Hydrogeology Journal

, Volume 19, Issue 7, pp 1335–1347 | Cite as

Delineating volcanic aquifer recharge areas using geochemical and isotopic tools

  • Brendan M. Mulligan
  • M. Cathryn Ryan
  • Tomás Padilla Cámbara
Paper

Abstract

Relative recharge areas are evaluated using geochemical and isotopic tools, and inverse modeling. Geochemistry and water quality in springs discharging from a volcanic aquifer system in Guatemala are related to relative recharge area elevations and land use. Plagioclase feldspar and olivine react with volcanically derived CO2 to produce Ca-montmorillonite, chalcedony and goethite in the groundwater. Alkalinity, Mg, Ca, Na, and SiO2(aq) are produced, along with minor increases in Cl and SO4 concentrations. Variations in groundwater δD and δ18O values are attributed to recharge elevation and used in concert with geochemical evolution to distinguish local, intermediate, and regional flow systems. Springs with geochemically inferred short flow paths provided useful proxies to estimate an isotopic gradient for precipitation (−0.67 δ18O/100 m). No correlation between spring discharge and relative flow-path length or interpreted recharge elevation was observed. The conceptual model was consistent with evidence of anthropogenic impacts (sewage and manure) in springs recharged in the lower watershed where livestock and humans reside. Spring sampling is a low-budget approach that can be used to develop a useful conceptual model of the relative scale of groundwater flow (and appropriate watershed protection areas), particularly in volcanic terrain where wells and boreholes are scarce.

Keywords

Conceptual models Guatemala Inverse modeling Stable isotopes Volcanic aquifer 

Délimitation des aires d’alimentation d’un aquifère volcanique à l’aide d’outils géochimiques et isotopiques

Résumé

Les aires d’alimentation propres sont évaluées en utilisant des outils géochimiques et isotopiques, et un modèle inverse. La géochimie et la qualité de l’eau des sources émergeant d’un système aquifère volcanique au Guatémala sont rapportées à l’altitude de chaque aire d’alimentation et à l’occupation des sols. Les feldspaths plagioclases et l’olivine réagissent avec le CO2 d’origine volcanique pour donner de la montmorillonite calcique, de la calcédoine et de la goethite dans l’eau souterraine. L’alcalinité, le Mg, le Ca, le Na et SiO2(aq) apparaissent, avec des augmentations mineures des concentrations en Cl et SO4. Les variations des valeurs du δD et du δ18O de l’eau souterraine sont rapportées à l’altitude de la recharge et utilisées de concert avec l’évolution géochimique pour distinguer les systèmes d’écoulement locaux, intermédiaires et régionaux. Les sources à chenaux caractérisés comme courts par la géochimie ont fourni des guides utiles pour estimer un gradient isotopique de précipitation (− 0.67 δ18O/100 m). Aucune corrélation entre le débit de la source et la longueur du chenal d’écoulement correspondant à l’altitude inférée de la recharge n’a été observée. Le modèle conceptuel s’accorde avec les impacts anthropiques (eaux résiduaires, fumures) sur les sources alimentées par la partie inférieure du bassin versant, où séjournent bétail et hommes. L’échantillonnage de sources est une démarche à petit budget, qui peut être suivie pour développer un modèle conceptuel utile à l’échelle de l’écoulement souterrain (et des aires de protection de bassin versant correspondantes), particulièrement dans le domaine volcanique, où puits et forages sont rares.

Delineamiento de las áreas de recarga de un acuífero volcánico usando herramientas geoquímicas e isotópicas

Resumen

Se evalúan las áreas relativas de recarga usando herramientas geoquímicas e isotópicas, y modelado inverso. Se relacionaron la calidad del agua y geoquímica en los manantiales que descargan a partir de un sistema acuífero volcánico en Guatemala con las elevaciones de áreas relativas de recarga y el uso de la tierra. Los feldepatos plagioclásicos y las olivinas reaccionan con el CO2 volcánico para producir Ca-montmorillonite, calcedonia y goethita en el agua subterránea. Se produce alcalinidad, Mg, Ca, Na, y SiO2(aq) conjuntamente con incrementos menores en las concentraciones de Cl y SO4. Las variaciones de los valores de δD y δ18O en el agua subterránea son atribuidos a la elevación de la recarga y utilizadas en combinación con la evolución geoquímica para distinguir sistemas de flujo local, intermedio y regional. Los manantiales con trayectos cortos de flujo deducibles geoquímicamente proveyeron aproximaciones útiles para estimar un gradiente isotópico de las precipitaciones (−0.67 δ18O/100 m). No se observó ninguna correlación entre la descarga del manantial y la longitud relativa de la trayectoria del flujo relativa o la elevación de la recarga interpretada. El modelo conceptual fue consistente con las evidencias de los impactos antropogénicos de aguas residuales y estiércol en manantiales recargados en la cuenca inferior donde reside el ganado y seres humanos. El muestreo del manantial es una aproximación de bajo costo que puede ser usada para desarrollar un modelo conceptual útil de la escala relativa del flujo de aguas subterráneas (y de áreas de protección apropiadas en la cuenca), particularmente en terrenos volcánicos donde los pozos y perforaciones son escasos.

利用地球化学和同位素技术确定火山岩含水层补给区

摘要

本文利用地球化学、同位素技术及反向模拟方法评估相关补给区。危地马拉火山岩含水层系统排泄的泉水,其地球化学及水质与相关补给区高程和土地利用有关。在地下水中,斜长石与橄榄石和火山作用产生的CO2,反应生成蒙脱石、玉髓、针铁石。碱度、Mg、Ca、Na、SiO2(aq)增加,伴随有Cl 和SO4浓度的少量增加。地下水中δD 和 δ18O值的变化归因于补给高程,并结合地球化学演化区分局部的、中间的、区域的流动系统。基于地球化学推断的短流程泉水提供了用于评估降水的同位素梯度有效的替代指标(−0.67 δ18O/100 m)。泉水排泄和相对流程长度或者解译的补给高程之前的相关性未观测到。泉水在有牲畜和人类居住的流域下游接受补给,受人为影响(排污和施肥),概念模型与这些证据相一致。泉水采样是一个低成本的方法,可用于建立有用的一定尺度下的地下水流动概念模型(估计流域保护区),尤其在井和钻孔少的火山岩区适用。

Delimitação de áreas de recarga em aquíferos vulcânicos utilizando técnicas geoquímicas e isotópicas

Resumo

Neste artigo, áreas de recarga são avaliadas, utilizando técnicas geoquímicas e isotópicas e modelação inversa. A geoquímica e a qualidade da água de nascentes que descarregam de um sistema aquífero vulcânico localizado na Guatemala são relacionadas com as elevações relativas das áreas de recarga e o uso do solo. As plagioclases e a olivina reagem com o CO2 de origem vulcânica para produzir montmorilonite cálcica, calcedónia e goetite nas águas subterrâneas. A alcalinidade, o Mg, o Ca, o Na, e o SiO2(aq) são produzidos, ao mesmo tempo que se verificam pequenos aumentos das concentrações de Cl e SO4. As variações de δD e δ18O nas águas subterrâneas são atribuídas à recarga que ocorre nas áreas mais elevadas, que, em conjunto com a evolução geoquímica, permitem identificar sistemas de escoamento às escalas local, média e regional. As nascentes relacionadas com pequenas trajectórias de fluxo subterrâneo, inferidas geoquimicamente, permitem obter indicadores que são úteis para estimar gradientes de isótopos de precipitação (-0.67 δ18O/100 m). Não foi encontrada nenhuma correlação entre descargas de nascentes e distâncias de trajectórias de fluxo ou recargas que ocorram a diferentes altitudes. O modelo conceptual é consistente com a evidência de impactes antropogénicos (esgotos e estrume) em nascentes que são recarregadas na parte baixa da bacia hidrográfica, locais ocupados por animais e seres humanos. Este plano de amostragem de nascentes é caracterizado por ter um orçamento de baixo custo, podendo ser utilizado para desenvolver um modelo conceptual da escala relativa de fluxo das águas subterrâneas (e para uma apropriada protecção das bacias hidrográficas), particularmente em terrenos vulcânicos onde existam poucos poços e furos.

Notes

Acknowledgements

Funding was provided by the Central American Water Resource Management Network (CARA; funded by the Canadian International Development Agency), the National Sciences and Engineering Research Council (NSERC) of Canada, the Department of Geosciences at the University of Calgary, and Golder Associates. Field assistance by colleagues at the University of San Carlos and the community of Finca Sabana Grande was greatly appreciated. Comments from anonymous reviewers were also appreciated.

References

  1. American Public Health Association (APHA) (2005) Standard methods for the examination of water and wastewater. 21st edn. Arnold, Washington, DCGoogle Scholar
  2. Appelo CAJ, Postma D (1994) Geochemistry, groundwater and pollution. Balkema, Rotterdam, The NetherlandsGoogle Scholar
  3. Caliro S, Chiodini G, Avino R, Cardellini C, Frondini F (2005) Volcanic degassing at Somma–Vesuvio (Italy), inferred by chemical and isotopic signatures of groundwater. Appl Geochem 20:1060–1076CrossRefGoogle Scholar
  4. Cerling TE, Solomon DK, Quade J, Bowman JR (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmoch Acta 55:3403–3405CrossRefGoogle Scholar
  5. Chang CCY, Langston J, Riggs M, Campbell DH, Silva SR, Kendall C (1999) A method for nitrate collection for d15N and d18O analysis from waters with low nitrate concentrations. Can J Fish Aquat Sci 56:1856–1864CrossRefGoogle Scholar
  6. Chesner CA, Halsor SP (1997) Geochemical trends of sequential lava flows from Meseta volcano Guatemala. J Volcanol Geotherm Res 78:221–237CrossRefGoogle Scholar
  7. Chesner CA, Rose WI Jr (1984) Geochemistry and evolution of the Fuego volcanic complex Guatemala. J Volcanol Geotherm Res 21:25–44CrossRefGoogle Scholar
  8. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New YorkGoogle Scholar
  9. Coleman ML, Shepherd TJ, Durham JJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995CrossRefGoogle Scholar
  10. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  11. D’Alessandro W, Federico C, Longo M, Parello F (2004) Oxygen isotope composition of natural waters in the Mt Etna area. J Hydrol 296:282–299CrossRefGoogle Scholar
  12. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  13. Davisson ML, Velsko CA (1994) Rapid extraction of dissolved inorganic carbon from small volumes of natural waters for 14C determination by accelerator mass spectrometry. Rep. No. UCRLJC-119176, Lawrence Livermore National Laboratory, Livermore, CAGoogle Scholar
  14. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Cited 16 June 2011
  15. Drimmie RJ, Heemskerk AR, Johnson JC (1993) Tritium analysis. Technical Procedure 1.0, Rev 03. Environmental Isotope Laboratory, University of Waterloo, Waterloo, ON, 28 ppGoogle Scholar
  16. Epstein S, Mayeda TK (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  17. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  18. Garrels RM, Mackenzie FT (1967) Origin of the Chemical Compositions of Some Springs and Lakes: equilibrium concepts in natural water systems. Am Chem Soc Adv Chem Ser 67:222–242Google Scholar
  19. Gehre M, Hoefling R, Kowski P, Strauch G (1996) Sample preparation device for quantitative hydrogen isotope analysis using chromium metal. Anal Chem 68:4414–4417CrossRefGoogle Scholar
  20. Gislason SR, Heaney PJ, Oelkers EH, Schott J (1997) Kinetic and thermodynamic properties of moganite, a novel silica polymorph. Geochim Cosmochim Acta 61:1193–1204CrossRefGoogle Scholar
  21. Goff F, McMurtry GM (2000) Tritium and stable isotopes of magmatic waters. J Vol Geotherm Res 97:347–396CrossRefGoogle Scholar
  22. Goldich SS (1938) A study in rock-weathering. J Geol 46:17–58CrossRefGoogle Scholar
  23. Gonfiantini R, Roche MA, Olivry JC, Fontes JC, Zuppi GM (2001) The altitude effect on the isotopic composition of tropical rains. Chem Geol 181:147–167CrossRefGoogle Scholar
  24. Hem JD (1985) Study and interpretation of the chemical characteristics of natural water, 3rd edn. US Geol Surv Water Suppl Pap 2254:272pGoogle Scholar
  25. IGM (1983) Mapa Geológico de Guatemala [Geological map of Guatemala]. Hoja 2059 III G, 1:50,000. Instituto Geográfico Militar, GuatemalaGoogle Scholar
  26. IGN (1977) Mapa Topográfico de Guatemala [Topographic map of Guatemala]. Hoja 2059 III, 1:50,000. Instituto Geográfico Nacional, Santiago, GuatemalaGoogle Scholar
  27. James ER, Manga M, Rose TP, Hudson GB (2000) The use of temperature and the isotopes of O, H, C, and noble gases to determine the pattern and spatial extent of groundwater flow. J Hydrol 237:100–112CrossRefGoogle Scholar
  28. Jefferson A, Grant G, Rose T (2006) Influence of volcanic history on groundwater patterns on the west slope of the Oregon High Cascades. Water Resour Res 42:W12411CrossRefGoogle Scholar
  29. Kendall C (1988) Tracing Nitrogen Sources and Cycling in Catchments, chap 16. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576Google Scholar
  30. Kendall C, Caldwell EA (1998) Fundamentals of isotope geochemistry, chap 2. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 51–86Google Scholar
  31. Lachniet MS, Patterson WP (2009) Oxygen isotope values of precipitation and surface waters in northern central America (Belize and Guatemala) are dominated by temperature and amount effects. Earth Planet Lett 284:435–446CrossRefGoogle Scholar
  32. Losilla M, Rodríguez H, Schosinsky G, Stimson J, Bethune D (2001) Los acuíferos volcánicos y el desarrollo sostenible en América Central [Volcanic aquifers and sustainable development in Central America]. Universidad de Costa Rica, San José, Costa RicaGoogle Scholar
  33. Mayer B (2005) Assessing sources and transformations of sulphate and nitrate in the hydrosphere using isotope techniques. In: Aggarwal PF, Gat JR, Froehlich KFO (eds) Isotopes in the water cycle: past, present and future of a developing science. Springer, Heidelberg, Germany, pp 67–89Google Scholar
  34. Mayer B, Krause HR (2004) Procedures for sulphur isotope abundance studies. In: de Groot P (ed) Handbook of stable isotope analytical techniques, vol 1. Elsevier, AmsterdamGoogle Scholar
  35. Mckenzie JM, Mark BG, Thompson LG, Schotterer U, Lin P-N (2010) A hydrogeochemical survey of Kilimanjaro (Tanzania): implications for water sources and ages. Hydrogeol J 18:985–995CrossRefGoogle Scholar
  36. Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176CrossRefGoogle Scholar
  37. Moosner F, Meyer-Abich H, McBirney AR (1958) Catalogue of the active volcanoes of the world, part VI. International Association of Volcanology, Naples, Italy146 ppGoogle Scholar
  38. Mulligan BM (2006) Geochemical evolution and groundwater flow in a volcanic aquifer. MSc Thesis, University of Calgary, Calgary, ABGoogle Scholar
  39. Nathenson M, Thompson JM, White LD (2003) Slightly thermal springs and non-thermal springs at Mount Shasta, California: chemistry and recharge elevations. J Volcanol Geotherm Res 121:137–153CrossRefGoogle Scholar
  40. O’Neil JR, Adami LH, Epstein S (1975) Revised value for the 18O fractionation factor between CO2 and water at 25°C. J Res 3:623–624Google Scholar
  41. Padilla Cámbara TA (2003) Evaluación del potencial hídrico en la microcuenca del Río Cantil, para el aprovechamiento de las aguas subterráneas en la Finca Sabana Grande, El Rodeo, Escuintla, Guatemala [Water resource evaluation of the Cantil River Subwatershed for groundwater exploitation at the Sabana Grande Farm, El Rodeo, Escuintla, Guatemala]. MSc Thesis, Universidad de Costa Rica, Costa RicaGoogle Scholar
  42. Parisi S, Paternoster M, Kohfahl C, Pekdeger A, Meyer H, Hubberten HW, Spilo G, Mongelli G (2011) Groundwater recharge areas of a volcanic aquifer system inferred from hydraulic, hydrogeochemical and stable isotope data: Mount Vulture, southern Italy. Hydrogeol J 19:133–153CrossRefGoogle Scholar
  43. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99–4259, 310 ppGoogle Scholar
  44. Payne BR, Yurtsever Y (1974) Environmental isotopes as a hydrogeological tool in Nicaragua. IAEA-SM-182/19, Isotope Techniques in Groundwater Hydrology 1974, Proceedings of a symposium vol 1., Vienna, 11–15 March 1974Google Scholar
  45. Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH: version 2.0. US Geol Surv Water Resour Invest Rep 94–4169, 130 ppGoogle Scholar
  46. Rodriguez LA, Watson IM, Rose WI, Branan YK, Bluth GJS, Chigna G, Matias O, Escobar D, Carn S, Fischer TP (2004) SO2 emissions to the atmosphere from active volcanoes in Guatemala and El Salvador, 1999–2002. J Volcanol Geotherm Res 138:325–344CrossRefGoogle Scholar
  47. Rose WI Jr (1977) Scavenging of volcanic aerosol by ash: atmospheric and volcanologic implications. Geology 5:621–624CrossRefGoogle Scholar
  48. Rose WI Jr, Anderson AT Jr, Woodruff LG, Bonis SB (1978) The October 1974 basaltic tephra from Fuego Volcano: description and history of the magma body. J Volcanol Geotherm Res 4:3–53CrossRefGoogle Scholar
  49. Rose WI Jr, Cadle RD, Heidt LE, Friedman I, Lazrus AL, Huebert BJ (1980) Gas and hydrogen isotopic analyses of volcanic eruption clouds in Guatemala sampled by aircraft. J Volcanol Geotherm Res 7:1–10CrossRefGoogle Scholar
  50. Rose WI, Wunderman RL, Hoffman MF, Gale L (1983) A volcanologist’s review of atmospheric hazards of volcanic activity: Fuego and Mount St Helens. J Volcanol Geotherm Res 17:133–157CrossRefGoogle Scholar
  51. Rose TP, Davisson ML, Criss RE (1996) Isotope hydrology of voluminous cold springs in fractured rock from an active volcanic region, northeastern California. J Hydrol 179:207–236CrossRefGoogle Scholar
  52. Schofield S, Jankowski J (2004) Hydrochemistry and isotopic composition of Na–HCO3-rich groundwaters from the Ballimore region, central New South Wales, Australia. Chem Geol 211:111–134CrossRefGoogle Scholar
  53. Silva SR, Kendall C, Wilkinson DH, Ziegler AC, Chang CCY, Avanzino RJ (2000) A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios. J Hydrol 228:22–36CrossRefGoogle Scholar
  54. Taylor C (1977) Tritium enrichment of environmental waters by electrolysis: development of cathodes exhibiting high isotopic separation and precise measurement of tritium enrichment factors. In: High Tatras, Bratislava, Proceedings of the International Conference of Low-Radioactivity Measurements and Applications. Slovenski Pedagogicke Nakladatelstvo, Bratislava, CzechoslovakiaGoogle Scholar
  55. Weyl R (1980) Geology of Central America, 2nd edn. Borntraeger, BerlinGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Brendan M. Mulligan
    • 1
  • M. Cathryn Ryan
    • 1
  • Tomás Padilla Cámbara
    • 2
  1. 1.GeoscienceUniversity of CalgaryCalgaryCanada
  2. 2.Facultad de AgronomíaUniversidad de San Carlos de GuatemalaCiudad de GuatemalaGuatemala

Personalised recommendations