Advertisement

Hydrogeology Journal

, Volume 20, Issue 4, pp 617–658 | Cite as

Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology

  • A. RevilEmail author
  • M. Karaoulis
  • T. Johnson
  • A. Kemna
Paper

Abstract

Low-frequency geoelectrical methods include mainly self-potential, resistivity, and induced polarization techniques, which have potential in many environmental and hydrogeological applications. They provide complementary information to each other and to in-situ measurements. The self-potential method is a passive measurement of the electrical response associated with the in-situ generation of electrical current due to the flow of pore water in porous media, a salinity gradient, and/or the concentration of redox-active species. Under some conditions, this method can be used to visualize groundwater flow, to determine permeability, and to detect preferential flow paths. Electrical resistivity is dependent on the water content, the temperature, the salinity of the pore water, and the clay content and mineralogy. Time-lapse resistivity can be used to assess the permeability and dispersivity distributions and to monitor contaminant plumes. Induced polarization characterizes the ability of rocks to reversibly store electrical energy. It can be used to image permeability and to monitor chemistry of the pore water–minerals interface. These geophysical methods, reviewed in this paper, should always be used in concert with additional in-situ measurements (e.g. in-situ pumping tests, chemical measurements of the pore water), for instance through joint inversion schemes, which is an area of fertile on-going research.

Keywords

Geophysical methods Groundwater hydraulics Groundwater monitoring Hydraulic properties Unsaturated zone Review 

Revue: Méthodes électriques basses-fréquences et leurs applications à la caractérisation du sous-sol et au suivi hydrogéologique

Résumé

Les méthodes géoélectriques basses-fréquences incluent principalement la méthode de potentiel spontané, la résistivité, et la polarisation provoquée. Ces méthodes ont de nombreuses applications environnementales et hydrogéologiques. Elles fournissent des informations complémentaires les unes vis-à-vis des autres ainsi que vis-à-vis des mesures in situ. La méthode de potentiel spontané est une mesure passive de la réponse électrique associée à l’existence d’un courant in situ, lequel est lié soit à l’écoulement de l’eau dans un milieu poreux, à un gradient de salinité, et/ou à un gradient de concentrations d’espèces redox ioniques. Sous certaines conditions, cette méthode peut être utilisée pour visualiser l’écoulement de l’eau dans le sous-sol, pour déterminer la perméabilité, ou pour détecter des chemins d’écoulement préférentiels. La résistivité électrique dépend du contenu en eau des roches, de la température, de la salinité de l’eau porale, du contenu en argile ainsi que de la minéralogie de la phase argileuse. Le monitoring de la résistivité électrique peut être utilisé pour avoir accès à la perméabilité ainsi qu’à la dispersivité hydrodynamique et peut être utilisé pour le suivi de panaches de contamination. La polarisation provoquée caractérise la capacité des roches à stocker de manière réversible de l’énergie électrique. Cette méthode peut être utilisée pour déterminer la perméabilité et pour suivre dans le temps la chimie de l’interface eau/minéraux. Ces méthodes géophysiques, dont la synthèse est faite dans cet article, devraient toujours être associées à des mesures in situ (e.g., tests de pompage, mesures chimiques de l’eau porale), à travers des schémas d’inversion jointe, ce qui correspond à un domaine de recherche très actif.

Revisión: Algunos métodos eléctricos de baja frecuencia para la caracterización subsuperficial y el monitoreo en hidrogeología

Resumen

Los métodos geoeléctricos de baja frecuencia incluyen principalmente potencial espontáneo, resistividad, y técnicas de polarización inducida, las cuales que tienen potencialidad en muchas aplicaciones hidrogeológicas y ambientales. Ellos proporcionan información complementaria recíprocamente y a las mediciones in situ. El método de potencial espontáneo es una medida pasiva de la respuesta eléctrica asociada con la generación in situ de corrientes eléctricas debido a flujo de agua poral en un medio poroso, un gradiente de salinidad, y/o la concentración de especies redox activas. Bajo ciertas condiciones, este método puede ser usado para visualizar el flujo de agua subterránea, determinar la permeabilidad, y detectar trayectorias preferenciales en el flujo. La resistividad eléctrica depende del contenido de agua, de la temperatura, de la salinidad de agua poral, y el contenido y mineralogía de las arcillas. La resistividad en función del tiempo puede ser usada para evaluar a las distribuciones de permeabilidad y dispersividad y monitorear plumas de contaminación. La polarización inducida caracteriza la habilidad de las rocas para almacenar energía eléctrica reversiblemente. Ello puede ser usado para dar una imagen de la permeabilidad y para el monitoreo químico de la interfase agua poral - minerales. Estos métodos geofísicos, revisados en este trabajo, deben ser siempre usados en combinación con otras mediciones in situ (por ejemplo, ensayos de bombeo in situ, mediciones químicas del agua poral), por ejemplo a través de esquemas de inversión conjunta, que es un área de investigación fértil y activa.

综述:水文地质学中针对地下特征描述和监测的若干低频电方法

摘要

低频地电方法主要包括自然电位、电阻率以及激发极化技术,它们在许多环境和水文地质的应用中均有潜力。这些方法互相间提供补充信息,同样也给原位测试提供信息。自然电位方法是电反应的一个消极测量方法,该电反应与电流的原位生成相关,而电流的原位生成是因为多孔介质中水的流动,盐度梯度的存在,以及(或)氧化还原活性物种的聚集。在某些情况下,该方法可用于可视化地下水流动,确定渗透率和查明优先流路径。电阻率取决于含水率、温度、孔隙水的盐度以及粘土含量和矿物。延时电阻可以用于估算渗透率和分散性分布,以及检测污染晕。激发极化法刻画了延时可逆的储存电能的能力。它可以用于描绘渗透率以及检测孔隙水-矿物分界面的化学特征。本文综述了这些地球物理学方法,且应该一直用于与原位测试(如原位抽水试验、孔隙水的化学测试)的协同作用,例如通过联合转换方案,这是一个正在进行的内容丰富的研究领域。

Revisão: Alguns métodos elétricos de baixa frequência para a caraterização da subsuperfície e monitorização em hidrogeologia

Resumo

Métodos geoelétricos de baixa-frequência incluem principalmente o potencial espontâneo, a resistividade e métodos de polarização induzida, os quais apresentam potencial em muitas aplicações ambientais e hidrogeológicas. Esses métodos providenciam informação complementar uns em relação aos outros e em relação a medições in situ. O método do potencial espontâneo é uma medição passiva da resposta elétrica associada com a geração in situ de corrente elétrica devido ao fluxo de água nos poros em meios porosos, ao gradiente de salinidade e/ou à concentração de espécies redox activas. Sob certas condições, este método pode ser usado para visualizar o fluxo de água subterrânea, para determinar a permeabilidade e para detetar caminhos de fluxo preferencial. A resistividade elétrica está dependente do conteúdo em água, da temperatura, da salinidade da água nos poros, do conteúdo em argila e da mineralogia. A resistividade de lapso de tempo pode ser usada para avaliar a distribuição da permeabilidade e dispersividade e para monitorizar plumas contaminantes. A polarização induzida carateriza a capacidade das rochas para armazenar energia elétrica de forma reversível. Pode ser usada para criar uma imagem da permeabilidade e para monitorizar o quimismo da interface água-minerais nos poros. Os métodos geofísicos, revistos neste documento, devem sempre ser usados em conjunto com medições adicionais in situ (eg. ensaios de caudal in situ, dados químicos da água dos poros), por exemplo através de esquemas de inversão conjunta, que é uma área de pesquisa atual muito fértil.

Notes

Acknowledgements

We thank NSF for funding the SmartGeo Educational Program (Project IGERT: Intelligent Geosystems; DGE-0801692) and EPA (D. Werkema) for funding M. Karaoulis. We thank A. Flores Orozco and K. H. Williams for sharing Fig. 23 with us and M. Nabighian for bringing to our attention key references about early works. K. Singha, L. Slater, and two anonymous referees are thanked for their careful and very useful reviews of this manuscript.

References

  1. Abu-Zeid N, Bianchini G, Santarato G, Vaccaro C (2004) Geochemical characterization and geophysical mapping of landfill leachates: the Marozzo Canal case study (NE Italy). Environ Geol 45:439–447CrossRefGoogle Scholar
  2. AlSaigh NH, Mohammed ZS, Dahham MS (1994) Detection of water leakage from dams by self-potential method. Eng Geol 37:115–121CrossRefGoogle Scholar
  3. Andersen K, Brooks S, Hansen M (2001) A Bayesian approach to crack detection in electrically conductive media. Inverse Problems 17:121–136CrossRefGoogle Scholar
  4. Antelman MS (1989) The encyclopedia of chemical electrode potentials. Plenum, New YorkGoogle Scholar
  5. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Pet Trans AIME 146:54–62Google Scholar
  6. Aristodemou E, Thomas-Betts A (2000) DC resistivity and induced polarization investigation at a waste disposal site and its environments. J Appl Geophys 44:275–302CrossRefGoogle Scholar
  7. Arora T, Linde N, Revil A, Castermant J (2007) Non-intrusive determination of the redox potential of contaminant plumes by using the self-potential method. J Contam Hydrol 92:274–292CrossRefGoogle Scholar
  8. Atekwana EA, Slater LD (2009) Biogeophysics: a new frontier in earth science research. Rev Geophys 47:RG4004CrossRefGoogle Scholar
  9. Atekwana EA, Atekwana E, Werkema DD, Allen JP, Smart LA, Duris JW, Cassidy DP, Sauck WA, Rossbach S (2004) Evidence for microbial enhanced electrical conductivity in hydrocarbon-contaminated sediments. Geophys Res Lett 31:L23501CrossRefGoogle Scholar
  10. Barchini R, Saville DA (1995) Dielectrical response measurements on concentrated colloidal dispersions. J Colloid Interface Sci 173:86–91CrossRefGoogle Scholar
  11. Barus C (1882) On the electrical activity of ore bodies. In: Becker GF (ed) Geology of the Comstock lode and the Washoe District. US Geol Surv Monog, US Geological Survey, Reston, VA, pp 309–367 and 400–404Google Scholar
  12. Bernstone C, Dahlin T (1997) DC resistivity mapping of old landfills: two case studies. Eur J Environ Eng Geophys 2:121–136Google Scholar
  13. Bernstone C, Dahlin T, Ohlsson T, Hogland W (2000) DC-resistivity mapping of internal landfill structures: two pre-excavation surveys. Environ Geol 39:360–371CrossRefGoogle Scholar
  14. Bertin J, Loeb J (1976) Experimental and theoretical aspects of induced polarization, vols 1 and 2. Borntraeger, BerlinGoogle Scholar
  15. Bertrand EA, Endres A (2009) Complex dielectrical response of ellipsoidal particles with surface contribution. J Phys Chem 130:224705CrossRefGoogle Scholar
  16. Bigalke J, Grabner EW (1997) The Geobattery model: a contribution to large scale electrochemistry. Electrochim Acta 42:3443–3452CrossRefGoogle Scholar
  17. Binley A, Kemna A (2005) DC resistivity and induced polarization methods. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, Heidelberg, pp 129–156Google Scholar
  18. Binley A, Cassiani G, Middleton R, Winship P (2002) Vadose zone flow model parameterization using cross-borehole radar and resistivity imaging. J Hydrol 267:147–159CrossRefGoogle Scholar
  19. Binley A, Slater L, Fukes M, Cassiani G (2005) The relationship between frequency dependent electrical conductivity and hydraulic properties of saturated and unsaturated sandstone. Water Resour Res 41(13):W12417CrossRefGoogle Scholar
  20. Blaschek R, Hördt A, Kemna A (2008) A new sensitivity-controlled focusing regularization scheme for the inversion of induced polarization data based on the minimum gradient support. Geophysics 73:F45–F54CrossRefGoogle Scholar
  21. Bogoslovsky VA, Ogilvy AA (1972) The study of streaming potentials on fissured media models. Geophys Prospect 20(1):109–117. doi: 10.1111/j.1365-2478.1972.tb00624.x Google Scholar
  22. Bockris JO’M, Reddy AKN (1970) Modern electrochemistry, 2. Plenum, New YorkGoogle Scholar
  23. Bogoslovsky VV, Ogilvy AA (1973) Deformations of natural electrical fields near drainage structures. Geophys Prospec 21:716–723CrossRefGoogle Scholar
  24. Bolève A, Crespy A, Revil A, Janod F, Mattiuzzo JL (2007) Streaming potentials of granular media: influence of the Dukhin and Reynolds numbers. J Geophys Res 112:B08204. doi: 10.1029/2006JB004673 CrossRefGoogle Scholar
  25. Bolève A, Revil A, Janod F, Mattiuzzo JL, Fry J-J (2009) Preferential fluid flow pathways in embankment dams imaged by self-potential tomography. Near Surf Geophys 7(5):447–462. doi: 10.3997/1873-0604.2009012 Google Scholar
  26. Bordi F, Cametti C, Rosi A, Calcabrini A (1993) Frequency domain electrical conductivity measurements of the passive electrical properties of human lymphocytes. Biochim Biophys Acta 1153(1):77–88CrossRefGoogle Scholar
  27. Börner FD (1992) Complex conductivity measurements of reservoir properties. Proc. Third European Core Analysis Symposium, Paris, September 1992, pp 359-386Google Scholar
  28. Börner FD (2006) Complex conductivity measurements. In: Groundwater Geophysics, pp 119–153. doi: 10.1007/3-540-29387-6_4
  29. Börner F, Gruhne M, Schön J (1993) Contamination indications derived from electrical properties in the low frequency range. Geophys Prospect 41:83–98CrossRefGoogle Scholar
  30. Börner FD, Schopper JR, Weller A (1996) Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophys Prosp 44:583–601CrossRefGoogle Scholar
  31. Cametti C, de Luca F, Macri MA, Maraviglia B, Zimatore G, Bordi F, Misasi R, Sorice M, Lenti L, Pavan A (1995) To what extent the passive electrical parameters of lymphocyte membranes deduced from impedance spectroscopy altered by surface roughness and microvillosity? Colloids Surf B Biointerfaces 3(5):309–316CrossRefGoogle Scholar
  32. Cassiani G, Kemna A, Villa A, Zimmermann E (2009) Spectral induced polarization for the characterization of free-phase hydrocarbon contamination of sediments with low clay content. Near Surf Geophys 7(5–6):547–562Google Scholar
  33. Castermant J, Mendonça CA, Revil A, Trolard F, Bourrié G, Linde N (2008) Redox potential distribution inferred from self-potential measurements during the corrosion of a burden metallic body. Geophys Prospect 56:269–282. doi: 10.1111/j.1365-2478.2007.00675.x CrossRefGoogle Scholar
  34. Chelidze TL, Derevjanko AI, Kurilenko OD (1977) Electrical spectroscopy of heterogeneous systems (in Russian). Naukova Dumka, Kiev, RussiaGoogle Scholar
  35. Chen Y, Or D (2006) Effects of Maxwell-Wagner polarization on soil complex dielectrical permittivity under variable temperature and electrical conductivity. Water Resour Res 42:W06424. doi: 10.1029/2005WR004590 CrossRefGoogle Scholar
  36. Chen JS, Hubbard SS, Williams KH et al (2009) A state-space Bayesian framework for estimating biogeochemical transformations using time-lapse geophysical data. Water Resour Res 45:W08420CrossRefGoogle Scholar
  37. Coggon JH (1971) Electromagnetic and electrical modelling by the finite element method. Geophysics 36:132–155CrossRefGoogle Scholar
  38. Coggon H (1973) A comparison of IP electrode arrays. Geophysics 38(4):737–761CrossRefGoogle Scholar
  39. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics: I, alternating current characteristics. J Chem Phys 9:341–351CrossRefGoogle Scholar
  40. Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52:289–300CrossRefGoogle Scholar
  41. Corwin RF, Hoover DB (1979) The self-potential method in geothermal exploration. Geophysics 44:226–245CrossRefGoogle Scholar
  42. Corwin RF, Morrison HF, Diaz S, Rodriguez J (1979) Self-potential studies at the Cerro Prieto geothermal field. In: Proceedings of the First Symposium on the Cerro Prieto Geothermal Field, Baja California, Mexico, September 20–22, 1978, Report LBL-7098, , Lawrence Berkeley Lab, San Diego, pp 204–210Google Scholar
  43. Cosenza P, Ghorbani A, Camerlynck C, Rejiba F, Guérin R, Tabbagh A (2009) Effective medium theories for modelling the relationships between electromagnetic properties and hydrological variables in geomaterials: a review. Near Surf Geophys 7:563–578Google Scholar
  44. Christensen TH, Bjerg PL, Banwart SA, Jakobsen R, Heron G, Albrechtsen H-J (2000) Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol 45:165–241. doi: 10.1016/S0169-7722(00)00109-1 Google Scholar
  45. Dahlin T (2000) Short note on electrode charge-up effects in DC resistivity data acquisition using multi-electrode arrays. Geophys Prospect 48:181–187CrossRefGoogle Scholar
  46. Daily WD, Ramirez AL, LaBrecque DJ, Nitao J (1992) Electrical resistivity tomography of vadose water movement. Water Resour Res 28:1429–1442CrossRefGoogle Scholar
  47. Daily W, Ramirez A, Johnson R (1998) Electrical impedance tomography of a perchloroethylene release. J Environ Eng Geophys 2:189–201Google Scholar
  48. Davis CA, Atekwana E, Atekwana E, Slater LD, Rossbach S, Mormile MR (2006) Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements. Geophys Res Lett 33(18):L18403CrossRefGoogle Scholar
  49. de Lima OAL, Sharma MM (1992) A generalized Maxwell–Wagner theory for membrane polarization in shaly sands. Geophysics 57:431–440CrossRefGoogle Scholar
  50. deGroot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55:1613–1624CrossRefGoogle Scholar
  51. Dey A, Morrison HF (1973) Electromagnetic coupling in frequency and time domain induced polarisation surveys over multilayered earth. Geophysics 38:380–405CrossRefGoogle Scholar
  52. Dey A, Morrison HF (1979a) Resistivity modeling for arbitrary shaped two-dimensional structures. Geophys Prospect 27:106–136CrossRefGoogle Scholar
  53. Dey A, Morrison HF (1979b) Resistivity modeling for arbitrarily three-dimensional structures. Geophysics 44:753–780CrossRefGoogle Scholar
  54. Douglas Y, Oldenburg W (1996) DC resistivity and IP methods in acid mine drainage problems: results from the Copper Cliff mine tailings impoundments. J Appl Geophys 34:187–198CrossRefGoogle Scholar
  55. Drolon H, Hoyez B, Druaux F, Faure A (2003) Multiscale roughness analysis of particles: application to the classification of detrital sediments. Math Geol 35(7):805–817CrossRefGoogle Scholar
  56. Dukhin SS, Shilov VN (1974) Dielectrical phenomena and the double layer in disperse systems and polyelectrolytes. Wiley, New YorkGoogle Scholar
  57. Dukhin SS, Shilov VN (2002) Non-equilibrium electrical surface phenomena and extended electrokinetic characterization of particles. In: Delgado AV (ed) Interfacial electrokinetics and electrophoresis. SurfactantScience Series, 106. CRC, Boca Raton, FL, pp 55–85Google Scholar
  58. Dupuis JC, Butler KE, Kepic AW, Harris BD (2009) Anatomy of a seismoelectrical conversion: measurements and conceptual modeling in boreholes penetrating a sandy aquifer. J Geophys Res 114:B10306. doi: 10.1029/2008JB005939 CrossRefGoogle Scholar
  59. Ellis DV, Singer JM (2007) Well logging for earth scientists, 2nd edn. Springer, Dordrecht, The NetherlandsCrossRefGoogle Scholar
  60. Fitterman DV, Corwin RF (1982) Inversion of self-potential data from the Cerro Prieto geothermal field, Mexico. Geophysics 47:938–945CrossRefGoogle Scholar
  61. Fixman M (1980) Charged macromolecules in external fields: I, the sphere. J Chem Phys 72(a):5177–5186CrossRefGoogle Scholar
  62. Flores Orozco A, Williams KH, Long PE, Hubbard SS, Kemna A (2011) Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of an uranium-contaminated aquifer. J Geophys Res 116:G03001. doi: 10.1029/2010JG001591 CrossRefGoogle Scholar
  63. Florsch N, Llubes M, Téreygeol F, Ghorbani A, Roblet P (2010) Quantification of slag heap volumes and masses through the use of induced polarization: application to the Castel-Minier site. J Archaeol Sci 38(2):438–451. doi: 10.1016/j.jas.2010.09.027 CrossRefGoogle Scholar
  64. Fournier C (1989) Spontaneous potentials and resistivity surveys applied to hydrogeology in a volcanic area: case history of the Chaîne des Puys (Puyde-Dôme, France). Geophys Prospect 37:647–668CrossRefGoogle Scholar
  65. Fox RW (1830) On the electromagnetic properties of metalliferous veins in the mines of Cornwall. Philos Trans R Soc 120:399–414CrossRefGoogle Scholar
  66. Fuoss RMD, Kirkwood JG (1941) Electrical properties of solids. VIII. Dipole moments in polyvinyl chloride-diphenyl systems. J Am Chem Soc 63:385–394CrossRefGoogle Scholar
  67. Gelius LJ, Wang Z (2008) Modelling production caused changes in conductivity for a siliclastic reservoir: a differential effective medium approach. Geophys Prospect 56(5):677–691CrossRefGoogle Scholar
  68. Gex P (1980) Electrofiltration phenomena associated with several dam sites. Bull Soc Vaud Sci Nat 357:39–50Google Scholar
  69. Gex P (1993) Electrofiltration measurements on the Frasse landslide, the Pre-Alps of western Switzerland. Hydrogéol 3:239–246Google Scholar
  70. Ghorbani A, Cosenza Ph, Ruy S, Doussan C, Florsch N (2008) Noninvasive monitoring of water infiltration in a clay loamy soil using spectral induced polarization. Water Resour Res 44:W08402. doi: 10.1029/2007WR006114 CrossRefGoogle Scholar
  71. Ghorbani A, Camerlynck C, Florsch N (2009) CR1Dinv: a Matlab program to invert 1D spectral induced polarization data for the Cole-Cole model including electromagnetic effects. Comput Geosci 35:255–266CrossRefGoogle Scholar
  72. Goes BJM, Meekes JAC (2004) An effective electrode configuration for the detection of DNAPLs with electrical resistivity tomography. J Environ Eng Geophys 9:127–141CrossRefGoogle Scholar
  73. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A et al (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358–11363CrossRefGoogle Scholar
  74. Grech RT, Cassar J, Muscat KP, Camilleri SG, Fabri M, Zervakis P, Xanthopoulos V, Sakkalis B, Vanrumste B (2008) Review on solving the inverse problem in EEG source analysis. J Neuro Eng Rehabil 5:25CrossRefGoogle Scholar
  75. Grosse C (2009) Generalization of a classic theory of the low frequency dielectrical dispersion of colloidal suspensions to electrolyte solutions with different ion valences. J Phys Chem B 113:11201–11215CrossRefGoogle Scholar
  76. Grunewald E, Knight R (2011) A laboratory study of NMR relaxation times in unconsolidated heterogeneous sediments. Geophysics 76(4):G73–G84. doi: 10.1190/1.3581094 CrossRefGoogle Scholar
  77. Ha HS, Kim DS, Park IJ (2010) Application of electrical resistivity techniques to detect weak and fracture zones during underground construction. Environ Earth Sci 60:723–731CrossRefGoogle Scholar
  78. Haas A, Revil A (2009) Electrical signature of pore scale displacements. Water Resour Res 45:W10202CrossRefGoogle Scholar
  79. Hase H, Hashimoto T, Sakanaka S, Kanda W, Tanaka Y (2005) Hydrothermal system beneath Aso volcano as inferred from self-potential mapping and resistivity structure. J Volcanol Geotherm Res 143:259–277CrossRefGoogle Scholar
  80. Hayley K, Bentley LR, Gharibi M, Nightingale M (2007) Low temperature dependence of electrical resistivity: implications for near surface geophysical monitoring. Geophys Res Lett 34:L18402CrossRefGoogle Scholar
  81. Helmholz H (1879) Study concerning electrical boundary layers. Weidemann Annal Physik Chemie 7:337–382, 3rd SerCrossRefGoogle Scholar
  82. Hilfer R (2002) Analytical representations for relaxation function of glasses. J Non-Cryst Solids 305:122–126CrossRefGoogle Scholar
  83. Hohmann GW (1973) Electromagnetic coupling between grounded wires at the surface of a two-layer earth. Geophysics 38:854–863CrossRefGoogle Scholar
  84. Hubbard S, Linde N (2011) Hydrogeophysics. In: Wilderer P (ed) Treatise on water science, 1. Academic, Oxford, pp 401–434CrossRefGoogle Scholar
  85. Holstetler JD (1984) Electrode electrons, aqueous electrons, and redox potentials in natural waters. Am J Sci 284:34–759Google Scholar
  86. Hyslip JP, Vallejo LE (1997) Fractal analysis of the roughness and size distribution of granular materials. Eng Geol 48(3–4):231–244CrossRefGoogle Scholar
  87. Ingeman-Nielsen T, Baumgartner F (2006) CR1Dmod: a Matlab program to model 1D complex resistivity effects in electrical and EM surveys. Comput Geosci 32:1411–1419CrossRefGoogle Scholar
  88. Ishido T (1989) Self-potential generation by subsurface water flow through electrokinetic coupling. In: Merkler G-P, Militzer H, Hötzl H, Armbruster H, Brauns J (eds) Detection of subsurface flow phenomena. Lecture Notes in Earth Sciences, 27. Springer, Berlin, pp 121–131CrossRefGoogle Scholar
  89. Ishido T (2004) Electrokinetic mechanism for ‘W’-shaped self-potential profile on volcanoes. Geophys Res Lett 31:L15616. doi: 10.1029/2004GL020409 CrossRefGoogle Scholar
  90. Ishido T, Pritchett JW (1999) Numerical simulation of electrokinetic potentials associated with subsurface fluid flow. J Geophys Res 104(B7):15 247–15 259Google Scholar
  91. Jardani A, Revil A (2009) Stochastic joint inversion of temperature and self-potential data. Geophys J Int 179(1):640–654. doi: 10.1111/j.1365-246X.2009.04295.x CrossRefGoogle Scholar
  92. Jardani A, Dupont JP, Revil A (2006a) Self-potential signals associated with preferential ground water flow pathways in sinkholes. J Geophys Res 111:B09204. doi: 10.1029/2005JB004231 CrossRefGoogle Scholar
  93. Jardani A, Revil A, Akoa F, Schmutz M, Florsch N, Dupont JP (2006b) Least-squares inversion of self-potential (SP) data and application to the shallow flow of the ground water in sinkholes. Geophys Res Lett 33(19):L19306. doi: 10.1029/2006GL027458 CrossRefGoogle Scholar
  94. Jardani A, Revil A, Bolève A, Dupont JP, Barrash W, Malama B (2007a) Tomography of groundwater flow from self-potential (SP) data. Geophys Res Lett 34:L24403CrossRefGoogle Scholar
  95. Jardani A, Revil A, Santos F, Fauchard C, Dupont JP (2007b) Detection of preferential infiltration pathways in sinkholes using joint inversion of self-potential and EM-34 conductivity data. Geophys Prospect 55:1–11. doi: 10.1111/j.1365-2478.2007.00638.x CrossRefGoogle Scholar
  96. Jardani A, Revil A, Bolève A, Dupont JP (2008) 3D inversion of self-potential data used to constrain the pattern of ground water flow in geothermal fields. J Geophys Res 113:B09204CrossRefGoogle Scholar
  97. Jardani A, Revil A, Barrash W, Crespy A, Rizzo E, Straface S, Cardiff M, Malama B, Miller C, Johnson T (2009) Reconstruction of the water table from self potential data during dipole pumping/injection test experiment. Ground Water 47(2):213–227CrossRefGoogle Scholar
  98. Jardani A, Revil A, Slob E, Sollner W (2010) Stochastic joint inversion of 2D seismic and seismoelectrical signals in linear poroelastic materials. Geophysics 75(1):N19–N31. doi: 10.1190/1.3279833,2010 CrossRefGoogle Scholar
  99. Johnson TC, Versteeg RJ, Ward A, Day-Lewis FD, Revil A (2010) Improved hydrogeophysical characterization and monitoring through high performance electrical geophysical modeling and inversion. Geophysics 75(4):WA27–WA41. doi: 10.1190/1.3475513 CrossRefGoogle Scholar
  100. Jougnot D, Ghorbani A, Revil A, Leroy P, Cosenza P (2010) Spectral induced polarization of partially saturated clay-rocks: a mechanistic approach. Geophys J Int 180(1):210–224. doi: 10.1111/j.1365-246X.2009.04426.x CrossRefGoogle Scholar
  101. Karaoulis M, Kim J-H, Tsourlos PI (2011a) 4D active time constrained inversion. J Appl Geophys 73:25–34CrossRefGoogle Scholar
  102. Karaoulis M, Revil A, Werkema DD, Minsley B, Woodruff WF, Kemna A (2011b) Time-lapse 3D inversion of complex conductivity data using an active time constrained (ATC) approach. Geophys J Int 187:237–251. doi: 10.1111/j.1365-246X.2011.05156.x CrossRefGoogle Scholar
  103. Kemna A (2000) Tomographic inversion of complex resistivity: theory and application. PhD Thesis, Bochum Ruhr-Univ., Germany, 176 ppGoogle Scholar
  104. Kemna A, Binley A (1996) Complex electrical resistivity tomography for contaminant plume delineation. Proceedings of the 2nd Meeting on Environmental and Engineering Geophysics, Environmental and Engineering Geophysical Society, European Section, Nantes, France, September 1996, pp 196–199Google Scholar
  105. Kemna A, Binley A, Ramirez AL, Daily WD (2000) Complex resistivity tomography for environmental applications. Chem Eng J 77:11–18CrossRefGoogle Scholar
  106. Kemna A, Vanderborght J, Kulessa B, Vereecken H (2002) Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J Hydrol 267:125–146CrossRefGoogle Scholar
  107. Kemna A, Binley A, Slater L (2004) Crosshole IP imaging for engineering and environmental applications. Geophysics 69:97–107CrossRefGoogle Scholar
  108. Kemna A, Binley A, Day-Lewis F, Englert A, Tezkan B, Vanderborght J, Vereecken H, Winship P (2006) Solute transport processes. In: Vereecken H, Binley A, Cassiani G, Revil A, Titov K (eds) Applied hydrogeophysics, NATO Science Series IV – Earth and Environmental Sciences, vol 71. Springer, Heidelberg, pp 117–159Google Scholar
  109. Kitsopoulos KP (1999) Cation-exchange capacity (CEC) of zeolitic volcaniclastic materials: applicability of the ammonium acetate saturation (AMAS) method. Clays Clay Miner 47:688–696CrossRefGoogle Scholar
  110. Koestel J, Vanderborght J, Javaux M, Kemna A, Binley A, Vereecken H (2009) Noninvasive 3-D transport characterization in a sandy soil using ERT: 2, transport process inference. Vadose Zone J 8:723–734CrossRefGoogle Scholar
  111. Kulessa B, Hubbard B, Brown GH (2003a) Cross-coupled flow modeling of coincident streaming and electrochemical potentials, and application to subglacial self-potential (SP) data. J Geophys Res 108(B8):2381. doi: 10.1029/2001JB1167 CrossRefGoogle Scholar
  112. Kulessa B, Hubbard B, Brown GH, Becker J (2003b) Earth tide forcing of glacier drainage. Geophys Res Lett 30(1):1011. doi: 10.1029/2002GL105303 CrossRefGoogle Scholar
  113. Kuwano O, Nakatani M, Yoshida S (2006) Effect of the flow state on streaming current. Geophys Res Lett 33:L21309. doi: 10.1029/2006GL027712 CrossRefGoogle Scholar
  114. Kuwano O, Nakatani M, Yoshida S (2007) Reply to comment by A. Revil on “Effect of the flow state on streaming current”. Geophys Res Lett 34:L09312. doi: 10.1029/2006GL029136 CrossRefGoogle Scholar
  115. LaBrecque DJ (1991) IP tomography. Expanded Abstracts of the 61st Annual International Meeting, Society of Exploration Geophysicists, Houston, TX, USA, pp 413–416Google Scholar
  116. LaBrecque DJ, Miletto M, Daily WD, Ramirez AL, Owen E (1996) The effects of noise on Occam’s inversion of resistivity tomography data. Geophysics 61:538–548CrossRefGoogle Scholar
  117. Lapenna V, Lorenzo P, Perrone A, Piscitelli S, Rizzo E, Sdao F (2005) 2D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, southern Italy. Geophysics 70(3):11–18CrossRefGoogle Scholar
  118. Le Méhauté A, Crépy G (1983) Introduction to transfer and transport in fractal medium. Solid State Ion 9–10:17–30Google Scholar
  119. Legaz A, Vandemeulebrouck J, Revil A, Kemna A, Hurst AW, Reeves PR (2009) A case study of resistivity and self-potential signatures of hydrothermal instabilities, Inferno Crater Lake, Waimangu, New Zealand. Geophys Res Lett 36:L12306. doi: 10.1029/2009GL037573 CrossRefGoogle Scholar
  120. Leroy P, Revil A (2009) Spectral induced polarization of clays and clay-rocks. J Geophys Res 114:B10202. doi: 10.1029/2008JB006114 CrossRefGoogle Scholar
  121. Leroy P, Revil A, Kemna A, Cosenza P, Gorbani A (2008) Spectral induced polarization of water-saturated packs of glass beads. J Colloid Interface Sci 321(1):103–117CrossRefGoogle Scholar
  122. Lesmes DP, Morgan FD (2001) Dielectrical spectroscopy of sedimentary rocks. J Geophy Res 106(B7):13329–13346CrossRefGoogle Scholar
  123. Linde N, Revil A (2007) Inverting residual self-potential data for redox potentials of contaminant plumes. Geoph Res Lett 34:L14302. doi: 10.1029/2007GL030084 CrossRefGoogle Scholar
  124. Linde N, Jougnot D, Revil A, Matthaï SK, Arora T, Doussan C (2007) Streaming current generation in two-phase flow conditions. Geoph Res Lett 34(3):L03306. doi: 10.1029/2006GL028878 CrossRefGoogle Scholar
  125. Lines LR, Treitel S (1984) Tutorial: a review of least-squares inversion and its application to geophysical problems. Geophys Prospect 32:159–186CrossRefGoogle Scholar
  126. Loke MH, Chambers JE, Ogilvy RD (2006) Inversion of 2D spectral induced polarization imaging data. Geophys Prospect 54:287–301CrossRefGoogle Scholar
  127. Lyklema J (2002) The role of surface conduction in the development of electrokinetics. In: Delgado AV (ed) Interfacial electrokinetics and electrophoresis. Surfactant Sci Ser 106:87-97Google Scholar
  128. Malinverno A, Torres-Verdin C (2000) Bayesian inversion of DC electrical measurements uncertainties for reservoir monitoring. Inverse Probl 16:1343–1356CrossRefGoogle Scholar
  129. Marshall DJ, Madden TR (1959) Induced polarization: a study of its causes. Geophysics 24:790–813CrossRefGoogle Scholar
  130. Matteucci MC (1865) Sur les Courants Electriques de la Terre [On the electrical currents of the earth]. Annal Chimie Physiq 4(4):177–192Google Scholar
  131. McDonald JR (1987) Impedance spectroscopy: emphasizing solid materials and analysis. Wiley, New YorkGoogle Scholar
  132. Meads LN, Bentley LR, Mendoza CA (2003) Application of electrical resistivity imaging to the development of a geologic model for a proposed Edmonton landfill site. Can Geotech J 40:551–558CrossRefGoogle Scholar
  133. Mendonça CA (2008) Forward and inverse self-potential modeling in mineral exploration. Geophysics 73(1):F33–F43CrossRefGoogle Scholar
  134. Merkler G-P, Militzer H, Hötzl H, Armbruster H, Brauns J (1989) Detection of subsurface flow phenomena. Lecture Notes in Earth Sciences, 27. Springer, BerlinCrossRefGoogle Scholar
  135. Miller C, Routh P, Brosten T, McNamara J (2007) Watershed characterization using seasonal time-lapse DC resistivity data, SEG. Expanded Abstr 26(1):1177–1181CrossRefGoogle Scholar
  136. Millett FB (1967) Electromagnetic coupling of collinear dipoles on a uniform halfspace. In: Mining geophysics, vol II. Society of Exploration Geophysicists, Tulsa, OK, pp 401-419Google Scholar
  137. Minsley BJ, Sogade J, Morgan FD (2007a) Three-dimensional source inversion of self-potential data. J Geophys Res 112:B02202. doi: 1029/2006JB004262 CrossRefGoogle Scholar
  138. Minsley BJ, Sogade J, Morgan FD (2007b) Three-dimensional self-potential inversion for subsurface DNAPL contaminant detection at the Savannah River Site, South Carolina. Water Resour Res 43:W04429. doi: 10.1029/2005WR003996 CrossRefGoogle Scholar
  139. Moreau F, Gibert D, Saracco G (1996) Filtering non-stationary geophysical data with orthogonal wavelets. Geophys Res Lett 23:407–410CrossRefGoogle Scholar
  140. Müller K, Vanderborght J, Englert A, Kemna A, Huisman JA, Rings J, Vereecken H (2010) Imaging and characterization of solute transport during two tracer tests in a shallow aquifer using electrical resistivity tomography and multilevel groundwater samplers. Water Resour Res 46:W03502. doi: 10.1029/2008WR007595 CrossRefGoogle Scholar
  141. Naudet V, Revil A (2005) A sandbox experiment to investigate bacteria-mediated redox processes on self-potential signals. Geophys Res Lett 32:L11405. doi: 10.1029/2005GL022735 CrossRefGoogle Scholar
  142. Naudet V, Revil A, Bottero J-Y Bégassat P (2003) Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. Geophys Res Lett 30(21):2091. doi: 10.1029/2003GL018096 CrossRefGoogle Scholar
  143. Naudet V, Revil A, Rizzo E, Bottero J-Y, Bégassat P (2004) Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. HESS 8(1):8–22Google Scholar
  144. Nobes DC (1996) Troubled waters: environmental applications of electrical and electromagnetic methods. Surv Geophys 17:393–454CrossRefGoogle Scholar
  145. Nordsiek S, Weller A (2008) A new approach to fitting induced polarization spectra. Geophysics 73:F235–F245. doi: 10.1190/1.2987412 CrossRefGoogle Scholar
  146. Nourbehecht B (1963) Irreversible thermodynamic effects in inhomogeneous media and their applications in certain geoelectrical problems. PhD Thesis, MIT, Cambridge, USAGoogle Scholar
  147. Ntarlagiannis D, Williams KH, Slater L, Hubbard S (2005a) Low-frequency electrical response to microbial induced sulfide precipitation. J Geophys Res 110:G02009CrossRefGoogle Scholar
  148. Ntarlagiannis D, Yee N, Slater L (2005b) On the low-frequency electrical polarization of bacterial cells in sands. Geophys Res Lett 32:L24402CrossRefGoogle Scholar
  149. Ntarlagiannis D, Atekwana EA, Hill EA, Gorby Y (2007) Microbial nanowires: is the subsurface “hardwired”? Geophys Res Lett 34:L17305. doi: 10.1029/2007GL030426 CrossRefGoogle Scholar
  150. Ntarlagiannis D, Doherty R, Williams KH (2010) Spectral induced polarization signatures of abiotic FeS precipitation. Geophysics 75(4):F127–F133. doi: 10.1190/1.3467759 CrossRefGoogle Scholar
  151. Ohm GS (1827) Die galvanische Kette: mathematisch bearbeitet [The galvanic circuit investigated mathematically]. Kessinger, Berlin, 254 ppGoogle Scholar
  152. Olhoeft GR (1985) Low-frequency electrical properties. Geophysics 50:2492–2503CrossRefGoogle Scholar
  153. Olhoeft GR (1986) Direct detection of hydrocarbon and organic chemicals with ground-penetrating radar and complex resistivity: petroleum, hydrocarbons and organic chemicals in ground water-prevention, detection, and restoration. NWWA/API, Proceedings, Houston, TX, November 1996, pp 284–305Google Scholar
  154. Park SK, Van GP (1991) Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes. Geophysics 56:951–960CrossRefGoogle Scholar
  155. Paul M-K (1965) Direct interpretation of self-potential anomalies caused by inclined sheets of infinite horizontal extensions. Geophysics 30:418–423CrossRefGoogle Scholar
  156. Pellerin L (2002) Applications of electrical and electromagnetic methods for environmental and geotechnical investigations. Surv Geophys 23:101–132CrossRefGoogle Scholar
  157. Pelton WH, Ward SH, Hallof PG, Sill WR, Nelson PH (1978) Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics 43:588–609CrossRefGoogle Scholar
  158. Pelton WH, Sill WR, Smith BD (1983) Interpretation of complex resistivity and dielectrical data, part I. Geophys Trans 29:297–330Google Scholar
  159. Perrier F, Trique M, Lorne B, Avouac J-P, Hautot S, Tarits P (1998) Electrical potential variations associated with yearly lake level variations. Geophys Res Lett 25:1955–1959CrossRefGoogle Scholar
  160. Personna YR, Ntarlagiannis D, Slater L, Yee N, O’Brien M, Hubbard SS (2008) Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations. J Geophys Res 113:G02020CrossRefGoogle Scholar
  161. Petiau G (2000) Second generation of lead-lead chloride electrodes for geophysical applications. Pure Appl Geophys 157:357–382CrossRefGoogle Scholar
  162. Pride S (1994) Governing equations for the coupled electromagnetics and acoustics of porous media. Phys Rev B 50(21):15678–15696CrossRefGoogle Scholar
  163. Pridmore DF, Hohmann GW, Ward SH, Sill WR (1981) An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions. Geophysics 46:1009–1024CrossRefGoogle Scholar
  164. Quincke G (1859) Concerning a new type of electrical current. Annal Physics Chemie (Poggendorff’s Annal, Ser. 2) 107:1–47Google Scholar
  165. Ramirez AL, Nitao JJ, Hanley WG, Aines R, Glaser RE, Sengupta SK, Dyer KM, Hickling TL, Daily WD (2005) Stochastic inversion of electrical resistivity changes using Markov chain Monte Carlo approach. J Geophys Res 110:B02101CrossRefGoogle Scholar
  166. Razilov IA, Dukhin SS (1995) Simultaneous influence of concentration polarization of the diffuse layer and polarization of the Stern layer according to the mechanism of bound counterions at arbitrary magnitudes of the relaxation parameter. Colloid J 57(3):364–371 [translated from Kolloidnyi Zhurnal 57(3):391-399]Google Scholar
  167. Reguera G, McCarthy KD, Metha T, Nicol JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101CrossRefGoogle Scholar
  168. Reguera G, Kevin KP, Nicoll JS, Covalla SF, Wooddard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345–7348CrossRefGoogle Scholar
  169. Reguera G, Pollina RB, Nicols JS, Lovley DR (2007) Possible nonconductive role of Geobacter sulfurreducens pilus nanowires in biofilm formation. J Bacteriol 189(5):2125–2127CrossRefGoogle Scholar
  170. Revil A (1999) Ionic diffusivity, electrical conductivity, membrane and thermoelectrical potentials in colloids and granular porous media: a unified model. J Colloid Interface Sci 212:503–522CrossRefGoogle Scholar
  171. Revil A (2012) Spectral induced polarization of shaly sands: Influence of the electrical double layer. Water Resources Research, 48. doi: 10.1029/2011WR011260
  172. Revil A, Florsch N (2010) Determination of permeability from spectral induced polarization data in granular media. Geophys J Int 181:1480–1498. doi: 10.1111/j.1365-246X.2010.04573.x Google Scholar
  173. Revil A, Jardani A (2010) Stochastic inversion of permeability and dispersivities from time lapse self-potential measurements: a controlled sandbox study. Geophys Res Lett 37:L11404. doi: 10.1029/2010GL043257 CrossRefGoogle Scholar
  174. Revil A, Linde N (2006) Chemico-electromechanical coupling in microporous media. J Colloid Interface Sci 302:682–694CrossRefGoogle Scholar
  175. Revil A, Skold M (2011) Salinity dependence of spectral induced polarization in sands and sandstones. Geophys J Int 187:813–824. doi: 10.1111/j.1365-246X.2011.05181.x CrossRefGoogle Scholar
  176. Revil A, Cathles LM, Losh S, Nunn JA (1998) Electrical conductivity in shaly sands with geophysical applications. J Geophys Res 103(B10):23,925–23,936Google Scholar
  177. Revil A, Ehouarne L, Thyreault E (2001) Tomography of self-potential anomalies of electrochemical nature. Geophys Res Lett 28(23):4363–4366CrossRefGoogle Scholar
  178. Revil A, Hermitte D, Spangenberg E, Cochémé JJ (2002) Electrical properties of zeolitized volcaniclastic materials. J Geophys Res 107(B8):2168. doi: 10.1029/2001JB000599 CrossRefGoogle Scholar
  179. Revil A, Cary L, Fan Q, Finizola A, Trolard F (2005) Self-potential signals associated with preferential ground water flow pathways in a buried paleo-channel. Geophys Res Lett 32:L07401. doi: 10.1029/2004GL022124 CrossRefGoogle Scholar
  180. Revil A, Leroy P, Ghorbani A, Florsch N, Niemeijer AR (2006) Compaction of quartz sands by pressure solution using a Cole-Cole distribution of relaxation times. J Geophys Res 111:B09205. doi: 10.1029/2005JB004151 CrossRefGoogle Scholar
  181. Revil A, Linde N, Cerepi A, Jougnot D, Matthäi S, Finsterle S (2007) Electrokinetic coupling in unsaturated porous media. J Coll Interf Sci 313(1):315–327. doi: 10.1016/j.jcis.2007.03.037 CrossRefGoogle Scholar
  182. Revil A, Mendonça CA, Atekwana E, Kulessa B, Hubbard SS, Bolhen K (2010a) Understanding biogeobatteries: where geophysics meets microbiology. J Geophys Res 115:G00G02. doi: 10.1029/2009JG001065 CrossRefGoogle Scholar
  183. Revil A, Johnson TC, Finizola A (2010b) Three-dimensional resistivity tomography of Vulcan’s forge, Vulcano Island, southern Italy. Geophys Res Lett 37:L15308. doi: 10.1029/2010GL043983 CrossRefGoogle Scholar
  184. Richards K, Revil A, Jardani A, Henderson F, Batzle M, Haas A (2010) Pattern of shallow ground water flow at Mount Princeton Hot Springs, Colorado, using geoelectrical methods. J Volcanol Geotherm Res 198:217–232CrossRefGoogle Scholar
  185. Rijo L (1977) Modelling of electrical and electromagnetic data. PhD Thesis, Univ. of UtahGoogle Scholar
  186. Rijo L (1984) Inversion of three-dimensional resistivity and induced-polarization data. 54th Ann. Int. Mtg., Soc. Expl. Geophys., Tulsa, OK, Expanded Abstracts pp–113–117Google Scholar
  187. Rizzo E, Suski B, Revil A, Straface S, Troisi S (2004) Self-potential signals associated with pumping-tests experiments. J Geophys Res 109:B10203. doi: 10.1029/2004JB003049 CrossRefGoogle Scholar
  188. Rosen LA, Saville DA (1991) Dielectrical spectroscopy of colloidal dispersions: comparisons between experiment and theory. Langmuir 7:36–42CrossRefGoogle Scholar
  189. Rozycki A (2009) Evaluation of the streaming potential effect of piping phenomena using a finite cylinder model. Eng Geol 104:98–108CrossRefGoogle Scholar
  190. Rozycki A, Fonticiella JMR, Cuadra A (2006) Detection and evaluation of horizontal fractures in Earth dams using self-potential method. Eng Geol 82(3):145–153CrossRefGoogle Scholar
  191. Rubin Y, Hubbard S (2005) Hydrogeophysics. Water and Science Technology Library 50, Springer, Houten, The NetherlandsGoogle Scholar
  192. Rust WM (1938) A historical review of electrical prospecting methods. Geophysics 3(1):1–6CrossRefGoogle Scholar
  193. Sasaki Y (1992) Resolution of resistivity tomography inferred from numerical simulation. Geophys Prosp 40:453–463CrossRefGoogle Scholar
  194. Sasaki Y (1994) 3-D resistivity inversion using the finite-element method. Geophysics 59:1839–1848CrossRefGoogle Scholar
  195. Sato M, Mooney HM (1960) The electrochemical mechanism of sulfide self-potentials. Geophysics 25:226–249CrossRefGoogle Scholar
  196. Schlumberger C (1920) Etude sur la prospection électrique du sous-sol [Study on underground electrical prospecting], Gauthier-Villars et Cie, ParisGoogle Scholar
  197. Schlumberger C, Schlumberger M, Leonardon EG (1932) Electrical coring: a method of determining bottom-hole data by electrical measurements. Am Inst Min Eng Tech Pub 462, AIME, Englewood, COGoogle Scholar
  198. Schlumberger C, Schlumberger M, Leonardon EG (1933) A new contribution to subsurface studies by means of electrical measurements in drill holes. Am Inst Min Eng, Tech Pub 503 (also in 1934, Trans 110:159–182), AIME, Englewood, COGoogle Scholar
  199. Schmutz M, Revil A, Vaudelet P, Batzle M, Femenía Viñao P, Werkema DD (2010) Influence of oil saturation upon spectral induced polarization of oil bearing sands. Geophys J Int 183:211–224. doi: 10.1111/j.1365-246X.2010.04751.x CrossRefGoogle Scholar
  200. Schurr JM (1964) On the theory of the dielectrical dispersion of spherical colloidal particles in electrolyte solution. J Phys Chem 68:2407–2413CrossRefGoogle Scholar
  201. Schwarz G (1962) A theory of the low-frequency dielectrical dispersion of colloidal particles in electrolyte solution. J Phys Chem 66:2636–2642CrossRefGoogle Scholar
  202. Seigel HO (1959) Mathematical formulation and type curves for induced polarization. Geophysics 24:547–565CrossRefGoogle Scholar
  203. Seigel H, Nabighian M, Parasnis DS, Vozoff K (2007) The early history of the induced polarization method. Lead Edge 3:312–321CrossRefGoogle Scholar
  204. Sen PN, Goode PA (1992) Influence of temperature on electrical conductivity on shaly sands. Geophysics 57:89–96CrossRefGoogle Scholar
  205. Sheffer MR, Howie JA (2001) Imaging subsurface seepage conditions through the modeling of streaming potential. Proceedings of the 54th Canadian Geotechnical Conference, Calgary, AB, Canada, September, 2001, pp 1094–1101Google Scholar
  206. Sheffer MR, Howie JA (2003) A numerical modelling procedure for the study of the streaming potential phenomenon in embankment dams. Symposium on the Application of Geophysics to Engineering and Environmental Problems, San Antonio, TX, pp 475–487Google Scholar
  207. Sheffer MR, Oldenburg (2007) Three-dimensional modeling of streaming potential. Geophys J Int 169:839–848CrossRefGoogle Scholar
  208. Shilov VN, Dukhin SS (1970) Theory of low-frequency dispersion of dielectrical permittivity in suspensions of spherical colloidal particles due to double-layer polarization. Colloid J 32:245–249Google Scholar
  209. Sill WR (1983) Self-potential modeling from primary flows. Geophysics 48:76–86CrossRefGoogle Scholar
  210. Slater L (2007) Near surface electrical characterization of hydraulic conductivity: from petrophysical properties to aquifer geometries: a review. Surv Geophys 28(2–3):169–197CrossRefGoogle Scholar
  211. Slater L, Lesmes DP (2002) Electrical-hydraulic relationships observed for unconsolidated sediments. Water Resour Res 38:1213–1225CrossRefGoogle Scholar
  212. Slater L, Comas X, Ntarlagiannis D, Moulik MR (2007a) Resistivity-based monitoring of biogenic gases in peat soil. Water Resour Res 43(10):W10430CrossRefGoogle Scholar
  213. Slater L, Ntarlagiannis D, Personna YR, Hubbard SS (2007b) Pore-scale spectral induced polarization signatures associated with FeS biomineral transformations. Geophys Res Lett 34:L21404CrossRefGoogle Scholar
  214. Slater L, Ntarlagiannis D, Yee N, et al. (2008) Electrodic voltages in the presence of dissolved sulfide: implications for monitoring natural microbial activity 73(2):F65–F70Google Scholar
  215. Slob E, Snieder R, Revil A (2010) Retrieving electrical resistivity data from self-potential measurements by cross-correlation. Geophys Res Lett 37:L04308. doi: 10.1029/2009GL042247 CrossRefGoogle Scholar
  216. Smith DL (1986) Application of the pole–dipole resistivity technique to the detection of solution cavities beneath highways. Geophysics 51(3):833–837CrossRefGoogle Scholar
  217. Spies BR (1996) Electrical and electromagnetic borehole measurements: a review. Surv Geophys 17(4):517–556CrossRefGoogle Scholar
  218. Stoll J, Bigalke J, Grabner EW (1995) Electrochemical modeling of self-potential anomalies. Surv Geophys 16(1):107–120CrossRefGoogle Scholar
  219. Straface S, Falico C, Troisi S, Rizzo E, Revil A (2007) Estimating of the transmissivities of a real aquifer using self potential signals associated with a pumping test. Ground Water 45(4):420–428CrossRefGoogle Scholar
  220. Stummer P, Maurer H, Green AG (2004) Experimental design: electrical resistivity data sets that provide optimum subsurface information. Geophysics 69:120–139. doi: 10.1190/1.1649381 CrossRefGoogle Scholar
  221. Sumner JS (1976) Principles of induced polarization for geophysical exploration. Elsevier, AmsterdamGoogle Scholar
  222. Suski B, Revil A, Titov K, Konosavsky P, Dagès C, Voltz M, Huttel O (2006) Monitoring of an infiltration experiment using the self-potential method. Water Resour Res 42:W08418. doi: 10.1029/2005WR004840 CrossRefGoogle Scholar
  223. Suzuki K, Higashi S (2001) Groundwater flow after heavy rain in landslide-slope area from 2-D inversion of resistivity monitoring data. Geophysics 66(3):733–743CrossRefGoogle Scholar
  224. Swan HP (2000) Dielectrical spectroscopy of biological materials and field interactions: the connection with Gerhard Schwarz. Biophys Chem 85:273–278CrossRefGoogle Scholar
  225. Tarasov A, Titov K (2007) Relaxation time distribution from time domain induced polarization measurements. Geophys J Int 170:31–43CrossRefGoogle Scholar
  226. Tezkan B (1999) A review of environmental applications of quasi-stationary electromagnetic techniques. Surv Geophys 20:279–308CrossRefGoogle Scholar
  227. Thomas EC (1976) Determination of QV from membrane potential measurements on shaly sands. Trans Am Inst Min Metall Petr Eng 261:1087–1096Google Scholar
  228. Thorstenson DC (1984) The concept of electron activity and its relation to redox potentials in aqueous geochemical systems. US Geol Surv Open File Rep 84-072, 45 ppGoogle Scholar
  229. Tikhonov AN (1943) On the stability of inverse problems (in Russian). Doklady 39(5):195–198Google Scholar
  230. Timm F, Möller P (2001) The relation between electrical and redox potential: evidence from laboratory and field measurements. J Geochem Explor 72(2):115–128CrossRefGoogle Scholar
  231. Titov K, Komarov V, Tarasov A, Levitski A (2002) Theoretical and experimental study of time domain-induced polarization in water-saturated sands. J Appl Geophys 50:417–433CrossRefGoogle Scholar
  232. Titov K, Kemna A, Tarasov A, Vereecken H (2004) Induced polarization of unsaturated sands determined through time-domain measurements. Vadose Zone J 3:1160–1168Google Scholar
  233. Titov K, Revil A, Konasovsky P, Straface S, Troisi S (2005) Numerical modeling of self-potential signals associated with a pumping test experiment. Geophys J Int 162:641–650CrossRefGoogle Scholar
  234. Tong M, Li L, Wang W, Jiang Y (2006a) Determining capillary-pressure curve, pore size distribution and permeability from induced polarization of shaley sand. Geophysics 71:N33–N40CrossRefGoogle Scholar
  235. Tong M, Li L, Wang W, Jiang Y (2006b) A time-domain induced-polarization method for estimating permeability in a shaly sand reservoir. Geophys Prospect 54:623–631CrossRefGoogle Scholar
  236. Tsourlos PI (1995) Modeling, interpretation and inversion of multielectrode resistivity survey data. PhD Thesis, University of York, UKGoogle Scholar
  237. Ullrich B, Günther T, Rücker C (2007) Electrical resistivity tomography methods for archaeological prospection. In: Proceedings of the 35th International Conference on Computer Applications and Quantitative Methods in Archaeology (CAA). Berlin, Germany, April 26, 2007Google Scholar
  238. Ulrich C, Slater LD (2004) Induced polarization measurements on unsaturated, unconsolidated sands. Geophysics 69(3):762–771CrossRefGoogle Scholar
  239. Vanderborght J, Kemna A, Hardelauf H, Vereecken H (2005) Potential of electrical resistivity tomography to infer aquifer transport characteristics from tracer studies: a synthetic case study. Water Resour Res 41:W06013. doi: 10.1029/2004WR003774 CrossRefGoogle Scholar
  240. Vanhala H (1997) Mapping oil-contaminated sand and till with the spectral induced polarization (SIP) method. Geophys Prospect 45:303–326CrossRefGoogle Scholar
  241. Vanhala H, Soininen H, Kukkonen I (1992) Detecting organic chemical contaminants by spectral-induced polarization method in glacial till environment. Geophysics 57:1014–1017CrossRefGoogle Scholar
  242. Vaudelet P, Schmutz M, Revil A, Franceschi M, Bégassat P (2011a) Induced polarization signature of the presence of copper in saturated sands. Water Resour Res 47:W02526. doi: 10.1029/2010WR009310 CrossRefGoogle Scholar
  243. Vaudelet P, Revil A, Schmutz M, Franceschi M, Bégassat P (2011b) Changes in induced polarization associated with the sorption of sodium, lead, and zinc on silica sands. J Colloid Interface Sci 360:739–752CrossRefGoogle Scholar
  244. Vinegar HJ, Waxman MH (1982) Method and apparatus for determining shaliness and oil saturations in earth formations using induced polarization in the frequency domain. US Patent no. 4,359,687, Shell, Houston, TXGoogle Scholar
  245. Vinegar HJ, Waxman MH (1984) Induced polarization of shaly sands. Geophysics 49:1267–1287CrossRefGoogle Scholar
  246. Wait JR (1959) The variable-frequency method. In: Wait JR (ed) Overvoltage research and geophysical applications. Pergamon, New York, pp 29–49Google Scholar
  247. Ward S (1990) Resistivity and induced polarization methods. Investigations in Geophysics no. 5. In: Ward S (ed) Geotechnical and environmental geophysics I. SEG, Tulsa, OK, pp 147–189CrossRefGoogle Scholar
  248. Waxman MH, Smits LJM (1968) Electrical conductivities in oil-bearing sands. Soc Pet Eng J 8:107–122Google Scholar
  249. Waxman MH, Thomas EC (1974) Electrical conductivities in shaly sands: part 1—the relation between hydrocarbon saturation and resistivity index; part 2—the temperature coefficient of electrical conductivity. J Pet Technol 26:213–225Google Scholar
  250. Weller A, Seichter M, Kampke A (1996) Induced-polarization modelling using complex electrical conductivities. Geophys J Int 127:387–398CrossRefGoogle Scholar
  251. Weller A, Brune S, Hennig T, Kansy A (2000) Spectral induced polarization at a medieval smelting site. In: Proceedings of the 6th Meeting, Environmental and Engineering. Geophysics (EEGS-ES) EL11, Bochum, Germany, September 2000Google Scholar
  252. Wenner F (1912) The four-terminal conductor and the Thomson Bridge. US Bur Standards Bull 8:559–610Google Scholar
  253. Wenner F (1915) A method of measuring earth resistivity. US Bur Standards Bull 12:469–478Google Scholar
  254. Williams KH, Ntarlagiannis D, Slater LD, Dohnalkova A, Hubbard SS, Banfield JF (2005) Geophysical imaging of stimulated microbial biomineralization. Environ Sci Technol 39:7592–7600CrossRefGoogle Scholar
  255. Williams KH, Kemna A, Wilkins MJ, Druhan J, Arntzen E, N’Guessan AL, Long PE, Hubbard SS, Banfield JF (2009) Geophysical monitoring of coupled microbial and geochemical processes during stimulated subsurface bioremediation. Environ Sci Technol 43:6717–6723. doi: 10.1021/es900855j CrossRefGoogle Scholar
  256. Williams KH, N’Guessan AL, Druhan J, Long PE, Hubbard SS, Lovley DR, Banfield JF (2010) Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer. J Geophys Res Biogeosci 115:G00G05. doi: 10.1029/2009JG001142 CrossRefGoogle Scholar
  257. Wilt MJ, Corwin RF (1989) Numerical modeling of self-potential anomalies due to leaky dams: model and field examples. In: Merkler GP (ed) Detection of subsurface flow phenomena. Lecture Notes in Earth Sciences, 27, pp 73–89, Springer, BerlinGoogle Scholar
  258. Wishart DN, Slater LD, Gates AE (2006) Self-potential improves characterization of hydraulically-active fractures from azimuthal geoelectrical measurements. Geophys Res Lett 33:L17314. doi: 10.1029/2006GL027092 CrossRefGoogle Scholar
  259. Wong PZ (1987) Fractal surface in porous media. In: Banavar JR, Koplik J, Winkler KW (eds) Physics and chemistry of porous media, vol 2. Conference Proceedings Am Inst Phys 154, AIP, College Park, MD, pp 304–318Google Scholar
  260. Woodruff WF, Revil A, Jardani A, Nummedal D, Cumella S (2010) Stochastic inverse modeling of self-potential data in boreholes. Geophys J Int 183:748–764. doi: 10.1111/j.1365-246X.2010.04770.x CrossRefGoogle Scholar
  261. Xu S-Z, Zhao S, Ni Y (1998) A boundary element method for 2-D DC resistivity modeling with a point current source. Geophysics 63:399–404CrossRefGoogle Scholar
  262. Yeh TCJ, Liu S, Glass RJ, Baker K, Brainard JR, Alumbaugh D, LaBrecque D (2002) A geostatistically based inverse model for electrical resistivity surveys and its applications to vadose zone hydrology. Water Resour Res 38(12):1278CrossRefGoogle Scholar
  263. Yoon JR, Lee K, Kwon BD, Han WS (2003) Geoelectrical surveys of the Nanjido waste landfill in Seoul, Korea. Environ Geol 43:654–666Google Scholar
  264. Yungul SH (1950) Interpretation of spontaneous polarization anomalies caused by spheroidal ore bodies. Geophysics 15:237–246CrossRefGoogle Scholar
  265. Zhang J, Mackie RL, Madden TR (1995) 3-D resistivity forward modeling and inversion using conjugate gradients. Geophysics 60:1313–1325CrossRefGoogle Scholar
  266. Zhou B, Greenhalgh SA (2000) Cross-hole resistivity tomography using different electrode configurations. Geophys Prospect 48:887–912CrossRefGoogle Scholar
  267. Zukoski CF, Saville DA (1986a) The interpretation of electrokinetic measurements using a dynamic model of the Stern layer: I, the dynamic model. J Colloid Interface Sci 114(1):32–44CrossRefGoogle Scholar
  268. Zukoski CF, Saville DA (1986b) The Interpretation of electrokinetic measurements using a dynamic model of the Stern layer: II, comparisons between theory and experiments. J Colloid Interface Sci 114(1):45–53CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Colorado School of Mines, Department of Geophysics, Green CenterGoldenUSA
  2. 2.LGIT, UMR 5559, CNRS, Equipe VolcanUniversité de SavoieLe Bourget-du-lac CedexFrance
  3. 3.Pacific Northwest National LaboratoryRichlandUSA
  4. 4.Department of Geodynamics and GeophysicsUniversity of BonnBonnGermany

Personalised recommendations