Hydrogeology Journal

, Volume 20, Issue 1, pp 27–43 | Cite as

Hydrogeology of the vicinity of Homestake mine, South Dakota, USA

  • Larry C. Murdoch
  • Leonid N. Germanovich
  • Herb Wang
  • T. C. Onstott
  • Derek Elsworth
  • Larry Stetler
  • David Boutt
Paper

Abstract

The former Homestake mine in South Dakota (USA) cuts fractured metamorphic rock over a region several km2 in plan, and plunges to the SE to a depth of 2.4 km. Numerical simulations of the development and dewatering of the mine workings are based on idealizing the mine-workings system as two overlapping continua, one representing the open drifts and the other representing the host rock with hydrologic properties that vary with effective stress. Equating macroscopic hydrologic properties with characteristics of deformable fractures allows the number of parameters to be reduced, and it provides a physically based justification for changes in properties with depth. The simulations explain important observations, including the co-existence of shallow and deep flow systems, the total dewatering flow rate, the spatial distribution of in-flow, and the magnitude of porosity in the mine workings. The analysis indicates that a deep flow system induced by ~125 years of mining is contained within a surface-truncated ellipsoid roughly 8 km by 4 km in plan view and 5.5 km deep with its long-axis aligned to the strike of the workings. Groundwater flow into the southern side of the workings is characterized by short travel times from the ground surface, whereas flow into the northern side and at depth consists of old water removed from storage.

Keywords

Groundwater flow Subsidence Crystalline rocks Fractured rocks USA 

Hydrogéologie de l’encaissant de l’ancienne Homestake mine, Sud Dakota, USA

Résumé

L’ancienne Homestake mine, Sud Dakota (USA), recoupe une roche métamorphique fracturée s’étendant sur une surface de plusieurs km2, plongeant au SE à une profondeur de 2.4 km. Les simulations numériques du développement et du dénoyage des travaux miniers sont basés sur une figuration idéale du système, le schématisant comme deux continua chevauchants, l’un représentant les milieux dépilés, l’autre représentant la roche encaissante avec des propriétés hydrologiques variant selon la tension effective. L’équivalence des propriétés macroscopiques hydrologiques et des caractéristiques de fractures déformables permet de réduire le nombre de paramètres et fournit une base physique justifiant les changements de propriétés avec la profondeur. Les simulations expliquent des observations remarquables, incluant la coexistence de systèmes de flux profonds et superficiels, le flux total de dénoyage, la distribution spatiale de l’ennoyage et le volume de porosité dans les travaux miniers. L’analyse indique qu’un système de flux profond induit par environ 125 années d’exploitation est contenu à l’intérieur d’un ellipsoïde tronqué d’environ 8 km × 4 km en projection horizontale et 5.5 km en souterrain avec son axe principal dirigé suivant le pendage des travaux. Le flux d’eau souterraine dans la partie Sud des travaux est caractérisé par des temps de transfert courts depuis la surface du sol, alors que du côté Nord et en profondeur il mobilise de l’eau d’accumulation ancienne.

Hidrogeología de las vecindades de la antigua mina Homestake, Dakota del Sur, EEUU

Resumen

La antigua mina Homestake en Dakota del Sur (EEUU) corta rocas metamórficas fracturadas sobre una región de estudio de varios km2, y se hunde hacia el SE a una profundidad de 2.4 km. Las simulaciones numéricas del desarrollo y drenaje de los laboreos mineros se basan en la idealización de los sistemas de laboreos como la superposición de dos continuos, uno que representa las labores abiertas y el otro que representa a la roca hospedante con propiedades hidrológicas que varían con la tensión efectiva. La equiparación de las propiedades hidrológicas macroscópicas con las características de las fracturas deformables permite que el número de parámetros sea reducido, y proporciona una justificación basada físicamente para los cambios de las propiedades con la profundidad. La simulación explica observaciones importantes, incluyendo la coexistencia de sistemas de flujos someros y profundos, el ritmo del flujo total de drenaje, la distribución espacial del flujo entrante, y la magnitud de la porosidad en los laboreos de la mina. El análisis indica que un sistema de flujo profundo inducido por 125 años de minería está contenido dentro de un elipsoide truncado en superficie de aproximadamente 8 km por 4 km en la vista en planta y 5.5 km de profundidad con su eje largo alineado al rumbo de los laboreos. El flujo de agua subterránea hacia el lado sur de los laboreos está caracterizado por tiempos de tránsito cortos a partir de la superficie del terreno, mientras que el flujo hacia el lado norte y en profundidad consiste de agua vieja removida del almacenamiento.

美国南达科他州前Homestake 矿附近的水文地质条件

摘要

美国南达科他州的前Homestake矿切割了数平方公里区域范围内的破碎的变质岩, 该变质岩向东南倾伏至2.4km深度处。本次井巷的开采和排水数值模拟假设围岩是均一、各向异性、双孔双渗透率连续体模型, 且其水文地质特征随有效应力变化。将宏观水文地质条件和变化裂隙的性质等同, 能减少参数的数量, 并能为随深度变化的性质提供基于物理性质的调整。模拟解释了重要的观测现象, 包括浅部和深部地下水流动系统的共存, 总排水速率, 内部水流和矿山巷道中孔隙度大小的空间分布。分析表明由125年采矿造成的深部地下水流动系统位于一个平面视图看面积约为8km×4km面积, 深度为5.5km的椭球体中, 且其短轴方向与巷道的走向一致。巷道南部的地下水流是来自地表的年龄较轻的水, 而补给到北部一定深度的水则是来自于储层中的老水。

Hidrogeologia na proximidade da antiga mina de Homestake, Dakota do Sul, EUA

Resumo

A antiga mina de Homestake, em Dakota do Sul (EUA), encontra-se instalada em rochas metamórficas fracturadas, numa área de vários km2, e inclina para SE até uma profundidade de 2.4 km. Simulações numéricas da exploração e drenagem da mina baseiam-se na idealização de um sistema de funcionamento da mina como dois meios sobrepostos contínuos, um representando as galerias abertas e outro representando a rocha hospedeira, com propriedades hidrológicas que variam com a tensão efectiva. A comparação das propriedades hidrológicas macroscópicas com as características das fracturas deformáveis permite a redução do número de parâmetros e proporciona uma justificação fisicamente fundamentada para as alterações das propriedades em profundidade. As simulações explicam observações importantes, tais como a coexistência de sistemas de fluxo de pequena e grande profundidade, a velocidade do fluxo da drenagem, a distribuição espacial das entradas de água e a magnitude da porosidade nos trabalhos mineiros. A análise revela que existe um sistema de fluxo profundo induzido por cerca de 125 anos de exploração mineira, que se encontra confinado dentro de um elipsóide truncado à superfície, com uma área em planta de cerca de 8 por 4 km e atingindo 5.5 km de profundidade, com o seu eixo longo alinhado com a orientação da exploração da mina. A entrada de água subterrânea no lado sul da mina é caracterizada por tempos de trânsito curtos a partir da superfície, enquanto a entrada pelo lado norte e em profundidade provém de água antiga removida do armazenamento.

Notes

Acknowledgements

We appreciate the support from the National Science Foundation under grants EAR- 0809820, EAR 0900163, CMMI 0919497, EAR 1036985, EAR 0969053 and EAR 0919357.

References

  1. Anderson MP, Woessner WW (1992) Applied groundwater modeling. Academic, San Diego, CA, 381 ppGoogle Scholar
  2. Baghbanan A, Jing L (2008) Stress effects on permeability in a fracture rock mass with correlated fracture length and aperture. Int J Rock Mech Min Sci 45:1320–1334CrossRefGoogle Scholar
  3. Bai M, Elsworth D (2000) Coupled processes in subsurface deformation, flow and transport. American Society Civil Engineers Press, Reston, VA, 334 ppGoogle Scholar
  4. Bandis SC, Barton NR (1983) Fundamentals of rock joint deformation. Int J Rock Mech Min Sci Geomech Abstr 20:249–268CrossRefGoogle Scholar
  5. Barenblatt GI, Zheltov IP, Kochina IN (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J Appl Math 24:1286–1303Google Scholar
  6. Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New York, 569 ppGoogle Scholar
  7. Biot MA (1941) General theory of three dimensional consolidation. J Appl Phys 12:155–164CrossRefGoogle Scholar
  8. Caddey SW, Bachman RL, Otto RP (1990) "15 Ledge ore discovery, Homestake Mine, Lead, South Dakota," Proceedings of the Fourth Western Regional Conference on Precious Metals and the Environment. Lead, SD, 19–22 Sept 1990, pp 405–423Google Scholar
  9. Caddey SW, Bachman RL, Campbell TJ, Reid RR, Otto RP (1991) The Homestake Gold Mine: an early Proterozoic iron-formation-hosted gold deposit, Lawrence County, South Dakota. US Geol Surv Bull 1857-J, 67 ppGoogle Scholar
  10. Carter JM, Driscoll DG, Williamson JE, Lindquist VA (2002) Atlas of water resources in the Black Hills Area, South Dakota. US Geol Surv Hydrol Invest Atlas HA-747, 120 pp. http://pubs.usgs.gov/ha/ha747/. Cited August 2011
  11. Colwell FS, Onstott TC, Delwiche ME, Chandler D, Fredrickson JK, Yao Q-J, McKinley JP, Boone DR, Griffiths R, Phelps TJ, Ringelberg D, White DC, LaFreniere L, Balkwill D, Lehman RM, Konisky J, Long PE (1997) Microorganisms from deep, high temperature sandstones: constraints on microbial colonization. FEMS Microbiol Rev 20:425–435CrossRefGoogle Scholar
  12. Davis AD, Webb CJ, Beaver FW (2003) Hydrology of the proposed national undergrounds science laboratory at the Homestake Mine in Lead, South Dakota, 2003 SME Annual Meeting, Cincinnati, OH, 24–26 Feb 2003, 4 ppGoogle Scholar
  13. Davis A, Roggenthen W, Stetler L, Hladysz Z, Johnson C (2009) Post closure flooding of the Homestake Mine at Lead, South Dakota. Mining Eng 61(3):43–47Google Scholar
  14. Detournay E, Cheng AH-D (1993) Fundamentals of poroelasticity. In: Hudson JA (ed) Comprehensive rock engineering: principles, practice, projects. V. 2. Pergamon, Oxford, UK, pp 113–171Google Scholar
  15. DeWitt ED, Redden JA, Wilson AB, Buscher D (19986) Mineral resource potential and geology of the Black Hills National Forest, South Dakota and Wyoming. US Geol Surv 1580, 135 ppGoogle Scholar
  16. Doe TW, Long JSC, Endo HK, Wilson CR (1982) Approaches to evaluate the permeability and porosity of fractured rock masses. Proceedings of the 23rd U.S. Rock Mechanics Symposium, Berkeley, CA, August 1982, pp 31–37Google Scholar
  17. Domenico PA, Mifflin MD (1965) Water from low-permeability sediments and land subsidence. Water Resour Res 1(4):563–576CrossRefGoogle Scholar
  18. Driscoll DG, Carter JM (2001) Hydrologic conditions and budgets for the Black Hills of South Dakota, through water year 1998. US Geol Surv Water Resour Invest Rep, 143 ppGoogle Scholar
  19. Ekendahl S, O’Neill A, Thomsson E, Pedersen K (2003) Characterisation of yeasts isolated from deep igneous rock aquifers of the Fennoscandian shield. Microb Ecol 46:416–428CrossRefGoogle Scholar
  20. Elsworth D, Bai M (1992) Flow-deformation response of dual porosity media. J Geotech Eng Div ASCE 118(1):107–124CrossRefGoogle Scholar
  21. Fielder M (1970) The treasure of Homestake gold. North Plains, Aberdeen, SD, 478 ppGoogle Scholar
  22. Germanovich LN, Dyskin AV (1994) Virial expansions in problems of effective characteristics. Part I. General concepts. Mechanics of composite materials 30(2):157–167Google Scholar
  23. Gihring TM, Moser DP, Lin L-H, Davidson M, Onstott TC, Morgan L, Milleson M, Kieft TL, Trimarco E, Balkwill DL, Dollhopf ME (2006) The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa.Geomicrobiol J 23:415Google Scholar
  24. Gustard A, Bullock A, Dixon JM (1992) Low flow estimation in the United Kingdom. Report 108, Institute of Hydrology, Wallingford, UKGoogle Scholar
  25. Institute of Hydrology (1980) Low flow studies report. Institute of Hydrology, Wallingford, UKGoogle Scholar
  26. Jacob CE (1940) On the flow of water in an elastic artesian aquifer. Trans Am Geophys Union 22:783–787Google Scholar
  27. Jaeger JC, Cook NGW, Zimmerman R (2007) Fundamentals of rock mechanics, 4th edn. Wiley, New York, 469 ppGoogle Scholar
  28. Jiang X-W, Wan L, Cardenas MB, Ge S, Wang X-S (2010) Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying hydraulic conductivity and porosity. Geophys Res Lett 37:L05403. doi: 10.1029/2010GL042387 CrossRefGoogle Scholar
  29. Kelly SE, Murdoch LC (2003) Well tests for determining the hydraulic conductivity of a stream bed. Ground Water 41(4):431–439CrossRefGoogle Scholar
  30. Kotelnikova S, Pedersen K (1997) Evidence for methanogenic Archaea and homoacetogenic Bacteria in deep granitic rock aquifers. FEMS Microbiol Rev 20:339–349CrossRefGoogle Scholar
  31. Liu SV, Zhou J, Zhang C, Cole DR, Gajdarziska-Josifovska M, Phelps TJ (1997a) Thermophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary implications. Science 277:1106–1109CrossRefGoogle Scholar
  32. Liu Y, Karnauchow TM, Jarrell KE, Balkwill DL, Drake GR, Ringelberg D, Clarno R, Boone DR (1997b) Description of two new thermophilic species of Desulfotomaculum: Desulfotomaculum putei sp. nov. from the deep terrestrial subsurface and Desulfotomaculum luciae sp. nov. from a hot spring. Int J Syst Bacteriol 47:615–621CrossRefGoogle Scholar
  33. Mitchell ST (2009) Nuggets to neutrinos: the Homestake Story. Xlibris, Bloomington, IN, 738 ppGoogle Scholar
  34. Moser DP, Gihring TM, Brockman FJ, Fredrickson JK, Balkwill DL, Dollhopf ME, Sherwood-Lollar B, Pratt LM, Boice EA, Southam G, Wanger G, Baker BJ, Pfiffner SM, Lin L-H, Onstott TC (2005) Desulfotomaculum spp. and Methanobacterium spp. dominate 4–5 km deep fault. Appl Environ Microbiol 71:8773–8783CrossRefGoogle Scholar
  35. Murdoch LC, Germanovich L (2006) Analysis of a deformable fracture in a permeable material. Int J Numer Anal Methods Geomech 30:529–561CrossRefGoogle Scholar
  36. Pariseau W (1985) Research study on pillar design for vertical crater retreat (VCR). Bureau of Mines Contract Report J0215043, US Bureau of Mines, Washington, DCGoogle Scholar
  37. Pedersen K (1997) Microbial life in deep granitic rock. FEMS Microbiol Rev 20:399–414CrossRefGoogle Scholar
  38. Phelps TJ, Murphy EM, Pfiffner SM, White DC (1994) Comparison between geochemical and biological estimates of subsurface microbial activities. Microb Ecol 28:335–349CrossRefGoogle Scholar
  39. Rahn PH (1985) Ground water stored in the rocks of western South Dakota. In: Rich FJ (ed) Geology of the Black Hills, South Dakota and Wyoming, 2nd edn. Geological Society of America, Field Trip Guidebook, American Geological Institute, Alexandria, VA, pp 154–174Google Scholar
  40. Rahn PH, Johnson CS (2002) Effects of anisotropic transmissivity on a contaminant plume at Nemo, South Dakota: environ. Eng Geosci VIII(1):11–18Google Scholar
  41. Rahn P, Roggenthen W (2002) Hydrogeology of the Homestake Mine. Proc South Dakota Acad Sci 81:19–25Google Scholar
  42. Rastogi G, Stetler LD, Peyton BM, Sani RK (2009) Molecular analysis of prokaryotic diversity in the deep subsurface of the former Homestake gold mine, South Dakota, USA. J Microbiol 47:371–384CrossRefGoogle Scholar
  43. Rutqvist J (1995) Determination of hydraulic normal stiffness of fractures in hard rock from hydraulic well testing. Int J Rock Mech Min Sci Geomech Abstr 32:513–523CrossRefGoogle Scholar
  44. Ruqvist J, Stephansson O (2003) The role of hydromechanical coupling in fractured rock engineering. Hydrogeol J 11:7–40CrossRefGoogle Scholar
  45. Rutqvist J, Tsang C-F, Stephansson O (1997) Hydraulic field measurements of incompletely closed fractures in granite. Int J Rock Mech Min Sci Geomech 34:411Google Scholar
  46. Rutledge AT (1998) Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow data. US Geol Surv Water Resour Invest Rep 98–4148, 43 ppGoogle Scholar
  47. Sinclair JL, Ghiorse WC (1989) Distribution of aerobic bacteria, protozoa, algae and fungi in deep subsurface sediments. Geomicrobiol J 7:15–31CrossRefGoogle Scholar
  48. Svenson ET, Schweisinger LCMurdoch (2007) Analysis of the hydromechanical response of a flat-lying fracture to a slug test. J Hydrol 347:35–47CrossRefGoogle Scholar
  49. Toth J (1963) A theoretical analysis of ground water flow in small drainage basins. J Geophys Res 68(16):4795–4812Google Scholar
  50. Wang HF (2000) Theory of linear poroelasticity. Princeton University Press, Princeton, NJ, 281 ppGoogle Scholar
  51. Wang HF, Anderson MP (1982) Introduction to groundwater modeling: finite difference and finite element methods. Freeman, Reston, VA, 237 ppGoogle Scholar
  52. Warren JE, Root PJ (1963) Behavior of naturally fractured reservoirs. SPE J 3(3):245–255Google Scholar
  53. Zhan J (2002) Homestake Mine open cut evaluation of the pit water recovery. Internal report, Homestake Mining Company, Lead, SD, 17 ppGoogle Scholar
  54. Zhan G, Duex T (2010) Hydrologic evaluation of post-closure flooding and dewatering of the Homestake Mine. Mining Eng 62(4):64–68Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Larry C. Murdoch
    • 1
  • Leonid N. Germanovich
    • 2
  • Herb Wang
    • 3
  • T. C. Onstott
    • 4
  • Derek Elsworth
    • 5
  • Larry Stetler
    • 6
  • David Boutt
    • 7
  1. 1.Environmental Engineering and Earth Science DepartmentClemson UniversityClemsonUSA
  2. 2.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of Geosciences, A254 Weeks HallUniversity of Wisconsin, MadisonMadisonUSA
  4. 4.Department of GeosciencesPrinceton University, Guyot HallPrincetonUSA
  5. 5.Department of GeosciencesPenn State UniversityUniversity ParkUSA
  6. 6.Geology and Geological Engineering DepartmentSouth Dakota School of MinesRapid CityUSA
  7. 7.Department of GeosciencesUniversity of Massachusetts-AmherstAmherstUSA

Personalised recommendations