Advertisement

Hydrogeology Journal

, Volume 20, Issue 4, pp 689–699 | Cite as

Implications of spatial reservoir uncertainty for CO2 sequestration in the east Snake River Plain, Idaho (USA)

  • Ryan M. Pollyea
  • Jerry P. Fairley
Paper

Abstract

Basalt-hosted hydrogeologic systems have been proposed for geologic CO2 sequestration based on laboratory research suggesting rapid mineralization rates. However, despite this theoretical appeal, little is known about the impacts of basalt fracture heterogeneity on CO2 migration at commercial scales. Evaluating the suitability of basalt reservoirs is complicated by incomplete knowledge of in-situ fracture distributions at depths required for CO2 sequestration. In this work, a numerical experiment is used to investigate the effects of spatial reservoir uncertainty for geologic CO2 sequestration in the east Snake River Plain, Idaho (USA). Two criteria are investigated: (1) formation injectivity and (2) confinement potential. Several theoretical tools are invoked to develop a field-based approach for geostatistical reservoir characterization and their implementation is illustrated. Geologic CO2 sequestration is simulated for 10 years of constant-rate injection at ~680,000 tons per year and modeled by Monte Carlo simulation such that model variability is a function of spatial reservoir heterogeneity. Results suggest that the spatial distribution of heterogeneous permeability structures is a controlling influence on formation injectivity. Analysis of confinement potential is less conclusive; however, in the absence of confining sedimentary interbeds within the basalt pile, rapid mineralization may be necessary to reduce the risk of escape.

Keywords

Geologic carbon sequestration Fractured rocks Geostatistics Heterogeneity USA 

Implications de l’incertitude spatiale sur le réservoir pour la séquestration du CO2 dans l’Est de la plaine de la rivière Snake, Idaho (USA)

Résumé

Des systèmes hydrogéologiques en contexte basaltique ont été proposés pour la séquestration du CO2, sur la base de recherches en laboratoire suggérant des taux de minéralisation rapide. Cependant, malgré cette approche théorique, l’impacts des effets de l’hétérogénité de fracture du basalte sur la migration du CO2 est peu connus à des échelles industrielles. L’évaluation de l’aptitude des réservoirs basaltiques est compliquée du fait de la connaissance incomplète de la répartition des fractures in-situ aux profondeurs requises pour la séquestration du CO2. Dans ce travail, une expérimentation numérique est utilisée pour étudier les effets de l’incertitude spatiale sur le réservoir pour la séquestration géologique du CO2 à l’Est de la plaine de la rivière Snake, Idaho (Etats-Unis d’Amérique). Deux critères sont étudiés : (1) l’injectivité de la formation et (2) le potentiel de confinement. Plusieurs outils théoriques sont évoqués pour développer une approche de terrain pour la caractérisation géostatistique du réservoir et leur mise en œuvre est illustrée. La séquestration géologique du CO2 est simulée pour une durée de 10 ans, à taux constant d’injection d’environ 680 000 tonnes par an et modélisée par simulation Monte Carlo, la variabilité du modèle étant une fonction de l’hétérogénéité spatiale du réservoir. Les résultats suggèrent que la distribution spatiale des structures perméables hétérogènes est un facteur de contrôle de l’injectivité de la formation. L’analyse du potentiel de confinement est moins concluante; cependant, en l’absence d’interlits sédimentaires de confinement au sein de l’entassement basaltique, une minéralisation rapide pourrait être nécessaire pour réduire le risque de fuite.

Implicancias de la incerteza espacial en el secuestro de CO2 de reservorios en la planicie oriental del Snake River, Idaho (EEUU)

Resumen

Los sistemas hidrogeológicos alojados en basaltos han sido propuestos para el secuestro geológico del CO2 basado en investigaciones de laboratorio que sugieren rápidas tasas de mineralización. Sin embargo, a pesar de este atractivo teórico, poco es lo que se conoce acerca de los impactos de la heterogeneidad de la fracturas basálticas sobre la migración de CO2 en escalas comerciales. Evaluar la adecuación de los reservorios de basalto es complicado por el conocimiento incompleto de las distribuciones de las fracturas a las profundidades requeridas para el secuestro de CO2. En este trabajo, se usa un experimento numérico para investigar los efectos de la incerteza espacial para el secuestro geológico de CO2 en reservorios en la llanura oriental del Snake River, Idaho (EEUU). Se investigaron dos criterios: (1) inyectividad en la formación y (2) potencial confinamiento. Se recurre a varias herramientas teóricas para desarrollar un enfoque basado en datos de campo para la caracterización geoestadística del reservorio y se ilustra su implementación. Se simula el secuestro geológico de CO2 durante 10 años a un ritmo constante de inyección de ~680,000 toneladas por año y modelado por una simulación de Monte Carlo tal que la variabilidad del modelo es una función de la heterogeneidad espacial del reservorio. Los resultados sugieren que la distribución espacial de la permeabilidad de las estructuras heterogéneas es una influencia que controla la inyectividad en la formación. El análisis del confinamiento potencial es menos concluyente; sin embargo, en la ausencia de intercalaciones sedimentarias confinantes dentro de la pila basáltica, es necesaria una rápida mineralización para reducir el riesgo de escape.

储存库空间的不确定性对在美国爱达荷州东斯内克河平原进行CO2封存的影响

摘要

实验室研究显示以玄武岩为主的水文地质系统矿化速率快,所以被选择用来进行CO2地质封存。然而,抛开这些理论上的吸引力,在商业规模上,对于玄武岩断裂的不均匀性对CO2运移的影响的了解却很少。由于对在CO2封存要求的深度处原位断裂分布掌握的不完全,使得评价玄武岩储存库的合适性变得非常复杂。在本次研究中,利用数值试验来研究储存库空间的不确定性对在美国爱达荷州东斯内克河平原进行CO2封存的影响。研究了储存库的两个标准指标:1)构造的内射性和2)封闭性。调用了若干个理论工具,以建立一个基于场地的分析储存库地质统计学特点的方法,方法的实现以插图的形式进行了说明。用Monte Carlo模型对CO2的地质封存进行了模拟,模拟时间为10年,CO2的注射速率是恒定的,为680,000吨/年,模型的变异是储存库空间非均质性的函数。模拟结果显示,不均匀渗透结构的空间分布是构造内射性的控制因素。虽然关于封闭性的分析结果不是那么的确切,但是,在缺少封闭沉积夹层的玄武岩中,快的矿化速率对于减少CO2泄漏的危险性还是非常必要的。

Implicações da incerteza espacial do reservatório para o sequestro de CO2 na Planície oriental do Rio Snake, Idaho (EUA)

Resumo

Sistemas hidrogeológicos compostos por basaltos têm sido propostos para o sequestro geológico de CO2, face a resultados de investigação laboratorial que sugerem taxas de mineralização rápidas. No entanto, apesar desta motivação teórica, é escasso o conhecimento sobre o impacte da heterogeneidade da fraturação dos basaltos na migração do CO2 injetado a escalas comerciais. Avaliar a adequação de reservatórios basálticos é complicado, pelo conhecimento incompleto sobre a distribuição in-situ da fraturação às profundidades exigidas para o sequestro de CO2. Neste trabalho, recorre-se a uma experiência numérica para investigar os efeitos da incerteza na heterogeneidade espacial para o sequestro geológico de CO2 na Planície oriental do Rio Snake, Idaho (EUA). Investigam-se dois critérios: (1) capacidade de injeção na formação e (2) potencial de confinamento. Diversas abordagens teóricas são utilizadas para desenvolver uma caraterização geoestatística do reservatório, com base em dados de campo, e a sua implementação é demonstrada. O sequestro geológico de CO2 é simulado, considerando 10 anos de injeção a volume constante de ~680,000 toneladas por ano, recorrendo a simulações de Monte Carlo, em que a variabilidade do modelo é função da heterogeneidade espacial do reservatório. Os resultados sugerem que a distribuição espacial de estruturas permeáveis heterogéneas é uma influência controladora da capacidade de injeção na formação. A análise do potencial de confinamento é menos conclusiva; porém, na ausência de níveis confinantes sedimentares no seio da sequência basáltica, a mineralização rápida pode ser necessária para reduzir o risco de ocorrência de fugas.

Notes

Acknowledgements

The authors thank Robert Podgorney for his assistance with TOUGH2-MP. Jennifer Hinds provided assistance in preparing figures; her efforts are appreciated. This work was greatly improved by the challenging comments from three anonymous reviewers. Financial support has been provided by the Center for Advanced Energy Studies under contract number DE-AC07-05ID14517.

References

  1. Bachu S (2008) CO2 storage in geological media: role, means, status and barriers to deployment. Prog Energy Combust Sci 34:254–273CrossRefGoogle Scholar
  2. Brott CA, Blackwell DD, Ziagos JP (1981) Thermal and tectonic implications of heat flow in the east Snake River Plain, Idaho. J Geophys Res 86:11709–11734CrossRefGoogle Scholar
  3. Clemo T, Welhan J (2000) Simulating basalt lava flows using a structure imitation approach. In: Proc. of the Computational Methods in Water Resources XIII, Alberta CA, June 2000, pp 841–848Google Scholar
  4. Corey A (1954) The interrelation between gas and oil relative permeabilities. Producers Monthly 19(1):38–41Google Scholar
  5. Dagan G (1989) Flow and transport in porous formations. Springer, BerlinCrossRefGoogle Scholar
  6. Deutsch CV (2002) Geostatistical reservoir modeling. Oxford University Press, New YorkGoogle Scholar
  7. Deutsch CV, Journel AG (1998) GSLIB: Geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  8. Doughty C (2000) Numerical model of water flow in a fractured basalt vadose zone: Box Canyon site, Idaho. Water Resour Res 36(12):3521–3534CrossRefGoogle Scholar
  9. Doughty C, Pruess K (2004) Modeling supercritical carbon dioxide injection in heterogeneous porous media. Vadose Zone J 3:837–847CrossRefGoogle Scholar
  10. Goovaerts P (1997) Geostatistics for natural resource evaluation. Oxford University Press, New YorkGoogle Scholar
  11. Jayaraman K (2007) India’s carbon dioxide trap. Nature 445:350CrossRefGoogle Scholar
  12. Litynski JT, Klara SM, McIlvried HG, Srivastava RD (2006) The Unites States Department of Energy’s Regional Carbon Sequestration Partnerships program: a collaborative approach to carbon management. Environ Int 32:128–144CrossRefGoogle Scholar
  13. Long J, Remer J, Wilson C, Witherspoon P (1982) Porous media equivalents for networks of discontinuous fractures. Water Resour Res 18(3):645–658CrossRefGoogle Scholar
  14. Lore J, Aydin A, Goodson K (2001) A deterministic methodology for prediction of fracture distribution in basaltic flows. J Geophys Res 106(B4):6447–6489CrossRefGoogle Scholar
  15. Magnuson S (2004) Regulatory modeling for the Idaho National Engineering and Environmental Laboratory’s subsurface disposal area and conceptual model uncertainty treatment. Vadose Zone J 3:59–74Google Scholar
  16. Manning C, Ingebritsen S (1999) Permeability of the continental crust: Implications of geothermal data and metamorphic analysis. Rev Geophys 37:127–150CrossRefGoogle Scholar
  17. Matter JM, Kelemen PB (2009) Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat Geosci 2:837–841. doi: 10.1038/NGEO683 CrossRefGoogle Scholar
  18. McGrail BP, Schaef HT, Ho AM, Chien Y-J, Dooley JJ (2006) Potential for carbon dioxide sequestration in flood basalts. J Geophys Res 111. doi: 10.1029/2005JB004169
  19. McGrail B, Sullivan E, Spane F, Bacon D, Hund G, Thorne P, Thompson C, Reidel S, Colwell F (2009) Preliminary hydrogeologic characterization results from the Wallula Basalt Pilot Study. Technical report, December 2009, National Energy Technology Laboratory, Morgantown, WVGoogle Scholar
  20. Orr FM Jr (2009) Perspective: onshore geologic storage of CO2. Science 325:1656–1657CrossRefGoogle Scholar
  21. Pollyea RM, Fairley JP (2011) Estimating surface roughness of terrestrial laser scan data using orthogonal distance regression. Geology 39(7):623–626. doi: 10.1130/G32078.1 CrossRefGoogle Scholar
  22. Prasad P, Sarma DS, Sudhakar L, Basavaraju U, Singh RS, Begum Z, Archana K, Chavan C, Charan S (2009) Geological sequestration of carbon dioxide in Deccan basalts: preliminary laboratory study. Curr Sci 96(2):288–291Google Scholar
  23. Prestwich S, Bowman J (1980) Completion and testing report: INEL geothermal exploratory well one (INEL-1). Technical report IDO-10096, US Department of Energy, Washington, DCGoogle Scholar
  24. Pruess K (2005) ECO2N: a TOUGH2 fluid property module for mixtures of water, NaCl, and CO2. Technical report LBNL-57952, Lawrence Berkeley National Laboratory, Berkeley, CA, Google Scholar
  25. Rubin Y (2003) Applied stochastic hydrology. Oxford University Press, New YorkGoogle Scholar
  26. Saar M, Manga M (2004) Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints. J Geophys Res 109. doi: 10.1029/2003JB002855
  27. Schaef TH, McGrail PB (2009) Dissolution of Columbia River Basalt under mildly acidic conditions as a function of temperature: experimental results relevant to the geological sequestration of carbon dioxide. Appl Geochem 24:980–987CrossRefGoogle Scholar
  28. Schaefer CJ, Kattenhorn SA (2004) Characterization and evolution of fractures in low-volume pahoehoe lava flows, eastern Snake River Plain, Idaho. Geol Soc Am Bull 116(3/4):322–336CrossRefGoogle Scholar
  29. Staires DA (2008) Assessing the viability of carbon dioxide sequestration in Eastern Snake River Plain basalts, southern Idaho. MSc Thesis, Idaho State University, USAGoogle Scholar
  30. Van Genuchten M (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am 44:892–898CrossRefGoogle Scholar
  31. Welhan JA, Reed MF (1997) Geostatistical analysis of regional hydraulic conductivity variations in the Snake River Plain aquifer, eastern Idaho. Geol Soc Am Bull 109(7):855–868CrossRefGoogle Scholar
  32. Welhan J, Smith R, Wylie A (1997) Stochastic modeling of hydraulic conductivity in the Snake River Plain aquifer: 1. hydrologeologic constraints and conceptual approach. In: Proceedings of the 32nd Engineering Geology and Geotechnical Engineering Symposium, Boise, ID, March 1997, pp 75–91Google Scholar
  33. Welhan JA, Clemo TM, Gégo EL (2002a) Stochastic simulation of aquifer heterogeneity in a layered basalt aquifer system, eastern Snake River Plain, Idaho. In: Link PK, Mink L (eds) Geology, hydrogeology, and environmental remediation: Idaho National Engineering and Environmental Laboratory, Eastern Snake River Plain, Idaho..Geol Soc Am Spec Pap 353, pp 225–247Google Scholar
  34. Welhan JA, Johannesen CA, Davis LL, Reeves KS, Glover JA (2002b) Overview and synthesis of lithologic controls on aquifer heterogeneity in the eastern Snake River Plain, Idaho. In: Bonnichsen B, White C, McCurry M (eds) Tectonic and magmatic evolution of the Snake River Plain Volcanic Province. Bull Idaho Geol Surv 30:455–460Google Scholar
  35. Welhan JA, Johannesen CM, Reeves KS, Clemo TM, Glover JA, Bosworth KW (2002c) Morphology of inflated pahoehoe lavas and spatial architecture of their porous permeable zones, eastern Snake River Plain, Idaho. In: Link PK, Mink L (eds) Geology, hydrogeology, and environmental remediation: Idaho National Engineering and Environmental Laboratory, eastern Snake River Plain, Idaho. Geol Soc Am Spec Pap 353:135–150Google Scholar
  36. Zhang K, Wu Y-S, Pruess K (2008) User’s guide for TOUGH2-MP: a massively parallel version of the TOUGH2 Code. Technical report LBNL-315E, Lawrence Berkeley National Laboratory, Berkeley, CAGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Geological SciencesUniversity of IdahoMoscowUSA

Personalised recommendations