Advertisement

Hydrogeology Journal

, Volume 20, Issue 4, pp 767–781 | Cite as

Interactions of diffuse and focused allogenic recharge in an eogenetic karst aquifer (Florida, USA)

  • Abigail L. Langston
  • Elizabeth J. Screaton
  • Jonathan B. Martin
  • Vincent Bailly-Comte
Report

Abstract

The karstic upper Floridan aquifer in north-central Florida (USA) is recharged by both diffuse and allogenic recharge. To understand how recharged water moves within the aquifer, water levels and specific conductivities were monitored and slug tests were conducted in wells installed in the aquifer surrounding the Santa Fe River Sink and Rise. Results indicate that diffuse recharge does not mix rapidly within the aquifer but instead flows horizontally. Stratification may be aided by the high matrix porosity of the eogenetic karst aquifer. Purging wells for sample collection perturbed conductivity for several days, reflecting mixing of the stratified water and rendering collection of representative samples difficult. Interpretive numerical simulations suggest that diffuse recharge impacts the intrusion of allogenic water from the conduit by increasing hydraulic head in the surrounding aquifer and thereby reducing influx to the aquifer from the conduit. In turn, the increase of head within the conduits affects flow paths of diffuse recharge by moving newly recharged water vertically as the water table rises and falls. This movement may result in a broad vertical zone of dissolution at the water table above the conduit system, with thinner and more focused water-table dissolution at greater distance from the conduit.

Keywords

Karst USA Floridan aquifer Hydraulic properties Groundwater/surface-water relations 

Interactions d’une recharge allogène et diffuse dans un aquifère karstique éogène (Floride, Etats Unis d’Amérique)

Résumé

L’aquifère karstique supérieur du Centre-Nord de Floride (Etats Unis d’Amérique) est alimenté à la fois de façon diffuse et de façon ponctuelle allogène. Afin de comprendre la circulation de l’eau infiltrée dans l’aquifère, les niveaux piézométriques ainsi que les conductivités électriques ont été enregistrés, et des tests d’infiltration réalisés dans des forages situés aux alentours des pertes et émergences de la rivière Santa Fe. Les résultats montrent que l’eau infiltrée issue de la recharge diffuse ne se mélange pas rapidement dans l’aquifère mais s’écoule plutôt de manière horizontale. La stratification des circulations de l’eau infiltrée peut être favorisée par la très forte porosité de matrice de l’aquifère et par son caractère éogène. La purge des forages pour le prélèvement d’échantillons a perturbé la conductivité électrique durant plusieurs jours, reflétant le mélange d’eau des d’horizons stratifiés et rendant difficile la collecte d’échantillons représentatifs. Des simulations numériques suggèrent que la recharge diffuse influence l’intrusion d’eau allogène des conduits, en augmentant la charge hydraulique dans l’aquifère environnant et en diminuant ainsi le flux dans l’aquifère provenant des conduits. Inversement, l’augmentation de la charge hydraulique dans les conduits influence les écoulements de recharge diffuse en déplaçant verticalement l’eau récemment infiltrée lors de la variation du niveau piézométrique de l’aquifère. Ce déplacement peut aboutir à la présence d’une large zone verticale de la dissolution dans la zone de fluctuation du niveau piézométrique, au-dessus du réseau de conduits, la dissolution affectant une zone plus mince de l’aquifère et de manière plus localisée à une plus grande distance des conduits.

Interacciones de la recarga difusa y la alogénica concentrada en un acuífero kárstico eogenético (Florida, EEUU)

Resumen

El acuífero kárstico superior de Floridan en el norte centro de Florida (EEUU) está recargado por recarga difusa y alogénica. Para entender como se mueve el agua recargada dentro del acuífero, se monitorearon los niveles de agua y conductividades específicas fueron monitoreadas y se llevaron a cabo ensayos “slug” en pozos instalados en el acuífero que rodea la elevación y depresión del Río Santa Fe. Los resultados indican que la recarga difusa no se mezcla rápidamente dentro del acuífero sino que fluye horizontalmente. La estratificación verse favorecida por la alta porosidad de la matriz del acuífero kárstico eogenético. El purgado de los pozos para la recolección de muestras perturba la conductividad por varios días, reflejando la mezcla del agua estratificada haciendo dificultosa la recolección de muestras representativas. La interpretación de las simulaciones numéricas sugieren que la recarga difusa impacta la intrusión de aguas alogénicas del conducto incrementando la carga hidráulica del acuífero circundante y reduciendo por lo tanto el influjo entrante al acuífero a partir del conducto. A su vez, el incremento de la carga hidráulica dentro de los conductos afecta las trayectorias del flujo de la recarga difusa moviendo el agua nueva recargada verticalmente a medida que el nivel freático asciende y desciende. Este movimiento puede dar como resultado una amplia zona vertical de disolución en la capa freática por encima del sistema de conducto, con una disolución de la capa freática más delgada y más concentrado a una mayor distancia desde el conducto.

美国佛罗里达州早期喀斯特含水层中弥散型与集中型外源补给间的相互作用

摘要

位于美国佛罗里达州中北部的佛罗里达喀斯特上部含水层同时接受弥散型补给和外源补给。为了了解补给水在含水层中是如何运动的,我们对潜水水位和特定的导水系数进行了监测,并对环绕圣达菲河流进流出处含水层中布置的井进行了水文地质压水试验。试验结果显示,在含水层中弥散型补给不会与地下水迅速混合,而是水平地流动。早期喀斯特含水层介质的高孔隙度特征可能会有助于层理的形成。为取样而洗井对含水层的导水性造成了若干天的干扰,反映出层状水的混合,这使得代表性水样的采集变得困难。解释性数值模拟显示,弥散型补给通过增大周围含水层的水头来影响导水管道中外源水的入侵,进而减少从导水管道进入含水层的地下水通量。反过来,随着潜水面的升降,导水管道中水头的增大会通过新补给水的垂直移动来影响弥散型补给水的流动路径。这种运动可能会导致在导水管道系统以上的潜水面处形成一个宽阔的垂向溶解区域,在远离导水管道的地方,溶解带变薄且集中。

Interações entre recarga difusa e recarga alogénica pontual num aquífero cársico eogenético (Flórida, EUA)

Resumo

O aquífero cársico superior da Flórida (upper Floridan aquifer), no centro-norte da Flórida (EUA), é recarregado tanto por recarga difusa como por recarga alogénica. Para se entender como a água de recarga se move dentro do aquífero, foram monitorizados os níveis de água e as condutividades específicas e realizados testes de slug em furos instalados no aquífero em torno de sumidouros e exsurgências do Rio Santa Fé. Os resultados indicam que a recarga difusa não se mistura imediatamente no aquífero, em vez disso flui horizontalmente. A estratificação pode ser auxiliada pela alta porosidade da matriz do aquífero cársico eogenético. Furos de purga para a recolha de amostras perturbaram a condutividade durante vários dias, refletindo a mistura da água estratificada e dificultando a recolha e processamento de amostras representativas. A interpretação de simulações numéricas sugere que a recarga difusa afeta a intrusão de água alogénica a partir da conduta cársica, ao aumentar a carga hidráulica nas vizinhanças do aquífero, reduzindo, desta forma, o influxo para o aquífero a partir da conduta cársica. Por sua vez, o aumento do potencial hidráulico dentro das condutas cársicas afeta as linhas de fluxo da recarga difusa, através do movimento vertical da água recém recarregada, à medida que o nível freático sobe e desce. Este movimento pode resultar na dissolução, na zona de oscilação da superfície freática, de uma ampla zona vertical acima do sistema de condutas cársicas, com uma dissolução mais estreita e focada na zona de oscilação da superfície freática a uma maior distância dessas condutas cársicas.

Notes

Acknowledgements

The authors acknowledge the Florida Department of Environmental Protection for permitting the work and the staff of O’Leno State Park for their cooperation. The research was funded by the National Science Foundation grants EAR-003360 and EAR-0510054 and by the Florida Department of Environmental Protection Grants numbers S00060, S0141, and S0181. Numerical modeling was conducted using an academic license of Groundwater Vistas. This work benefited from helpful comments by Associate Editor Steffen Birk and two anonymous reviewers.

References

  1. Albéric P, Lepiller M (1998) Oxidation of organic matter in a karstic hydrologic unit supplied through stream sinks (Loiret, France). Water Res 32(7):2051–2064CrossRefGoogle Scholar
  2. Bailly-Comte V, Martin JB, Jourde H, Screaton EJ, Pistre S, Langston AL (2010) Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams. J Hydrol 386(1–4):55–66CrossRefGoogle Scholar
  3. Bailly-Comte V, Martin JB, Screaton EJ (2011) Time variant cross-correlation to assess residence time of water, implication for hydraulics of a sink/rise karst system. Water Resour Res 47:W05547. doi: 10.1029/2010WR009613 CrossRefGoogle Scholar
  4. Bouwer H (1989) The Bouwer-Rice Slug Test: an update. Ground Water 27(3):304–309CrossRefGoogle Scholar
  5. Bouwer H, Rice RC (1976) Slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12(3):423–428CrossRefGoogle Scholar
  6. Budd DA, Vacher HL (2002) Facies control on matrix permeability in the upper Floridan aquifer, west-central Florida: implications to diffuse flow. In: Hydrogeology and biology of Post-Paleozoic Carbonate Aquifers. Karst Waters Institute Spec Publ 7, pp 14–24Google Scholar
  7. Doctor DH, Alexander EC, Petric M, Kogovsek J, Urbanc J, Lojen S, Stichler W (2006) Quantification of karst aquifer discharge components during storm event through end-member mixing analysis using natural chemistry and stable isotopes as tracers. Hydrogeol J 14:1171–1191CrossRefGoogle Scholar
  8. Dreybrodt W, Romanov D, Kaufmann G (2009) Evolution of isolated caves in porous limestone by mixing of phreatic water and surface water at the water table of unconfined aquifers: a model approach. J Hydrol. doi: 10.1016/j.jhydrol.2009.07.027
  9. Florea LJ, Vacher HL, Donahue B, Naar D (2007) Quaternary Cave levels in Peninsular Florida. Quat Sci Rev 26:1344–1361CrossRefGoogle Scholar
  10. Florida Automated Weather Network (FAWN) (2012) FAWN: Archived Weather Data. FAWN, Alachua, FL http://fawn.ifas.ufl.edu/. Accessed January 2012
  11. Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UKGoogle Scholar
  12. Grubbs JW (1997) Recharge rates to the Upper Floridan aquifer in the Suwannee River Water Management District, Florida. US Geol Surv Water Resour Invest Rep 97–4283, 30 ppGoogle Scholar
  13. Grubbs JW, Crandall, CA (2007) Exchanges of water between the Upper Floridan Aquifer and the Lower Suwannee and Lower Santa Fe Rivers, Florida US Geol Surv Prof Pap 1656-C, 83 ppGoogle Scholar
  14. Gulley J, Martin JB, Screaton EJ, Moore PJ (2011) River reversals into karst springs: a model for cave enlargement in eogenetic karst aquifers. Geol Soc Am Bull 123:457–467. doi: 10.1130/B30254.1 CrossRefGoogle Scholar
  15. Hunn JD, Slack LJ (1983) Water resources of the Santa Fe River Basin, Florida. US Geol Surv Water Resour Invest Rep 83–4075, p 105Google Scholar
  16. Klimchouk A (2004) Towards defining, delimiting and classifying epikarst: Its origin, processes, and variants of geomorphic evolution.Karst Waters Institute Spec Publ 9, pp 23–25Google Scholar
  17. Krawczyk WE, Ford DC (2006) Correlating specific conductivity with total hardness in limestone and dolomite karst waters. Earth Surf Process Land 31:221–234CrossRefGoogle Scholar
  18. Langston AL (2009) The relationship between specific conductivity and flow paths in a karst aquifer, north-central Florida. MSc Thesis, University of Florida, USAGoogle Scholar
  19. Marella RL, Berndt MP (2005) Water withdrawals and trends from the Floridan aquifer system in the southeastern United States, 1950–2000. US Geol Surv Circ 1278Google Scholar
  20. Martin JB, Dean RW (2001) Exchange of water between conduits and matrix in the Floridan aquifer. Chem Geol 179:145–165CrossRefGoogle Scholar
  21. Martin JM, Screaton EJ, Martin JB (2006) Monitoring well responses to karst conduit head fluctuations: implications for fluid exchange and matrix transmissivity in the Floridan aquifer. Geol Soc Am Sp Pap 404:139–152Google Scholar
  22. McDonald MG, Harbaugh AW (1984) A modular three-dimensional finite-difference groundwater model. US Geol Surv Open File Rep 83–875Google Scholar
  23. Miller J (1986) Hydrogeologic framework of the Floridan Aquifer System in Florida and in parts of Georgia, Alabama, and South Carolina. US Geol Surv Prof Pap 1403-B, p 91Google Scholar
  24. Moore PJ (2009) Controls on the generation of secondary porosity in eogenetic karst: examples from San Salvador Island, Bahamas and north central Florida, USA. PhD Thesis, University of Florida, USAGoogle Scholar
  25. Moore PJ, Martin JB, Screaton EJ (2009) Geochemical and statistical evidence of recharge, mixing, and controls on spring discharge in an eogenetic karst aquifer. J Hydrol. doi: 10.1016/j.jhydrol.2009.07.052
  26. Moore PJ, Martin JB, Screaton EJ, Neuhoff PS (2010) Conduit enlargement in an eogenetic karst aquifer. J Hydrol. doi: 10.1016/j.jhydrol.2010.08.008
  27. Mylroie JE, Carew JL (2003) Karst development on carbonate islands. Speleogen Evol Karst Aquif 1(2):1–21Google Scholar
  28. Mylroie JE, Mylroie JR (2007) Development of the carbonate karst model. J Cave Karst Stud 69:59–75Google Scholar
  29. Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21CrossRefGoogle Scholar
  30. Palmer AN (2002) Karst in Paleozoic rocks: How does it differ from Florida? Karst Waters Inst Spec Publ 7, pp 185–190Google Scholar
  31. Peterson EW, Wicks CM (2005) Fluid and solute transport from a conduit to the matrix in a carbonate aquifer system. Math Geol 37(8):851–867CrossRefGoogle Scholar
  32. Renken RA, Cunningham KJ, Zygnerski MR (2005) Assessing the vulnerability of a municipal well field to contamination in a karst aquifer. Environ Eng Geosci 11(4):319–331CrossRefGoogle Scholar
  33. Ritorto M, Screaton EJ, Martin JB, Moore PJ (2009) Magnitudes and chemical effects of diffuse and focused recharge in an eogenetic karst aquifer: an example from the unconfined Floridan aquifer. Hydrogeol J. doi: 10.1007/s10040-009-0460-0
  34. Schwartz FW, Zhang H (2003) Fundamentals of groundwater. Wiley, NY, p 583Google Scholar
  35. Screaton EJ, Martin JB, Ginn B, Smith L (2004) Conduit properties and karstification in the unconfined Floridan aquifer. Ground Water 42(3):338–346CrossRefGoogle Scholar
  36. Upchurch SB, Chen J, Cain CR (2008) Springsheds of the Santa Fe River Basin. Alachua County (Florida) Department of Environmental Protection, Gainesville, FL. http://www.alachuacounty.us/Depts/EPD/Documents/WaterResources/Springsheds%20presentation.pdf. Accessed February 15, 2012
  37. Vacher HL, Mylroie JE (2002) Eogenetic karst from the perspective of an equivalent porous medium. Carbonates Evaporites 17(2):182–196CrossRefGoogle Scholar
  38. Vesper DJ, White WB (2004) Storm pulse chemographs of saturation index and carbon dioxide pressure: implications for shifting recharge sources during storm events in the karst aquifer at Fort Campbell, Kentucky/Tennessee, USA. Hydrogeol J 12:135–143CrossRefGoogle Scholar
  39. White WB (1999) Conceptual models for karstic aquifers. In: Palmer AN, Palmer MV, Sasowsky, ID (eds) Karst modeling: Karst Waters Institute Special Publication 5, pp 11–15Google Scholar
  40. White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85–105CrossRefGoogle Scholar
  41. Zheng C, Wang PP (1999) MT3DMS: a modular three-dimensional multispecies model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Documentation and User’s Guide, Contract Report SERDP-99-1, US Army Engineer Research and Development Center, Vicksburg, MSGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Abigail L. Langston
    • 2
  • Elizabeth J. Screaton
    • 1
  • Jonathan B. Martin
    • 1
  • Vincent Bailly-Comte
    • 3
  1. 1.Department of Geological SciencesUniversity of FloridaGainesvilleUSA
  2. 2.Department of Geological SciencesUniversity of ColoradoBoulderUSA
  3. 3.HydroSciences LaboratoryUniversity of MontpellierMontpellierFrance

Personalised recommendations