, Csallany SC (eds) Hydrologic problems in karst regions Western Kentucky University, Bowling Green, KY, pp 188–192Google Scholar
  119. Stringfield VT, Rapp JR, Anders RB (1979) Effects of karst and geologic structure on the circulation of water and permeability in carbonate aquifers. In: Back W, Stephenson DA (eds) Contemporary hydrogeology: the George Burke Maxey memorial volume. J Hydrol, 43:313–332Google Scholar
  120. Sudicky EA, McLaren RG (1992) The Laplace transform Galerkin technique for large-scale simulation of mass transport in discretely fractured porous formations. Water Resour Res 28(2):499–514CrossRefGoogle Scholar
  121. Szilagyi JM, Parlange B, Albertson JD (1998) Recession flow analysis for aquifer parameter determination. Water Resour 34:1851–1857CrossRefGoogle Scholar
  122. Tabari H, Martinez C, Ezani A, Talaee H (2012) Applicability of support vector machines and adaptive neurofuzzy inference system for modeling potato crop evapotranspiration. Irr Sci doi:10.1007/s00271-012-0332-6. 14 pp
  123. Tallaksen LM (1995) A review of baseflow recession analysis. J Hydrol 165:349–370CrossRefGoogle Scholar
  124. Tang DH, Frind EO, Sudicky EA (1981) Contaminant transport in fractured porous media: analytical solutions for a single fracture. Water Resour Res 17(3):555–564CrossRefGoogle Scholar
  125. Teutsch G (1989) Groundwater models in karstified terraines-two practical examples from the Swabian Alb, S Germany. In: 4th Conference on Solving Groundwater Problems with Models, 7–9 February 1989, Indianapolis, IN, pp 929-953Google Scholar
  126. Teutsch G (1993) An extended double-porosity concept as a practical modeling approach for a karstified terrain. Hydrogeological Processes in Karst Terranes (Proceedings of the Antalya Symposium and Field Seminar, October 1990), IAHS, Wallingford, UK, pp 281–292Google Scholar
  127. Teutsch G, Sauter M (1998) Distributed parameter modeling approaches in karst hydrological investigations. Bull Hydrogéol 16:99–109Google Scholar
  128. Therrien R, Sudicky EA (1996) Three dimensional analysis of variably saturated flow and solute transport in discretely fractured porous media. J Contam Hydrol 23:1–44CrossRefGoogle Scholar
  129. Thrailkill JV (1968) Chemical and hydrologic factor in the excavation of limestone caves. Geol Soc Am Bull 79(1):19–46CrossRefGoogle Scholar
  130. Thrailkill JV (1986) Models and methods for shallow conduit-flow aquifers. In: Proceedings of the Environmental Problems in Karst Terraines and their Solutions Conference. National Water Well Assoc., Bowling Green, KY, pp 17–31Google Scholar
  131. Thrailkill JV (1989) Shallow conduit-flow carbonate aquifers: Conceptual models and parameter evaluation. In: Moore JE, Zaporozec AA, Csallany SC, Varney TC (eds) Recent advances in ground-water hydrology. American Institute of Hydrology, Minneapolis, MN, pp 153–159Google Scholar
  132. Torbarov K (1976) Estimation of permeability and effective porosity in karst on the basis of recession curve analysis. In: Yevjevich V (ed) Karst hydrology and water resources, vol 1: karst Hydrology. Water Resourses Publication, Littleton, CO, pp 121–134Google Scholar
  133. Torres-González A (1985) Simulation of ground-water flow in the water table aquifer near Barceloneta, Puerto Rico. US Geol Surv Water Resour Invest Rep 84-4113, 39 ppGoogle Scholar
  134. Torres-González S, Planert M, Rodríguez MJ (1996) Hydrogeology and simulation of ground-water flow in the upper aquifer of the Río Camuy to Río Grande de Manatí area, Puerto Rico. US Geol Surv Water Resour Invest Rep 95-4286, 102 ppGoogle Scholar
  135. Troch PA, De Troch FP, Brutsaert W (1993) Effective water table depth to describe initial conditions prior to storm rainfall in humid regions. Water Resour 29:427–434CrossRefGoogle Scholar
  136. Wanakule N, Anaya R (1993) A lumped parameter model for the Edwards aquifer. Technical report 163, Texas Water Resources Institute, College Station, TX, 84 ppGoogle Scholar
  137. Weatherhill D, Graf T, Simmons CT, Cook PG, Therrien R, Reynolds DA (2008) Discretizing the fracture-matrix interface to simulate solute transport. Ground Water 46(4):606–615CrossRefGoogle Scholar
  138. White WB (1977) Conceptual models for carbonate aquifers: revisited. In: Dilamarter RR, Csallany SC (eds) Hydrologic problems in karst terrains. Western Kentucky University, Bowling Green, KY, pp 176–187Google Scholar
  139. White WB (2003) Conceptual models for karstic aquifers. Speleolog Evolut Karst Aquifers 1(1). http://www.speleogenesis.info/directory/karstbase/pdf/seka_pdf4491.pdf. Accessed 30 March 2012
  140. White WB (2007) Groundwater flow in karstic aquifers. In: Delleur JW (ed) The handbook of groundwater engineering, chap 21. CRC, Boca Raton, FL, 21.1–21.47Google Scholar
  141. White WB, White EL (2005) Ground water flux distribution between matrix, fractures, and conduits: Constraints on modeling. Speleolog Evolut Karst Aquifers 3(2):1–6Google Scholar
  142. Williams WP (1983) The role of the subcutaneous zone in karst hydrology. J Hydrol 61(1–3):45–67CrossRefGoogle Scholar
  143. Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of the cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16:1016–1024CrossRefGoogle Scholar
  144. Witthüser K, Reichert B, Hötzl H (2003) Contaminant transport in fractured chalk: laboratory and field experiments. Ground Water 41(6):806–815CrossRefGoogle Scholar
  145. Wolfe WJ, Haugh CJ, Webbers A, Diehl TH (1997) Preliminary conceptual models of the occurrence, fate, and transport of chlorinated solvents in karst regions of Tennessee. US Geol Surv Water Resour Invest Rep 97-4097, 80 ppGoogle Scholar
  146. Worthington SRH (1991) Karst hydrogeology of the Canadian Rocky Mountains. PhD Thesis, McMaster University, Hamilton, ON, 227 ppGoogle Scholar
  147. Zhang YK, Bai EW, Libra R, Rowden R, Liu H (1996) Simulation of spring discharge from a limestone aquifer in Iowa. Hydrogeol J 4:41–54CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Reza Ghasemizadeh
    • 1
  • Ferdinand Hellweger
    • 1
  • Christoph Butscher
    • 1
  • Ingrid Padilla
    • 2
  • Dorothy Vesper
    • 3
  • Malcolm Field
    • 4
  • Akram Alshawabkeh
    • 1
  1. 1.Department of Civil and Environmental EngineeringNortheastern UniversityBostonUSA
  2. 2.Department of Civil Engineering and SurveyingUniversity of Puerto RicoMayagüezPuerto Rico
  3. 3.Department of Geology and GeographyWest Virginia UniversityMorgantownUSA
  4. 4.US Environmental Protection Agency, National Center for Environmental AssessmentWashington, DCUSA

Personalised recommendations