Advertisement

Hydrogeology Journal

, Volume 20, Issue 1, pp 185–200 | Cite as

Use of hierarchical cluster analysis to assess the representativeness of a baseline groundwater quality monitoring network: comparison of New Zealand’s national and regional groundwater monitoring programs

  • Christopher J. DaughneyEmail author
  • Matthias Raiber
  • Magali Moreau-Fournier
  • Uwe Morgenstern
  • Rob van der Raaij
Report

Abstract

Baseline monitoring of groundwater quality aims to characterize the ambient condition of the resource and identify spatial or temporal trends. Sites comprising any baseline monitoring network must be selected to provide a representative perspective of groundwater quality across the aquifer(s) of interest. Hierarchical cluster analysis (HCA) has been used as a means of assessing the representativeness of a groundwater quality monitoring network, using example datasets from New Zealand. HCA allows New Zealand’s national and regional monitoring networks to be compared in terms of the number of water-quality categories identified in each network, the hydrochemistry at the centroids of these water-quality categories, the proportions of monitoring sites assigned to each water-quality category, and the range of concentrations for each analyte within each water-quality category. Through the HCA approach, the National Groundwater Monitoring Programme (117 sites) is shown to provide a highly representative perspective of groundwater quality across New Zealand, relative to the amalgamated regional monitoring networks operated by 15 different regional authorities (680 sites have sufficient data for inclusion in HCA). This methodology can be applied to evaluate the representativeness of any subset of monitoring sites taken from a larger network.

Keywords

Groundwater monitoring Groundwater statistics Hydrochemistry New Zealand 

Utilisation d’analyses en réseau hiérarchisé pour évaluer la représentativité d’un référentiel de suivi de qualité de nappe: Comparaison des programmes nationaux et régionaux de surveillance de nappe en Nouvelle Zélande

Résumé

Un référentiel de suivi qualitatif de nappe veut caractériser la ressource dans les conditions locales et identifier ses variations spatiale et temporelle. Les sites de tout référentiel de réseau de surveillance doivent être sélectionnés pour fournir une vue d’ensemble représentative de la qualité de nappe du ou des aquifères concernés. Un classement par groupe hiérarchisé (HCA) a été utilisé comme moyen d’évaluation de la représentativité d’un réseau de surveillance qualitatif de nappe, utilisant des bases de données de référence Néo-Zélandaises. HCA permet de comparer les réseaux de surveillance nationaux et régionaux Néo-zélandais en termes de qualités d’eau identifiées dans chaque réseau, d’hydrochimie au barycentre de ces qualités d’eau, et d’échelle des concentrations de chaque composant dans chaque catégorie d’eau. A travers l’approche HCA, le National Groundwater Monitoring Programme (117 sites) est conçu pour fournir une perspective hautement représentative de la qualité de l’eau de nappe en Nouvelle Zélande, en relation avec les réseaux régionaux de contrôle intégrés gérés par 15 autorités régionales différentes (680 sites ont suffisamment de données pour être inclus dans le HCA). Cette méthodologie peut être appliquée pour évaluer la représentativité de tout substitut de sites de surveillance pris dans un réseau élargi.

Uso de un análisis de clusters jerárquicos para evaluar la representatividad de una línea de base de las redes de monitoreo de calidad de agua subterránea: Comparación de los programas de monitoreo de agua subterránea nacional y regional en Nueva Zelandia

Resumen

El monitoreo de la calidad de agua subterránea a partir de una línea de base apunta a caracterizar la condición ambiental del recurso e identifica tendencias espaciales y temporales. Los sitios que comprenden cualquier red de monitoreo de línea de base deben ser seleccionados para proveer una perspectiva representativa de la calidad del agua subterránea a través del o los acuíferos de interés. Se utilizó un análisis de clúster jerárquicos (HCA) como un medio para evaluar la representatividad de la red de monitoreo de calidad de agua subterránea, usando como ejemplo bases de datos de Nueva Zelandia. HCA permite comparar las redes nacional y regional de monitoreo de Nueva Zelandia en términos de números de categorías de calidad de agua identificadas en cada red, la hidroquímica en los centroides de estas categorías de calidad del agua, la proporción de sitios de monitoreo asignados para cada categoría de calidad de agua, y el intervalo de concentraciones para cada analito dentro de cada categoría de calidad agua. A través del enfoque del HCA, el Programa de Monitoreo Nacional de Agua subterránea (117 sitios) demuestra proveer una perspectiva altamente representativa de la calidad del agua subterránea a través de Nueva Zelandia, en relación con las redes regionales de monitoreo amalgamadas operadas por 15 autoridades regionales distintas (680 sitios tienen datos suficientes para la inclusión en HCA) Esta metodología puede ser aplicada para evaluar la representatividad de cualquier subconjunto de sitios de monitoreo tomados a partir de una red más grande.

Uso da análise grupal hierárquica para avaliação da representatividade de uma rede de monitorização da qualidade de base da água subterrânea: Comparação dos programas de monitorização nacional e regionais na Nova Zelândia

Resumo

A monitorização da qualidade de base das águas subterrâneas tem por objectivo caracterizar as condições ambientais do recurso e identificar tendências espaciais e temporais. Os locais que integram qualquer rede de monitorização de base devem ser seleccionados de modo a providenciar uma perspectiva representativa da qualidade da água subterrânea ao longo do(s) aquífero(s) que interessem. Foi usada análise grupal hierárquica (HCA) como meio de avaliar a representatividade de uma rede de monitorização da qualidade de águas subterrâneas, utilizando como exemplo conjuntos de dados da Nova Zelândia. A HCA permite que as redes de monitorização nacional e regionais da Nova Zelândia possam ser comparadas em termos do número de categorias de qualidade da água identificadas em cada rede, da hidroquímica nos centróides destas categorias de qualidade das águas, das proporções dos locais monitorizados atribuídos a cada categoria de qualidade da água e da gama de concentrações para cada parâmetro analítico dentro da cada categoria de água. Através da abordagem da HCA, o Programa Nacional de Monitorização de Águas Subterrâneas (117 locais) demonstra fornecer uma perspectiva altamente representativa da qualidade da água subterrânea em toda a Nova Zelândia em relação ao amalgamento de todas as redes regionais operadas por 15 entidades regionais distintas (680 locais têm dados suficientes para a inclusão na HCA). Esta metodologia pode ser aplicada na avaliação da representatividade de qualquer subconjunto de locais de monitorização tomado a partir de uma rede maior.

Notes

Acknowledgements

The authors thank personnel from New Zealand regional councils for assistance with sample collection and for provision of SOE data. This research was funded by the New Zealand Foundation for Research, Science and Technology (Contract C05X0906). Dr. I. Cartwright, Dr. M. Rosen and Associate Editor Dr. W. Alley are thanked for helpful reviews that improved this manuscript.

References

  1. Andrivecic R, Foufoula-Georgiou E (1991) A transfer function approach to sampling network design for groundwater contamination. Water Resour Res 27:2759–2769CrossRefGoogle Scholar
  2. Broers HP, van der Grift B (2004) Regional monitoring of temporal changes in groundwater quality. J Hydrol 296:192–220CrossRefGoogle Scholar
  3. Close ME, Tod JL, Tod GJ (1995) Effect of recharge variations on regional groundwater quality in mid-Canterbury, New Zealand. J Hydrol (NZ) 33:1–16Google Scholar
  4. Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353:294–313CrossRefGoogle Scholar
  5. Daughney CJ (2003) Iron and manganese in New Zealand’s groundwater. J Hydrol (NZ) 42:11–26Google Scholar
  6. Daughney C, Randall M (2009) National groundwater quality indicators update: state and trends 1995–2008. www.mfe.govt.nz/publications/ser/groundwater-quality-trends-2008. Cited August 2010
  7. Daughney CJ, Reeves R (2005) Definition of hydrochemical facies in the New Zealand National Groundwater Monitoring Programme. J Hydrol (NZ) 44:105–130Google Scholar
  8. Daughney CJ, Reeves RR (2006) Analysis of temporal trends in New Zealand’s groundwater quality based on data from the National Groundwater Monitoring Programme. J Hydrol (NZ) 45:41–62Google Scholar
  9. Daughney C, Wall M (2007) Groundwater quality in New Zealand: state and trends 1995–2006. www.mfe.govt.nz/publications/ser/groundwater-quality-trends-aug07/index.html. Cited August 2010
  10. Daughney CJ, Baker T, Jones A, Hanson C, Davidson P, Thompson M, Reeves RR, Zemansky GM (2007) Comparison of sampling methods for state of the environment monitoring in New Zealand. J Hydrol (NZ) 46:19–31Google Scholar
  11. Daughney CJ, Morgenstern U, van der Raaij R, Reeves RR (2010) Discriminant analysis for estimation of groundwater age from hydrochemistry and well construction: application to New Zealand aquifers. Hydrogeol J 18:417–428CrossRefGoogle Scholar
  12. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  13. Di HJ, Cameron KC, Bidwell VJ, Morgan MJ, Hanson C (2005) A pilot regional scale model of land use impacts on groundwater quality. Manag Env Qual 16:220–234CrossRefGoogle Scholar
  14. Griffioen J, Passier H, Klein J (2008) Comparison of selection methods to deduce natural background levels for groundwater units. Env Sci Tech 42:4863–4869CrossRefGoogle Scholar
  15. Güler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474CrossRefGoogle Scholar
  16. Heaton THE, Vogel JC (1981) “Excess air” in groundwater. J Hydrol 50:201–216CrossRefGoogle Scholar
  17. Helsel DR, Cohn TA (1988) Estimation of descriptive statistics for multiply censored water quality data. Water Resour Res 24:1997–2004CrossRefGoogle Scholar
  18. Jousman G, Roelofsen FJ (2004) World-wide inventory on groundwater monitoring. International Groundwater Resources Assessment Centre Report GP 2004–1. www.igrac.net/publications/331. Cited August 2010
  19. Koh D-C, Chae G-T, Yoon Y-Y, Kang B-R, Koh G-W, Park K-H (2009) Baseline geochemical characteristics of groundwater in the mountainous area of Jeju Island, South Korea: implications for degree of mineralization and nitrate contamination. J Hydrol 376:81–93CrossRefGoogle Scholar
  20. Lambrakis N, Antonakos A, Panagopoulis G (2004) The use of multicomponent statistical analysis in hydrogeological environmental research. Water Res 38:1862–1872CrossRefGoogle Scholar
  21. Lee Y-M, Ellis JH (1997) On the equivalence of kriging and maximum entropy estimators. Math Geol 29:131–152CrossRefGoogle Scholar
  22. Loaiciga HA, Charbeneau RJ, Everett LG, Fogg GE, Hobbs BF, Rouhani S (1992) Review of ground-water quality monitoring network design. J Hydraul Eng 118:11–37CrossRefGoogle Scholar
  23. Madison RJ, Brunett JO (1985) Overview of the occurrence of nitrate in groundwater of the United States. In: National Water Summary 1984: hydrologic events, selected water-quality trends, and groundwater resources. US Geol Surv Water Suppl Pap 2275, pp 93–105Google Scholar
  24. Mogheir Y, de Lima JLMP, Singh VP (2003) Assessment of spatial structure of groundwater quality variables based on the entropy theory. Hydrol Earth Syst Sci 7:707–721CrossRefGoogle Scholar
  25. Moreau M, Shand P, Wilton N, Brown S, Allen D (2004) Baseline Report Series 12: The Devonian Sandstone aquifer of South Wales and Herefordshire. British Geological Survey Report CR/04/185 N, BGS, Keyworth, UKGoogle Scholar
  26. New Zealand Ministry for the Environment (2006) A national protocol for state of the environment groundwater sampling in New Zealand. Report ME781, Ministry for the Environment, Wellington, New Zealand. www.mfe.govt.nz/publications/water/national-protocol-groundwater-dec06/index.html. Cited September 2010
  27. Reijnders HFR, van Drecht G, Prins HF, Boumans LJM (1998) The quality of groundwater in the Netherlands. J Hydrol 207:179–188CrossRefGoogle Scholar
  28. Reimann C, Filzmoser P, Garrett R (2005) Background and threshold: critical comparison of methods of determination. Sci Total Env 346:1–16CrossRefGoogle Scholar
  29. Reimann C, Garrett RG (2005) Geochemical background: concept and reality. Sci Total Env 350:12–27CrossRefGoogle Scholar
  30. Riley JA, Steinhorst RK, Winter GV, Williams RE (1990) Statistical analysis of the hydrochemistry of ground waters in Columbia River Basalts. J Hydrol 119:245–262CrossRefGoogle Scholar
  31. Rosen MR (1997) The national groundwater monitoring network (NGMP): structure, implementation and preliminary results. Science report 97/26, Institute of Geological and Nuclear Sciences, Lower Hutt, New ZealandGoogle Scholar
  32. Rosen MR (1999) The importance of long-term, seasonal monitoring of groundwater wells in the New Zealand National Groundwater Monitoring Programme (NGMP). J Hydrol (NZ) 38:145–169Google Scholar
  33. Rosen MR (2001) Hydrochemistry of New Zealand’s aquifers. In: Rosen MR, White PA (eds) Groundwaters of New Zealand. New Zealand Hydrological Society, Wellington, New Zealand, pp 77–110Google Scholar
  34. Rosen MR, Cameron SG, Taylor CB, Reeves RR (1999) New Zealand guidelines for the collection of groundwater samples for chemical and isotopic analyses. Science report 99/9, Institute of Geological and Nuclear Sciences, Lower Hutt, New ZealandGoogle Scholar
  35. Stewart M, Morgenstern U (2001) Age and source of groundwater from isotope tracers. In: Rosen MR, White PA (eds) Groundwaters of New Zealand. New Zealand Hydrological Society, Wellington, New Zealand, pp 161–183Google Scholar
  36. Suk H, Lee K-K (1999) Characterization of a ground water hydrochemical system through multivariate analysis: clustering into ground water zones. Ground Water 37:358–366CrossRefGoogle Scholar
  37. Taylor CB, Evans CM (1999) Isotopic indicators for groundwater hydrology in Taranaki, New Zealand. J Hydrol NZ 38:237–270Google Scholar
  38. Taylor CB, Brown LJ, Cunliffe JJ, Davidson PW (1992) Environmental tritium and 18O applied in a hydrological study of the Wairau Plain and its contributing mountain catchments, Marlborough, New Zealand. J Hydrol 138:269–319CrossRefGoogle Scholar
  39. Taylor CB, Wilson DD, Brown LJ, Stewart MK, Burden RJ, Brailsford GW (1989) Sources and flow of north Canterbury plains groundwater, New Zealand. J Hydrol 106:311–340CrossRefGoogle Scholar
  40. van der Raaij R (2008) Use of stable isotopes and excess air to determine recharge source of groundwater. Proc. Annu. Conf. NZ Hydrol. Soc., 74, New Zealand Hydrological Society, Wellington, New ZealandGoogle Scholar
  41. Wagner BJ (1995) Sampling design methods for groundwater modeling under uncertainty. Water Resour Res 31:2581–2591CrossRefGoogle Scholar
  42. White PA (2001) Groundwater resources in New Zealand. In: Rosen MR, White PA (eds) Groundwaters of New Zealand. New Zealand Hydrological Society, Wellington, New Zealand, pp 47–75Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Christopher J. Daughney
    • 1
    Email author
  • Matthias Raiber
    • 2
  • Magali Moreau-Fournier
    • 1
  • Uwe Morgenstern
    • 1
  • Rob van der Raaij
    • 1
  1. 1.GNS ScienceLower HuttNew Zealand
  2. 2. Biogeosciences, Faculty of Science & TechnologyQueensland University of Technology and National Centre for Groundwater Research and TrainingBrisbaneAustralia

Personalised recommendations