Advertisement

Hydrogeology Journal

, Volume 19, Issue 8, pp 1545–1562 | Cite as

Insights into palaeorecharge conditions for European deep aquifers

  • Hana Jiráková
  • Frédéric HuneauEmail author
  • Hélène Celle-Jeanton
  • Zbynek Hrkal
  • Philippe Le Coustumer
Report

Abstract

Climatic instability during the late Pleistocene has been reflected in the pattern of groundwater recharge. This report summarizes palaeoclimate knowledge during the late Weichselian in Europe. During this period the majority of northern Europe was covered by thick ice sheets and permafrost, preventing aquifers from recharging. In contrast, southern Europe was generally free of these palaeoclimatic features. Palaeoclimatic information has been combined with isotope data to better understand the palaeorecharge conditions and recharge timing across the European continent. The 18O and 2H relationship shows latitudinal plus climatic influences. Radiocarbon data show that while southern European aquifers have generally been recharged continuously during the last 40,000 years, northern European aquifers typically show a recharge gap during the Last Glacial Maximum. Areas that underwent continuous recharge during the entire late Pleistocene period can also be distinguished from areas where recharge to aquifers was prevented during the Last Glacial Maximum. Finally, several examples are presented of melt-water recharge or subglacial recharge. The identification of such diversity in the groundwater palaeorecharge in Europe is of great importance for modellers developing management schemes for groundwater resources.

Keywords

Groundwater recharge Stable isotopes Radiocarbon Permafrost Europe 

Aperçu des conditions de paléorecharge des aquifères profonds en Europe

Résumé

Les instabilités climatiques de la fin du Pléistocène sont reflétées par les modalités de recharge des eaux souterraines. Cet article résume les connaissances paléo climatiques durant la fin du Weichsélien en Europe. Lors de cette période, la majorité de l’Europe du Nord était recouverte par d’épaisses calottes de glace et du permafrost, empêchant la recharge des aquifères. A l’opposé, l’Europe du Sud n’était, de façon générale, pas affectée par ces caractéristiques. Les informations paléo climatiques ont été combinées avec les données isotopiques pour mieux comprendre les conditions de paléo recharge et leur phasage dans le temps à travers le continent européen. La relation entre l’18O et le 2H montre des influences latitudinales et climatiques. Les données radiocarbone montrent que tandis que les aquifères du sud de l’Europe ont été rechargés continuellement durant les 40 derniers millénaires, les aquifères de l’Europe du Nord montrent typiquement une lacune d’alimentation durant le Dernier Maximum Glaciaire. Les zones qui ont bénéficié d’une recharge continue durant la totalité de la fin du Pléistocène peuvent aussi être distinguées des zones ou la recharge a été empêchée durant le Dernier Maximum Glaciaire. Enfin, plusieurs exemples de recharge périglaciaire ou par fonte glaciaire sont présentés. L’identification d’une telle diversité dans les paléo recharges des eaux souterraines en Europe est d’une importance majeure pour les modélisateurs développant des plans de gestion des ressources en eau.

Comprensión de las condiciones de paleorecarga de los acuíferos profundos europeos

Resumen

La inestabilidad climática durante el Pleistoceno tardío ha sido reflejada en el esquema de la recarga del agua subterránea. Este trabajo resume el conocimiento paleoclimático durante el Weichselian tardío en Europa. Durante este período la mayor parte del norte de Europa fue cubierta por gruesas capas de hielo y permafrost, impidiendo la recarga de los acuíferos. En contraste, Europa del sur estuvo generalmente libre de estas características paleoclimáticas. La información paleoclimática ha sido combinada con datos isotópicos para entender mejor las condiciones de paleorecarga y el tiempo de recarga a través del continente europeo. La relación entre 18O y 2H muestra influencias latitudinales y climáticas. Los datos radiocarbónicos muestran que mientras los acuíferos del sur europeo han sido generalmente bien recargados continuamente durante los últimos 40,000 años, los acuíferos del norte europeo muestran típicamente una interrupción de la recarga durante el último máximo glacial. Las áreas que experimentaron una recarga continua durante el período Pleistoceno tardío también pueden ser distinguidos de aquellas áreas donde la recarga al acuífero fue impedida durante el último máximo glacial. Finalmente, se presentan varios ejemplos de recarga de agua de derretemiento o recarga subglacial. La identificación de tal diversidad en la paleorecarga del agua subterránea en Europa es de gran importancia para los modeladores que desarrollan esquemas de manejo para recursos de agua subterránea.

对欧洲深部含水层古地下水补给条件的认识

摘要

地下水的补给模式反映了晚更新世时期气候的波动性。本文概括了欧洲晚Weichselian时期古气候信息。在此期间,欧洲北部绝大部分地区被厚层的冰盖和冻土覆盖,阻碍了含水层接受补给。与此相反的是, 欧洲南部基本没有这样的古气候特征。通过联合利用古气候信息和同位素数据, 有助于我们更好的理解欧洲地区的古补给条件和补给时间。 18 O 2 H的关系表明存在纬度和气候影响。放射性碳数据表明欧洲南部的含水层在过去4万多年内持续接受补给,而欧洲北部则表现为在末次盛冰期时期内存在补给空白。在整个晚更新世时期内接受持续补给的地区也能够同受末次盛冰期影响而没有得到补给的地区区分开。最后, 文章给出了一些融水补给或冰川下补给的例子。欧洲这类多样化的地下水古补给的确定对以开发地下水资源管理为目标的模型制作者来说是非常重要的。

Observações sobre condições de paleorecarga em aquíferos europeus profundos

Resumo

A instabilidade climática durante o Plistocénico tardio refletiu-se no padrão de recarga da água subterrânea. Este artigo sumariza o conhecimento sobre o paleoclima durante o período Weichselian tardio na Europa. Durante esse período, a maior parte do norte da Europa esteve coberta por uma espessa camada de gelo e por permafrost, o que impediu a recarga dos aquíferos. Pelo contrário, o sul da Europa esteve, em geral, livre dessas condições paleoclimáticas. A informação disponível sobre o paleoclima foi combinada com dados isotópicos, visando uma melhor compreensão das condições da paleorecarga e quais os períodos de recarga no continente europeu. A relação entre o 18O e o 2H mostra relações positivas de influência com a latitude. Dados sobre o radiocarbono mostram que, enquanto no sul da Europa, os aquíferos, em geral, se recarregaram continuamente durante os últimos 40,000 anos, os aquíferos do norte da Europa revelam tipicamente um período de ausência de recarga durante o último período de máxima glaciação. Distinguem-se áreas que beneficiaram de recarga contínua durante todo o período do Plistocénico tardio, das que não beneficiaram de recarga no último período de máxima glaciação. Por último, apresentam-se diversos exemplos de recargas originadas pelo degelo ou de origem subglaciar. Para os modeladores que desenvolvem cenários de gestão de recursos hídricos subterrâneos, a identificação de tal diversidade de paleorecargas na Europa pode ser de grande importância.

Notes

Acknowledgements

The authors would like to acknowledge the French Ministry of Foreign Affairs and the Ministry of Education, Youth and Sports of the Czech Republic for supporting this study. The work was supported by the French Embassy in Prague and co-funded by the Grant Agency of the Czech Republic (GACR 205/07/0691) and the Specific University Research project (SVV 261 203). We would like to particularly thank both reviewers, J. McIntosh and W. M. Edmunds, for their valuable remarks which helped to improve the scientific and stylistic quality of the report. The authors would like to thank A. Harris for English language revision.

References

  1. Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (2000) Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air. Nature 405(6790):1040–1044CrossRefGoogle Scholar
  2. Aeschbach-Hertig W, Stute M, Clark JF, Reuter RF, Schlosser P (2002) A palaeotemperature record derived from dissolved noble gases in groundwater of the Aquia aquifer (Maryland, USA). Geochim Cosmochim Acta 5:797–817CrossRefGoogle Scholar
  3. Allen RJ, Siegert MJ, Payne T (2007) Reconstructing glacier-based climates of LGM Europe and Russia, part 3: comparison with GCM and pollen-based climate reconstructions. Clim Past Discuss 3:1199–1233CrossRefGoogle Scholar
  4. Alley RB, Clark PU (1999) The deglaciation of the northern hemisphere: a global perspective. Ann Rev Earth Planet Sci 27:149–182CrossRefGoogle Scholar
  5. André L, Franceschi M, Pouchan P, Atteia O (2005) Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. J Hydrol 305:40–62. doi: 10.1016/j.jhydrol.2004.08.027 CrossRefGoogle Scholar
  6. Andrews JN, Lee DJ (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and palaeoclimatic trends. J Hydrol 41:233–252CrossRefGoogle Scholar
  7. Andrews JN, Balderer W, Bath AH, Clausen HB, Evans GV, Florkowski T, Goldbrunner HE, Ivanovich M, Loosli H, Zojer H (1984) Environmental isotope studies in two aquifer systems: a comparison of groundwater dating methods. In: Isotope hydrology 1983, IAEA, Vienna, pp 535–576Google Scholar
  8. Andrews JN, Goldbrunner JE, Darling WG, Hooker PJ, Wilson GB, Youngman MJ, Eichinger L, Rauert W, Stichler W (1985) A radiochemical, hydrochemical and dissolved gas study of groundwaters in the Molasse basin of Upper Austria. Earth Planet Sci Lett 73:317–332CrossRefGoogle Scholar
  9. Andrews JN, Edmunds WM, Smedley PL, Fontes JC, Fifield LK, Allan GL (1994) The late Pleistocene palaeoclimate in southern England deduced from the 36Cl content of groundwaters in the East Midlands Triassic Sandstone. Earth Planet Sci Lett 122:159–171CrossRefGoogle Scholar
  10. Araguas-Araguas L, Fröhlich K, Rozanski K (2000) Deuterium and oxygen-18 composition of precipitation and atmospheric moisture. Hydrol Process 14:1341–1355CrossRefGoogle Scholar
  11. Arppe L, Karhu JA (2010) Oxygen isotope values of precipitation and the thermal climate in Europe during the middle to late Weichselian ice age. Quat Sci Rev 29:1263–1275. doi: 10.1016/j.quascirev.2010.02.013 CrossRefGoogle Scholar
  12. Barbecot F, Marlin C, Gibert E, Dever L (2000) Hydrochemical and isotopic characterisation of the Bathonian and Bajocian coastal aquifer of the Caen area (northern France). Appl Geochem 15:791–805CrossRefGoogle Scholar
  13. Bath AH, Edmunds WM, Andrews JN (1979) Palaeoclimatic trends deduced from the hydrochemistry of a Triassic sandstone aquifer, United Kingdom. In: Isotope hydrology, 1978, IAEA, Vienna, pp 545–568Google Scholar
  14. Benn DI, Ballantyne CK (2005) Palaeoclimatic reconstruction from Loch Lomond Readvance glaciers in the West Drumochter Hills Scotland. J Quat Sci 20:577–592CrossRefGoogle Scholar
  15. Bense VF, Person MA (2008) Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles. J Geophys Res 113. doi: 10.1029/2007JF000969
  16. Bertleff B, Ellwanger D, Szenkler C, Eichinger L, Trimborn P, Wolfendale N (1993) Interpretation of hydrochemical and hydroisotopical measurements on palaeogroundwaters in Oberschwaben, south German alpine foreland, with focus on Quaternary geology. In: Isotope techniques in the study of past and current environmental changes in the hydrosphere and the atmosphere. IAEA-SM-329, IAEA, Vienna, pp 337–357Google Scholar
  17. Beyerle U, Purtschert R, Aeschbach-Hertig W, Imboden D, Loosli H, Wieler R, Kipfer R (1998) Climate and groundwater recharge during the last glaciation in an ice-covered region. Science 282:731–734CrossRefGoogle Scholar
  18. Blaser PC, Coetsiers M, Aeschbach-Hertig W, Kipfer R, Van Camp M, Loosli HH, Walraevens K (2010) A new groundwater radiocarbon correction approach accounting for palaeoclimate conditions during recharge and hydrochemical evolution: the Ledo-Paniselian Aquifer, Belgium. Appl Geochem 25(3):437–455. doi: 10.1016/j.apgeochem.2009.12.011 CrossRefGoogle Scholar
  19. Blavoux B, Olive P (1981) Radiocarbon dating of groundwater of the aquifer confined in the Lower Triassic sandstones of the Lorraine region, France. J Hydrol 54:167–183CrossRefGoogle Scholar
  20. Boulton G, Hagdorn M (2006) Glaciology of the British Isles Ice Sheet during the last glacial cycle: form, flow, streams and lobes. Quat Sci Rev 25(23–24):3359–3390. doi: 10.1016/j.quascirev.2006.10.013 CrossRefGoogle Scholar
  21. Brown J, Ferrians O, Heginbottom JA, Melnikov ES (1997) Circum-arctic map of permafrost and ground-ice conditions. 1:10,000,000 Map CP-45. Circum-Pacific map series, US Geological Survey, Reston, VAGoogle Scholar
  22. Carreira PM (1998) Paleoáguas de Aveiro [Palaeowaters of Aveiro]. PhD Thesis, Universidade de Aveiro, PortugalGoogle Scholar
  23. Carreira PM, Soares AMM, Marques da Silva MA, Araguas LA, Stute M, Rozanski K (1996) Response of a coastal aquifer in Portugal to hydroclimatic changes during the last deglaciation period, traced by chemical, isotope and noble gas data. EOS Trans Am Geophys Union 7(22):W33Google Scholar
  24. Celle-Jeanton H, Huneau F, Travi Y, Edmunds WM (2009) Twenty years of groundwater evolution in the Triassic sandstone aquifer of Lorraine: impacts on baseline water quality. Appl Geochem 24:1198–1213. doi: 10.1016/j.apgeochem.2009.03.005 CrossRefGoogle Scholar
  25. Clark ID, Fritz P (1999) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL, 311 ppGoogle Scholar
  26. CLIMAP (1981) Seasonal reconstructions of the earth’s surface at the last glacial maximum. Map Chart Series MC-36, Geological Society of America, Boulder, COGoogle Scholar
  27. COHMAP members (1988) Climatic changes of the last 18,000 years: observations and model simulations. Science 241:1043–1052CrossRefGoogle Scholar
  28. Condesso De Melo MT, Carreira Paquete PMM, Marques Da Silva MA (2001) Evolution of the Aveiro Cretaceous aquifer (NW Portugal) during the late Pleistocene and present day: evidence from chemical and isotopic data. In: Edmunds WM, Milne CJ (eds) Palaeowaters in coastal Europe: evolution of palaeogroundwater since the late Pleistocene. Geol Soc Lond Spec Publ 189:139–154. doi: 10.1144/GSL.SP.2001.189.01.09.
  29. Czudek T (1986) Pleistocene permafrost on the territory of Czechoslovakia (in Czech). Geografický časopis 38(2–3):245–252Google Scholar
  30. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  31. Darling WG (2004) Hydrological factors in the interpretation of stable isotopic proxy data present and past: a European perspective. Quat Sci Rev 23:743–770. doi: 10.1016/j.quascirev.2003.06.016 CrossRefGoogle Scholar
  32. Darling WG, Edmunds WM, Smedley PL (1997) Isotopic evidence for palaeowaters in the British Isles. Appl Geochem 12(6):813–829. doi: 10.1016/S0883-2927(97)00038-3 CrossRefGoogle Scholar
  33. Delmas M, Gunnell Y, Braucher R, Calvet M, Bourlès D (2008) Exposure age chronology of the last glaciation in the eastern Pyrenees. Quat Res 69:231–241. doi: 10.1016/j.yqres.2007.11.004 CrossRefGoogle Scholar
  34. Dennis F, Andrews JN, Parker A, Poole J, Wolf M (1997) Isotopic and noble gas study of Chalk groundwater in the London Basin, England. Appl Geochem 12:763–773CrossRefGoogle Scholar
  35. Dietrich S, Seelos K (2009) The reconstruction of paleo wind directions for the Eifel region (Central Europe) during the period 40.3–12.9 ka BP. Clim Past Discuss 5:2157–2176Google Scholar
  36. Douez O (2007) Réponse d’un système multicouche aux variations paléoclimatiques et aux solicitations anthropiques: approche par modélisation couplée hydrodynamique, thermique et géochimique [Reaction of a multilayered system to palaeoclimatic variations and anthropogenic modifications: approach by coupled hydrodynamic, thermal and geochemical modelling]. PhD Thesis Univ. Bordeaux 3, France, 306 ppGoogle Scholar
  37. Downing RA, Smith DB, Pearson FJ, Monkhouse RA, Otlet RL (1977) The age of groundwater in the Lincolnshire Limestone, England and its relevance to the flow mechanism. J Hydrol 33(3–4):201–216CrossRefGoogle Scholar
  38. Edmunds WM (2005) Groundwater as an archive of climatic and environmental change. In: Aggarwal PK, Gat J, Froehlich K (eds) Isotopes in the water cycle, past present and future of a developing Science. Springer, Heidelberg, Germany, pp 341–352Google Scholar
  39. Edmunds WM, Milne CJ (eds) (2001) Palaeowaters in coastal Europe: evolution of groundwater since the late Pleistocene. Geol Soc Lond Spec Publ 189Google Scholar
  40. Edmunds WM, Smedley PL (2000) Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Appl Geochem 15:737–752CrossRefGoogle Scholar
  41. Edmunds WM, Wright EP (1979) Groundwater recharge and palaeoclimate in Sirte and Kufra Basins, Lybia. J Hydrol 40:215–241CrossRefGoogle Scholar
  42. Edmunds WM, Dodo A, Djoret D, Gasse F, Gaye CB, Goni IB, Travi Y, Zoukari K, Zuppi GM (2004) Groundwater as an archive of climatic and environmental change: phe PEP-III traverse. In: Battarbee RW, Gasse F, Stickley CE (eds) Past climate variability through Europe and Africa. Developments in Palaeoenvironmental Research series, Kluwer, Dordrecht, pp 279–306CrossRefGoogle Scholar
  43. Ehlers J (1996) Quaternary and glacial geology. Wiley, Chichester, UK, 578 ppGoogle Scholar
  44. Ehlers J, Gibbard PL (2004) Quaternary glaciations: extent and chronology, part I: Europe. Elsevier, Amsterdam, 475 ppGoogle Scholar
  45. Ehlers J, Gibbard PL (2007) The extent and chronology of Cenozoic Global Glaciation. Quat Int 164–165:6–20CrossRefGoogle Scholar
  46. Elliot T, Andrews JN, Edmunds WM (1999) Hydrochemical trends, palaeorecharge and groundwater in the fissured Chalk aquifer of the London and Berkshire Basins, UK. Appl Geochem 14:333–363CrossRefGoogle Scholar
  47. Farrera I, Harrison SP, Prentice IC, Ramstein G, Guiot J, Bartlein PJ, Bonnefille R, Bush M, Cramer W, von Grafenstein U, Holmgren K, Hooghiemstra H, Hope G, Jolly D, Lauritzen SE, Ono Y, Pinot S, Stute M, Yu G (1999) Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake-levels and geochemistry. Clim Dynam 15(11):823–856. doi: 10.1007/s003820050317 Google Scholar
  48. Fernandes PG, Carreira PM (2008) Isotopic evidence of aquifer recharge during the last ice age in Portugal. J Hydrol 361:291–308. doi: 10.1016/j.jhydrol.2008.07.046 CrossRefGoogle Scholar
  49. French HM (1996) The periglacial environment, 2nd edn. Longman, London, 341 ppGoogle Scholar
  50. Frenzel B (1992) Climate in the Northern Hemisphere during the formation of the inland ice masses between about 35 000 to 25 000 BP. Erdkunde 46(3–4):165–187Google Scholar
  51. Fricke HC, O’Neil JR (1999) The correlation between 18O/16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth Planet Sci Lett 170:181–196CrossRefGoogle Scholar
  52. Fryar AE, Mullican WF, Macko SA (2001) Groundwater recharge and chemical evolution in the southern High Plains of Texas, USA. Hydrogeol J 9:522–542. doi: :10.1007/s10040-001-161-9 CrossRefGoogle Scholar
  53. Gastmans D, Chang HK, Hutcheon I (2010) Stable isotopes (2H, 18O and 13C) in groundwaters from the northwestern portion of the Guarani Aquifer System (Brazil). Hydrogeol J. doi: 10.1007/s10040-010-0612-2.
  54. Gatto P, Carbognin L (1981) The lagoon of Venice: natural environmental trend and man-induced modification. Hydrol Sci Bull 26(4):379–391CrossRefGoogle Scholar
  55. Geyh MA, Backhaus G, Andres G, Rudolph J, Rath HK (1984) Isotope study on the Keuper Sandstone Aquifer with a leaky cover layer. In: Proceedings of IAEA-SM-270 Symposium, IAEA, Vienna, pp 499–513Google Scholar
  56. Gibbard PL, Cohen KM (2008) Global chronostratigraphical correlation table for the last 2.7 million years. Episodes 31:243–247Google Scholar
  57. Gonfiantini R, Conrad G, Fontes JCh, Sauzay G, Payne BR (1974) Etude isotopique de la nappe du Continental Intercalaire et de ses relations avec les autres nappes du Sahara Septentrional [Isotope study of the Continental Intercalaire Aquifer and of its relationships with other aquifers of the northern Sahara]. In: Isotope techniques in groundwater hydrology 1974, vol 1, Symposium, IAEA, Vienna, pp 227–241Google Scholar
  58. Guendouz A, Moulla AS, Edmunds WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the Complexe Terminal aquifer in the Algerian Sahara. Hydrogeol J 11:483–495CrossRefGoogle Scholar
  59. Guiter F, Andrieu-Ponel V, De Beaulieu JL, Cheddadi R, Calvez M, Ponel P, Reille M, Keller T, Goeury C (2003) The last climatic cycles in western Europe: a comparison between long continuous lacustrine sequences from France and other terrestrial records. Quat Int 111:59–74Google Scholar
  60. Harrar WG, Williams AT, Barker JA, Van Camp M (2001) Modelling scenarios for the emplacement of palaeowaters in aquifer systems. Geol Soc Lond Spec Publ 189:213–229. doi: 10.1144/GSL.SP.2001.189.01.13 CrossRefGoogle Scholar
  61. Hinsby K, Harrar WG, Nyegaard P, Konradi PB, Rasmussen ES, Bidstrup T, Gregersen U, Boaretto E (2001) The Ribe formation in western Denmark: Holocene and Pleistocene groundwaters in a coastal Miocene sand aquifer. In: Edmunds WM, Milne CJ (eds) Palaeowaters in coastal Europe: evolution of groundwater since the late Pleistocene. Geol Soc Lond Spec Publ 189:29–48Google Scholar
  62. Houmark-Nielsen M (2004) The Pleistocene of Denmark: a review of stratigraphy and glaciation history. In: Ehlers J, Gibbard P (eds) Quaternary glaciations: extent and chronology, part I—Europe. Elsevier, Amsterdam, pp 35–46CrossRefGoogle Scholar
  63. Houmark-Nielsen M, Kjær KJ (2003) Southwest Scandinavia, 40–15 kyr BP: palaeogeography and environmental change. J Quat Sci 18:769–786CrossRefGoogle Scholar
  64. Hughes PD, Woodward JC (2008) Timing of glaciation in the Mediterranean mountains during the last cold stage. J Quat Sci 23(6–7):575–588CrossRefGoogle Scholar
  65. Huijzer AS, Isarin RFB (1997) The reconstruction of past climates using multi-proxy evidence: an example of the Weichselian Pleniglacial in northwestern and central Europe. Quat Sci Rev 16:513–533CrossRefGoogle Scholar
  66. Huijzer AS, Vandenberghe J (1998) Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe. J Quat Sci 13:391–417CrossRefGoogle Scholar
  67. Huneau F (2000) Fonctionnement hydrogéologique et archives palaeoclimatiques d’un aquifère profond mediteranéen [Hydrogeological functioning and palaeogroundwaters of a deep Mediterranean aquifer]. PhD Thesis, Univ. Avignon, France, 180 ppGoogle Scholar
  68. Huneau F, Blavoux B (2000) Isotopic hydrogeology within the Miocene basin of Carpentras-Valreas (southeastern France). In: Dassargues A (ed), Tracers and modelling in hydrogeology. IAHS-AISH Publ 262, IAHS, Wallingford, UK, pp 433–438Google Scholar
  69. Huneau F, Blavoux B, Bellion Y (2001) Differences between hydraulic and radiometric velocities of groundwaters in a deep aquifer: example of the Valréas Miocene aquifer (southeastern France). CR Acad Sci Paris Earth Planet Sci 333:163–170. doi: 10.1016/S1251-8050(01)01605-6 Google Scholar
  70. IAEA/WMO (2006) Global network of isotopes in precipitation: the GNIP database. Accessible at http://www.iaea.org/water. Cited 25 November 2010
  71. Isarin RFB (1997) Permafrost distribution and temperatures in Europe during the Younger Dryas. Permafr Periglac Process 8:313–333CrossRefGoogle Scholar
  72. Jiráková H, Huneau F, Celle-Jeanton H, Hrkal Z, Le Coustumer P (2009) Palaeorecharge conditions of the deep aquifers of the Northern Aquitaine region (France). J Hydrol 368:1–16. doi: 10.1016/j.jhydrol.2009.01.017 CrossRefGoogle Scholar
  73. Jiráková H, Huneau F, Hrkal Z, Celle-Jeanton H, Le Coustumer P (2010) Carbon isotopes to constrain the origin and circulation pattern of groundwater in the north-western part of the Bohemian Cretaceous Basin (Czech Republic). Appl Geochem 25:1265–1279. doi: 10.1016/j.apgeochem.2010.05.012 CrossRefGoogle Scholar
  74. Jõeleht A (1998) Geothermal studies of the Precambrian basement and Phanerozoic sedimentary cover in Estonia and in Finland. PhD Thesis, University of Tartu, EstoniaGoogle Scholar
  75. Jost A (2005) Caractérisation des forçages climatiques et géomorphologiques des cinq derniers millions d’années et modélisation de leurs conséquences sur un système aquifère complexe: le bassin de Paris [Long-term hydrodynamic response induced by past climatic and geomorphologic forcing: the case of the Paris basin, France]. PhD Thesis, Univ. Pierre et Marie Curie, Paris VI, France, 344 ppGoogle Scholar
  76. Jouzel J, Petit JR, Souchez R, Barkov NI, Lipenkov VY, Raynaud D, Stievenard M, Vassiliev NI, Verbeke V, Vimeux F (1999) More than 200 meters of lake ice above subglacial Lake Vostok, Antarctica. Science 10(286/5447):2138–2141. doi: 10.1126/science.286.5447.2138 CrossRefGoogle Scholar
  77. Kalm V (2006) Pleistocene chronostratigraphy in Estonia, southeastern sector of the Scandinavian glaciation. Quat Sci Rev 25(9–10):960–975CrossRefGoogle Scholar
  78. Kemp WJM, van der Appelo CAJ, Walraevens K (2000) Inverse modeling and radiocarbon dating of palaeogroundwaters: the Tertiary Ledo-Paniselian aquifer in Flanders, Belgium. Water Resour Res 28:1277–1287CrossRefGoogle Scholar
  79. Kloppmann W, Dever L, Edmunds WM (1998) Residence time of Chalk groundwaters in the Paris Basin and the North German Basin: a geochemical approach. Appl Geochem 13(5):593–606CrossRefGoogle Scholar
  80. Kovács J, Fábián SÁ, Schweitzer F, Varga G (2007) A relict sand-wedge polygon site in north-central Hungary. Permafr Periglac Process 18(4):379–384CrossRefGoogle Scholar
  81. Kutzbach J, Gallimore R, Harrison S, Behling P, Selin R, Laarif F (1998) Climate and biome simulations for the past 21,000 years. Quat Sci Rev 17:473–506CrossRefGoogle Scholar
  82. Labeyrie J (2006) Paléoclimats et mécanismes climatiques [Paleoclimate and climatic mechanisms]. C R Palevol 5:27–34. doi: 10.1016/j.crpv.2005.09.015 CrossRefGoogle Scholar
  83. Lavastre V, Le Gal La Salle C, Michelot JL, Giannesini S, Benedetti L, Lancelot J, Lavielle B, Massault M, Thomas B, Gilabert E, Bourlès D, Clauer N, Agrinier P (2010) Establishing constraints on groundwater ages with 36Cl, 14C, 3H, and noble gases: a case study in the eastern Paris basin, France. Appl Geochem 25:123–142. doi: 10.1016/j.apgeochem.2009.10.006 CrossRefGoogle Scholar
  84. Lloyd JW (1990) Groundwater resources development in the eastern Sahara. J Hydrol 119:71–87. doi: 10.1016/0022-1694(90)90035-V CrossRefGoogle Scholar
  85. Loosli HH, Lehmann B, Aeschbach-Hertig W, Kipfer R, Edmunds WM, Eichinger L, Rozanski K, Stute M, Vaikmäe R (1998) Tools used to study palaeoclimate help in water management. EOS Trans Am Geophys Union 79:581–582CrossRefGoogle Scholar
  86. Lowe JJ, Members NASP (1995) Palaeoclimate of the North Atlantic seaboards during the last glacial/interglacial transition. Quat Int 28:51–61CrossRefGoogle Scholar
  87. Lunkka JP, Saarnisto M, Gey V, Demidov I, Kiselova V (2001) Extent and age of the Last Glacial Maximum in the southeastern sector of the Scandinavian Ice Sheet. Glob Planet Change 31(1–4):407–425. doi: 10.1016/S0921-8181(01)00132-1 CrossRefGoogle Scholar
  88. Manzano M, Custodio E, Loosli H, Cabrera MC, Riera X, Custodio J (2001) Palaeowater in coastal aquifers in Spain. In: Edmunds WM, Milne CJ (eds) Palaeowaters in coastal Europe: evolution of palaeogroundwater since the late Pleistocene. Geol Soc Lond Spec Publ 189:107–138Google Scholar
  89. Marks L (2002) Last Glacial Maximum in Poland. Quat Sci Rev 21:103–110CrossRefGoogle Scholar
  90. Mokrik R, Mazeika J (2002) Palaeohydrogeological reconstruction of groundwater recharge during late Weichselian in the Baltic basin. Geologija 39:49–57Google Scholar
  91. Mokrik R, Mazeika J, Baublyte A, Martma T (2009) The groundwater age in the Middle-Upper Devonian aquifer system, Lithuania. Hydrogeol J 17:871–889CrossRefGoogle Scholar
  92. Moneim AAA (2005) Overview of the geomorphological and hydrogeological characteristics of the Eastern Desert of Egypt. Hydrogeol J 13(2):416–425. doi: 10.1007/s10040-004-0364-y CrossRefGoogle Scholar
  93. Pestov I (2000) Thermal Convection in the Great Artesian Basin, Australia. Water Resour Manage 14:391–403CrossRefGoogle Scholar
  94. Peyron O, Guiot J, Cheddadi R, Tarasov P, Reille M, de Beaulieu J-L, Bottema S, Andrieu V (1998) Climatic reconstruction in Europe for 18 000 yr BP from pollen data. Quat Res 49:183–196CrossRefGoogle Scholar
  95. Rabelo JL, Edson W (2009) Assessment of groundwater recharge and water fluxes of the Guarani Aquifer System, Brazil. Hydrogeol J 17:1733–1748. doi: 10.1007/s10040-009-0462-y CrossRefGoogle Scholar
  96. Raoult Y (1999) La nappe de l’Albien dans le bassin de Paris: de nouvelles idees pour de vielles eaux [The Albian aquifer in the Paris Basin: new ideas for old waters]. PhD Thesis, Univ Paris VI, France, 170 ppGoogle Scholar
  97. Renssen H, Vandenberghe J (2003) Investigation of the relationship between permafrost distribution in NW Europe and extensive winter sea-ice cover in the North Atlantic Ocean during the cold phases of the Last Glaciation. Quat Sci Rev 22:209–223. doi: 10.1016/S0277-3791(02)00190-7 CrossRefGoogle Scholar
  98. Rinterknecht VR, Clark PU, Raisbeck GM, Yiou F, Bitinas A, Brook EJ, Marks L, Zelcs V, Lunkka J-P, Pavlovskaya IE, Piotrowski JA, Raukas A (2006) The last deglaciation of the southeastern sector of the Scandinavian Ice Sheet. Science 311:1449–1452CrossRefGoogle Scholar
  99. Rosenberg NJ, Epstein DJ, Wang D, Vail L, Srinivasan R, Arnold JG (1999) Possible impacts of global warming on the hydrogeology of the Ogallala aquifer region. Clim Change 42:677–692CrossRefGoogle Scholar
  100. Rozanski K (1985) Deuterium and oxygen-18 in European groundwaters: links to atmospheric circulation in the past. Chem Geol 52:349–363. doi: 10.1016/0168-9622(85)90045-4 Google Scholar
  101. Rozanski K, Araguas-Araguas L, Gonfiantini R (1992) Relation between long-term trends of oxygen-18 isotope composition of precipitation and climates. Science 258:981–984CrossRefGoogle Scholar
  102. Rudolph J, Rath HK, Sonntag C (1984) Noble gases and stable isotopes in 14C dated paleowaters from central Europe and the Sahara. In: Isotope hydrology. IAEA, Vienna, pp 467–477Google Scholar
  103. Schluchter C, Wohlfarth-Meyer B (1987) Till facies varieties of the Western Swiss Alpine Foreland: tills and glaciotectonics. Proc. INQUA symposium, Amsterdam, Balkema, Rotterdam, The Netherlands, pp 67–72Google Scholar
  104. Smith DB, Downing RA, Monkhouse RA, Otlet RL, Pearson FJ (1976) The age of groundwater in the Chalk of the London Basin. Water Resour Res 12:392–404CrossRefGoogle Scholar
  105. Sracek O, Hirata R (2002) Geochemical and stable isotopic evolution of the Guarani Aquifer System in the state of São Paulo, Brazil. Hydrogeol J 10:643–655. doi: 10.1007/s10040-002-0222-8 CrossRefGoogle Scholar
  106. Stute M, Deak J (1989) Environmental isotope study (14C, 13C, 18O, D, noble gases) on deep groundwater circulation systems in Hungary with reference to palaeoclimate. Radiocarbon 31(3):902–918Google Scholar
  107. Tarasov PE, Peyron O, Guiot J, Brewer S, Volkova VS, Bezusko LG, Dorofeyuk NI, Kvavadze EV, Osipova IM, Panova NK (1999) Last Glacial Maximum climate of the former Soviet Union and Mongolia reconstructed from pollen and plant macrofossil data. Clim Dynam 15:227–240CrossRefGoogle Scholar
  108. Ţenu A, Noto P, Cortecci G, Nuti S (1975) Environmental isotopic study of the Barremian-Jurassic aquifer in South Dobrogea (Roumania). J Hydrol 26(3–4):185–198Google Scholar
  109. Toucanne S, Zaragosi S, Bourillet JF, Gibbard PL, Eynaud F, Giraudeau J, Turon JL, Cremer M, Cortijo E, Martinez P, Rossignol L (2009) A 1.2 Ma record of glaciation and fluvial discharge from the west European Atlantic margin. Quat Sci Rev 28:2974–2981Google Scholar
  110. Vaikmäe R, Edmunds WM, Manzano M (2001a) Weichselian palaeoclimate and palaeoenvironment in Europe: background for palaeogroundwater formation. In: Edmunds WM, Milne CJ (eds) Palaeowaters in coastal Europe: evolution of palaeogroundwater since the late Pleistocene. Geol Soc Lond Spec Publ 189:163–191Google Scholar
  111. Vaikmäe R, Vallner L, Loosli HH, Blaser PC, Juillard-Tardent M (2001b) Palaeogroundwater of glacial origin in the Cambrian-Vendian aquifer of northern Estonia. In: Edmunds WM, Milne CJ (eds) Palaeowaters in coastal Europe: evolution of palaeogroundwater since the late Pleistocene. Geol Soc Lond Spec Publ 189:17–27. doi: 10.1144/GSL.SP.2001.189.01.03.
  112. Van Vliet-Lanoë B (1998) Pattern ground, hummocks, and Holocene climate changes. Eurasian Soil Sci 31(5):507–513Google Scholar
  113. Vandenberghe J, Huijzer B, Mücher H, Laan W (1998) Short climatic oscillations in a western European loess sequence (Kesselt, Belgium). J Quat Sci 13:471–485CrossRefGoogle Scholar
  114. Walker MJC, Bohncke SJP, Coope GR, O’Connell M, Usinger H, Verbruggen C (1994) The Devensian/Weichselian late-glacial in northwest Europe (Ireland, Britain, north Belgium, the Netherlands, northwest Germany). J Quat Sci 9(2):109–118CrossRefGoogle Scholar
  115. Walraevens K (1998) Natural isotopes and noble gases in groundwater of the Tertiary Ledo-Paniselian Aquifer in East and West Flanders. Natuurwet Tijdschr 78:246–260Google Scholar
  116. Walraevens K, Van Camp M, Lermytte J, Van Der Kemp WJM, Loosli HH (2001) Pleistocene and Holocene groundwaters in the freshening Ledo-Paniselian aquifer in Flanders, Belgium. In: Edmunds WM, Milne CJ (eds) Palaeowaters in coastal Europe: evolution of palaeogroundwater since the late Pleistocene. Geol Soc Lond Spec Publ 189:49–70Google Scholar
  117. Webb T, Kutzbach JE (1998) An introduction to Late Quaternary climates: data syntheses and model experiments. Quat Sci Rev 17(6–7):465–471. doi: 10.1016/S0277-3791(98)00008-0 CrossRefGoogle Scholar
  118. Wendland E, Barreto C, Gomes LH (2007) Water balance in the Guarani Aquifer outcrop zone based on hydrogeologic monitoring. J Hydrol 342:261–269. doi: 10.1016/j.jhydrol.2007.05.033 CrossRefGoogle Scholar
  119. Woodward JC, Macklin MG, Smith GR (2004) Pleistocene glaciation in the mountains of Greece. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations: extent and chronology, part I: Europe, pp 155–174Google Scholar
  120. Wysota W, Lankauf KR, Szmanda J, Chruscinska A, Oczkowski HL, Przegietka KR (2002) Chronology of the Vistulian (Weichselian) glacial events in the Lower Vistula Region, Middle-North Poland. Geochronometria 21:137–142Google Scholar
  121. Zazo C, Goy JL, Lario J, Silva PG (1996) Littoral zone and rapid climatic changes during the last 20.000 years: the Iberian study case. Zeitschrift Geomorphol N.F.Suppl. 102:119–134Google Scholar
  122. Zhang M, Frape SK, Love AJ, Herczeg AL, Lehmann BE, Beyerle U, Purtschert R (2007) Chlorine stable isotope studies of old groundwater, southwestern Great Artesian Basin, Australia. Appl Geochem 22:557–574. doi: 10.1016/j.apgeochem.2006.12.004 CrossRefGoogle Scholar
  123. Zuber A, Weise SM, Osenbrück K, Pajnowska H, Grabczak J (2000) Age and recharge pattern of water in the Oligocene of the Mazovian basin (Poland) as indicated by environmental tracers. J Hydrol 233:174–188CrossRefGoogle Scholar
  124. Zuber A, Weise SM, Motyka J, Osenbrück K, Rozanski K (2004) Age and flow pattern of groundwater in a Jurassic limestone aquifer and related Tertiary sands derived from combined isotope, noble gas and chemical data. J Hydrol 286:87–112. doi: 10.1016/j.jhydrol.2003.09.004 CrossRefGoogle Scholar
  125. Zuppi GM, Sacchi E (2004) Hydrogeology as a climate recorder: Sahara-Sahel (North Africa) and the Po Plain (northern Italy). Glob Planet Change 40:79–91CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Hana Jiráková
    • 1
    • 2
    • 3
  • Frédéric Huneau
    • 1
    • 2
    Email author
  • Hélène Celle-Jeanton
    • 4
    • 5
    • 6
  • Zbynek Hrkal
    • 3
    • 7
  • Philippe Le Coustumer
    • 1
    • 2
  1. 1.Université de Bordeaux, UFR des Sciences de la Terre et de la MerTalenceFrance
  2. 2.EA 4592 Géoressources & EnvironnementInstitut EGIDPessacFrance
  3. 3.Charles University, Institute of Hydrogeology Engineering Geology and Applied GeophysicsPrague 2Czech Republic
  4. 4.Clermont Université, Université Blaise Pascal, Laboratoire Magmas et VolcansClermont-FerrandFrance
  5. 5.CNRSUMR 6524, LMVClermont-FerrandFrance
  6. 6.IRDClermont-FerrandFrance
  7. 7.Water Research Institute TGMPrague 6Czech Republic

Personalised recommendations