Advertisement

Hydrogeology Journal

, Volume 19, Issue 8, pp 1587–1598 | Cite as

Assessment of groundwater contamination from a hazardous dump site in Ranipet, Tamil Nadu, India

  • G. Tamma Rao
  • V. V. S. Gurunadha Rao
  • K. Ranganathan
  • L. Surinaidu
  • J. Mahesh
  • G. Ramesh
Report

Abstract

Tanneries located in an industrial development area of Ranipet (India) manufactured chromate chemicals during 1976–1996. A large quantity of associated hazardous solid wastes has been stacked about 5-m high above ground level, spread over 3.5 ha inside one of the factory premises. The study area receives an average annual rainfall of 1,100 mm. The granitic formation in the northern part of Palar River catchment has high infiltration rates and has resulted in fast migration of the contamination to the water table. Chromium levels in the groundwater were found up to 275 mg/l. The available hydrogeological, geophysical and groundwater quality data bases have been used to construct a groundwater flow and mass transport model for assessing the groundwater contamination and it has been calibrated for the next 30 years. The migration has been found to be very slow, with a groundwater velocity of 10 m/year. This is the first field-scale study of its kind in this industrial area. The findings are of relevance to addressing the groundwater pollution due to indiscriminate disposal practices of hazardous waste in areas located on the phreatic aquifer. Further, it has been reported that the untreated effluent discharge adjacent to the chromium dump site is most influential in the migration of contaminants.

Keywords

Hexavalent chromium Contamination Groundwater flow Conceptual model India 

Evaluation de la contamination de l’eau souterraine par un site de dépôt dangereux à Ranipet, Tamil Nadu, Inde

Résumé

Les tanneries situées dans une zone de développement industriel de Ranipet (Inde) ont fabriqué des produits chromés entre 1976 et 1996. Une grande quantité des déchets solides dangereux associés a été entassée sur à peu près 5 m au-dessus du niveau du sol, sur une superficie de 3.5 ha à l’intérieur de l’un des terrains de l’usine. La zone d’étude reçoit une hauteur de pluie annuelle moyenne de 1,100 mm. La formation granitique de la partie nord du bassin versant de Palar River dispose de lames d’eaux infiltrées élevées et il en a résulté une migration rapide de la contamination jusqu’à la surface libre de la nappe. Des teneurs en chrome atteignant 275 mg/l ont été détectées dans l’eau souterraine. Les bases de données disponibles sur l’hydrogéologie, la géophysique et la qualité de l’eau ont été utilisées pour établir un modèle de l’écoulement souterrain et du transfert de masses afin d’évaluer la contamination de l’eau et il a été calibré pour les 30 prochaines années. La migration a été reconnue très lente, avec une vitesse de l’eau souterraine de 10 m/an. C’est la première étude de terrain de ce type dans la zone industrielle. Les résultats sont cohérents avec l’imputation de la pollution de l’eau souterraine à des pratiques inconsidérées d’élimination de déchets dangereux dans des zones situées au-dessus de la nappe phréatique. De plus, il a été exposé que le rejet d’effluents non traités à proximité du site de dépôt de chrome est la cause principale de la migration des contaminants.

Evaluación de la contaminación del agua subterránea a partir de un sitio de vertidos peligrosos en Ranipet, Tamil Nadu, India

Resumen

Las curtiembres localizadas en un área de desarrollo industrial de Ranipet (India) manufacturaban sustancias químicas cromáticas durante 1976–1996. Una gran cantidad de residuos sólidos peligrosos asociados han sido apilados aproximadamente en 5-m de altura por encima del nivel del terreno, esparcidos sobre 3.5 hectáreas dentro de uno de los predios de la fábrica. El área bajo estudio recibe una precipitación media anual de 1100 mm. La formación granítica en la parte norte de la Cuenca del Río Palar tiene un alto ritmo de infiltración, lo que ha provocado una migración rápida de los contaminantes a la capa freática. Los niveles de cromo encontrados en el agua subterránea llegaron hasta 275 mg/l. Se usaron las bases de datos hidrogeológicos, geofísicos y de de calidad de agua subterránea disponibles para construir un modelo de flujo de agua subterránea y de transporte de masa para evaluar la contaminación de agua subterránea, que ha sido calibrado para los próximos 30 años. Se encontró que la migración es muy lenta, con una velocidad de agua subterránea de 10 m/a. Este es el primer estudio a escala de campo de esta clase de industria. Los hallazgos son de relevancia para el tratamiento de la contaminación del agua subterránea debido a las prácticas indiscriminadas de disposición de residuos peligrosos en áreas localizadas sobre un acuífero freático. Más aún, se ha reportado que la descarga del efluente no tratado adyacente al sitio de vertido de cromo tiene mucha influencia en la migración de contaminantes.

Avaliação da contaminação das águas subterrâneas a partir de um depósito de resíduos perigosos em Ranipet, Tamil Nadu, Índia

Resumo

Indústrias de curtumes localizadas numa área de desenvolvimento industrial em Ranipet (Índia) produziram cromatos entre 1976 e 1996. Uma grande quantidade de resíduos sólidos perigosos foi empilhada até cerca de 5 m de altura sobre o solo, e espalhados por uma área de 3.5 ha dentro de uma das instalações fabris. A área de estudo situa-se numa zona com precipitação anual média de 1100 mm. A formação granítica na parte norte da bacia do Rio Palar apresenta taxas de infiltração elevadas, o que resultou numa migração rápida do contaminante para o nível freático. Os níveis de crómio na água subterrânea chegaram a 275 mg/l. As bases de dados hidrogeológicas, geofísicas e de qualidade da água têm sido usadas para construir modelos de fluxo e transporte de massa de águas subterrâneas para avaliar a contaminação e têm sido calibrados para os próximos 30 anos. Verificou-se que a migração tem sido muito lenta, com uma velocidade da água subterrânea de 10 m/ano. Este é o primeiro estudo deste tipo à escala de campo nesta área industrial. Os resultados são relevantes para abordar a poluição de águas subterrâneas devida a práticas de deposição indiscriminada de resíduos perigosos em áreas localizadas sobre um aquífero freático. Além disso, tem sido reportado que a descarga de efluentes não tratados em áreas adjacentes ao local de acumulação dos resíduos de crómio é mais influente na migração dos contaminantes.

评估位于拉尼贝特 (泰米尔纳德邦, 印度) 的有害垃圾填埋场的地下水污染

摘要

位于拉尼贝特(印度)工业开发区内的制革厂于1976–1996年期间制造铬酸盐化学品。大量与之相关的危险固体垃圾在厂区堆放,达到地面以上5米高,面积达3.5公顷。研究区年平均降水量为1,100 mm。巴拉尔河流域北部高渗透率的花岗岩地层致使污染物迅速运移进入含水层。地下水中铬含量高达275 mg/L。本研究运用现有的水文地质、地球物理和地下水水质数据构建地下水运动和溶质运移模型来评估地下水污染, 并用接下来30年的数据对模型进行校正。污染物在含水层中运移速度缓慢, 地下水流速为10 m/year。此类现场尺度的研究在这个工业区是第一次。结果对于研究地下潜水含水层水污染与上方不分类处理的危险废物之间的关系有意义。此外, 含铬废弃物存放处附近未经处理的污水排排放对污染物迁移的影响很大。

Notes

Acknowledgements

The authors thank the Director, NGRI, for his support and encouragement and giving permission to publish this report. We wish to thank Sri J. S. Kamyotra, Member Secretary, for encouraging the collaborative project. We thank the Central Pollution Control Board (CPCB), southern region, Bangalore, for supporting this study. The authors are also thankful to the Editor and honorable reviewers for their encouragement and guidance in improvement of the manuscript. The report is dedicated to the late Sri B.P. Shukla, who initiated the study through NGRI.

References

  1. Anderson RA (1999) Chromium as an essential nutrient: the chromium file No. 6. Intl. Chromium Development Assoc., Sheffield, UKGoogle Scholar
  2. APHA (1998) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Assoc., Washington, DCGoogle Scholar
  3. ATSDR (2005) Agency for Toxic Substances and Disease Registry. ToxFAQs Chemical Fact Sheets, www.atsdr.cdc.gov/toxfaq./index.asp. Cited April 2010
  4. Baes ChF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York, pp 211–220Google Scholar
  5. Bear J (1972) Dynamics of fluids in porous media. New York, 764 ppGoogle Scholar
  6. Brown E, Skougstand MW, Fishman MJ (1970) Methods for collection and analyses of water samples for dissolved minerals and gases. Techniques of Water Resources Investigation, Book 5, US Geological Survey, Reston, VAGoogle Scholar
  7. Dhakate R, Singh VS, Hodlur GK (2008) Impact assessment of chromite mining on groundwater through simulation modeling study in Sukinda chromite mining area, Orissa, India. J Hazard Mater 160:535–547. doi: 10.1016/j.jhazmat.2008.03.053 CrossRefGoogle Scholar
  8. Govil PK, Reddy GLN, Krishna AK, Seshu CLVNS, Satya Priya V, Sujatha D (2004) Inventorization of contaminated sites in India. Tech Rep. NGRI-2004-EG-421, NGRI, Hyderabad, India, pp 54–66Google Scholar
  9. GSI (2000) Geology and mineral resources of Thamil Nadu. GSI Miscellaneous. Publication no. 30, part VII, 2nd revised edn., 91 ppGoogle Scholar
  10. Guiger N, Franz T (1996) Visual MODFLOW: users guide. Waterloo, ON, 434 ppGoogle Scholar
  11. Harbaugh A W, Banta E R, Hill M C, McDonald M G (2000) MODFLOW–2000, the U.S. Geological Survey modular groundwater model: user guide to modularization concepts and the ground water flow process. US Geol Surv Open-File Rep 00–92Google Scholar
  12. Igboekwe MU, Gurunadha Rao VVS, Okwueze EE (2008) Groundwater flow modeling of Kwa Ibo River watershed, southeastern Nigeria. Hydrol Process 22:1523–1531CrossRefGoogle Scholar
  13. James BR, Petura JC, Vitale RJ, Mussoline GR (1997) Oxidation–reduction chemistry of chromium: relevance to the regulation and remediation of chromate-contaminated soils. J Soil Contam VI(6):569–580Google Scholar
  14. Karanth KR (1987) Groundwater assessment, development and management. McGraw Hill, New Delhi, 720 ppGoogle Scholar
  15. Konikow LF, Bredehoeft JD (1974) Modeling flow and chemical quality changes in an irrigated stream-aquifer system. Water Resour Res 10:546–562CrossRefGoogle Scholar
  16. Konikow LF, Bredehoeft JD (1978) Computer model of two dimensional solute transport and dispersion in groundwater. Techniques of Water Resources Investigations, Chap. C2, Book 7, US Geological Survey, Reston, VA, 90 ppGoogle Scholar
  17. Majumdar PK, Ghosh NC, Chakravorty B (2002) Analysis of arsenic contaminated groundwater domain in the Nadia district of West Bengal (India). Hydrol Sci J 47(S):S55–66CrossRefGoogle Scholar
  18. McDonald MG, Harbaugh AW (1988) A modular three dimensional finite difference groundwater flow model. US Geol Surv Open-File Rep, US Geological Survey, Reston, VA, pp 83–875Google Scholar
  19. Mertz W, Anguino EE, Cannon HL, Hambidge KM, Voors AW (1974) Geochemistry and the environment, vol I: the relation of selected trace elements to health and disease. National Academy of Sciences, Washington, DC, pp 853–878Google Scholar
  20. Mondal NC, Singh VS (2008) Mass transport modeling of an industrial belt using visual MODFLOW and MODPATH: a case study. J Geogr Regional Plan 2(1):001–019Google Scholar
  21. Mugica V, Maubert M, Torres M, Munoz J, Rico E (2002) Temporal and spatial variations of metal content in TSP and PM10 in Mexico City during 1996–1998. J Aerosol Sci 33:91–102CrossRefGoogle Scholar
  22. Rahman A, Woei-Keong N, Kuan (2004) Simulation of groundwater flow and pollutant transport for alluvial aquifer in Kampung Tekek, Tioman Island. J Teknol B 41(B):21–34Google Scholar
  23. Rao VVSG, Gupta SK (2000) Mass transport modeling to assess contamination of a water supply well in Sabarmati Riverbed aquifer, Ahmedabad City, India. Environ Geol 39(8):893–900CrossRefGoogle Scholar
  24. Rao VVSG, Thangarajan M (1998) Groundwater pollution due to discharge of tannery effluents in upper Palar basin, Tamilnadu, India. Environ Eng Pol 201–208Google Scholar
  25. Ringstad J, Aaseth J, Alexander J (1990) Deficiency of mineral nutrients for mankind. In: Lag J (ed) Geomedicine. CRC, Boca Raton, FL, pp 24–36Google Scholar
  26. Robson SG (1974) Feasibility of digital water quality modeling illustrated by application at Barstow, California. Water Resources Investigation, 46–73, US Geological Survey, Reston, VA, pp 1–66Google Scholar
  27. Sankaran S, Rangarajan R, Krishna Kumar K, Saheb Rao S, Smita Humbarde (2009) Geophysical and tracer studies to detect subsurface chromium contamination and suitable site for waste disposal in Ranipet, Vellore District, Tamil Nadu, India. Environ Earth Sci. doi: 10.1007/s 12665- 009-0213-3
  28. SEGH (2001) Environmental geochemistry and health, special issue. In: Soils and their implication on health, vol 23, no. 3, 18th European Conference, Austrian Agency for Health and Food Safety, ViennaGoogle Scholar
  29. Singh RK, Sengupta B, Rameshwar Bali BP, Shukla BP, Gurunadha Rao VVS, Rajesh S (2009) Identification and mapping of chromium (VI) plume in groundwater for remediation: a case study at Kanpur, Uttar Pradesh. J Geo Soc India 74:49–57CrossRefGoogle Scholar
  30. Srinivas Gowd S, Govil PK (2007) Distribution of heavy metals in surface water of Ranipetindustrial area in Tamil Nadu, India. Environ Monit Assess 136:197–207. doi: 10.1007/s10661-007-9675-5, 2008CrossRefGoogle Scholar
  31. Srinivasamoorthy K, Chidambaram S, Prasanna MV, Vasanthavihar M, Peter J, Anandhan P (2008) Identification of major sources controlling groundwater chemistry from a hard rock terrain: a case study from Mettur taluk, Salem district, Tamil Nadu, India. J Earth Syst Sci 117(1):49–58CrossRefGoogle Scholar
  32. Thangarajan M, Singh VS, Sarma MRK, Mondal NC (2008) Regional characterization of groundwater flow regime in a weathered hard rock aquifer system: a case study in Kodaganar River basin, Tamilnadu, India. In: Ranghaswami MV, Palaniswami, Mayilswami (eds) Groundwater resources assessment, recharge and modeling. Macmillan Advanced Research Series, New Delhi, pp 275–290Google Scholar
  33. Tiwary RK, Dhakate R, Rao VA, Singh VS (2005) Assessment and prediction of contaminant migration in groundwater from chromite waste. Environ Geol 48(4–5):420–429CrossRefGoogle Scholar
  34. Wang Y, Xu W, Luo Y, Ma L, Li Y, Yang S, Huang K (2009) Bioeffects of chromium (III) on the growth of Spirulina platensis and its biotransformation. J Sci Food Agri 89(6):947–952CrossRefGoogle Scholar
  35. WHO (1984) Guideline of drinking quality. World Health Organization, Washington, DC, pp 333–335Google Scholar
  36. Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156CrossRefGoogle Scholar
  37. Zheng C (1990) MT3D, a Modular three-dimensional transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. US Environmental Protection Agency, Washington, DC, 170 ppGoogle Scholar
  38. Zheng C, Wang PP (1999) MT3DMS: a modular three dimensional multispecies transport model for simulation of advection, dispersivity and chemical reactions of contaminants in groundwater systems: documentation and user’s guide. Contract report SERDP–99–1, US Army Engineer Research and Development, Vicksburg, MSGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • G. Tamma Rao
    • 1
    • 2
  • V. V. S. Gurunadha Rao
    • 1
    • 2
  • K. Ranganathan
    • 3
  • L. Surinaidu
    • 1
    • 2
  • J. Mahesh
    • 1
    • 2
    • 3
  • G. Ramesh
    • 1
    • 2
    • 3
  1. 1.National Geophysical Research InstituteHyderabadIndia
  2. 2.Council of Scientific and Industrial ResearchHyderabadIndia
  3. 3.Central Pollution Control Board, Southern Zonal OfficeBangaloreIndia

Personalised recommendations