Hydrogeology Journal

, Volume 19, Issue 6, pp 1239–1252

The fate and transport of nitrate in shallow groundwater in northwestern Mississippi, USA

  • Heather L. Welch
  • Christopher T. Green
  • Richard H. Coupe
Report

Abstract

Agricultural contamination of groundwater in northwestern Mississippi, USA, has not been studied extensively, and subsurface fluxes of agricultural chemicals have been presumed minimal. To determine the factors controlling transport of nitrate-N into the Mississippi River Valley alluvial aquifer, a study was conducted from 2006 to 2008 to estimate fluxes of water and solutes for a site in the Bogue Phalia basin (1,250 km2). Water-quality data were collected from a shallow water-table well, a vertical profile of temporary sampling points, and a nearby irrigation well. Nitrate was detected within 4.4 m of the water table but was absent in deeper waters with evidence of reducing conditions and denitrification. Recharge estimates from 6.2 to 10.9 cm/year were quantified using water-table fluctuations, a Cl tracer method, and atmospheric age-tracers. A mathematical advection-reaction model predicted similar recharge to the aquifer, and also predicted that 15% of applied nitrogen is leached into the saturated zone. With current denitrification and application rates, the nitrate-N front is expected to remain in shallow groundwater, less than 6–9 m deep. Increasing application rates resulting from intensifying agricultural demands may advance the nitrate-N front to 16–23 m, within the zone of groundwater pumping.

Keywords

Groundwater age Nitrate Recharge Geochemical modeling USA 

Devenir et transport des nitrates en aquifère superficiel au Nord-Ouest du Mississippi, Etats-Unis

Résumé

La contamination d’origine agricole de l’eau souterraine au Nord-Ouest du Mississippi, Etats-Unis, n’a pas été étudiée de façon extensive, et les flux de produits chimiques agricoles de subsurface ont été supposés minimum. Une étude a été menée de 2006 à 2008 pour estimer les flux d’eau et de solutés sur un site du bassin de Bogue Phalia (1 250 km²), dans le but de déterminer les facteurs contrôlant le transport de l’azote dans l’aquifère alluvial du fleuve Mississippi. Des données sur la qualité des eaux ont été récoltées dans un puits peu profond, selon des points de prélèvement temporaires répartis sur un profil vertical, et dans un forage d’irrigation voisin. Les nitrates ont été détectés jusqu’à 4.4 m sous le niveau statique, mais étaient absents dans les eaux plus profondes, avec des indices de réduction et de dénitrification. Les recharges ont été estimées entre 6.2 et 10.9 m/an en utilisant les fluctuations de la surface libre, une méthode de traçage par les chlorures, et des traceurs atmosphériques de datation. Un modèle mathématique d’advection-réaction a prédit à une recharge similaire, estimant aussi que 15% de l’azote introduit est lessivé vers la zone saturée. Avec les taux actuels de dénitrification et d’application d’intrants, le front de nitrate N devrait se maintenir en eau peu profonde à moins de 6–9 m de profondeur. L’augmentation des taux d’intrants liée à une intensification des pratiques agricoles pourrait repousser le front azoté à 16–23 m, à l’intérieur de la zone de pompage.

El transporte y destino de nitratos en agua subterránea somera en el noroeste del Mississippi, EEUU

Resumen

La contaminación agrícola del agua subterránea en el noroeste de Mississippi, EEUU, no ha sido estudiada extensamente, y los flujos subsuperficiales de los agroquímicos agrícolas se han presumidos mínimos. Para determinar los factores que controlan el transporte de nitrato-N en el acuífero aluvial del valle del Río Mississippi, se llevó a cabo un estudio desde 2006 a 2008 para estimar los flujos de agua y solutos para un sitio en la cuenca Bogue Phalia (1,250 km2). Los datos de calidad del agua se recolectaron a partir de pozos freáticos someros, un perfil vertical de puntos de muestreo temporario, y un pozo de riego cercano. El nitrato se detectó dentro de los 4.4 m de la capa freática pero estaba ausente en aguas más profundas con evidencias de condiciones reductoras y desnitrificación. Se cuantificó la estimación de la recarga en 6.2 a 10.9 cm/año usando las fluctuaciones del nivel freático, el método de trazador de Cl y trazadores de edad atmosférica. Un modelo matemático de advección – reacción predijo una recarga similar al acuífero, y también predijo que el 15% del nitrógeno aplicado es lixiviado dentro de la zona saturada. Con los ritmos de desnitrificación y aplicación actuales se espera que el frente de nitrato-N permanezca en el agua subterránea somera, a un profundidad menor a 6–9 m de profundidad. Los ritmos de aplicación crecientes provenientes de la demanda de la agricultura intensiva puede llevar el frente de nitrato-N a 16–23 m, dentro de la zona del bombeo de agua subterránea.

美国密西西比州西北部浅层地下水中硝酸盐的运移与归宿

摘要

美国密西西比州西北部地下水的农业污染并没有进行过系统的研究,地下农用化学物的通量据推测是非常小的。为了确定控制密西西比河谷冲积扇含水层里硝酸盐-氮运移的因素,2006–2008年开展了估算Bogue Phalia盆地(1250 km2)某地点水和溶质通量的研究。水质数据来自于潜水含水层中的井孔、临时取样点的垂向剖面以及附近一个灌溉井。硝酸盐在水位以下4.4m内被检测到,而在更深的水里则没有硝酸盐存在,有证据表明后者处于还原环境并存在反硝化作用。根据水位波动,采用Cl–示踪方法以及大气中的年龄示踪剂确定出地下水补给量为6.2 – 10.9 cm/year。流动-反应数值模型预测的该含水层补给量结果与此相似,并估测了15%的人工氮淋滤到了饱和带中。按照目前的反硝化作用强度和施肥速率,硝酸盐-氮锋面将会局限于浅部地下水中,埋深小于6–9 m。不断扩大的农业规模导致的施肥量增加可能在地下水开采区使硝酸盐锋面下移至地下16–23m处。

O destino e transporte dos nitratos nas águas subterrâneas pouco profundas no noroeste do Mississippi, EUA

Resumo

A contaminação agrícola das águas subterrâneas no noroeste do Mississippi, nos EUA, não tem sido estudada de forma extensiva, e tem-se presumido que o transporte subterrâneo de agroquímicos é mínimo. Para determinar os factores que controlam a entrada de nitrato-N no aquífero aluvionar do Vale do Rio Mississippi, realizou-se um estudo, entre 2006 e 2008, para estimar os fluxos de água e solutos numa zona da bacia Bogue Phalia (1,250 km2). Foram recolhidos dados de qualidade da água de um poço pouco profundo que capta o nível freático, de um perfil vertical de pontos de amostragem temporários e ainda de um furo de rega localizado próximo. Os nitratos foram detectados até 4.4 m abaixo do nível freático, mas estavam ausentes em águas mais profundas, evidenciando condições redutoras e desnitrificação. Obtiveram-se estimativas de recarga entre 6.2 e 10.9 cm/ano com base nas oscilações do nível freático, no método do traçador Cl e nos traçadores atmosféricas usados para datação. Um modelo matemático de advecção-reacção previu uma recarga do aquífero semelhante, e também previu que 15% do azoto aplicado é lixiviado para dentro da zona saturada. Com as actuais taxas de desnitrificação e aplicação, a frente do nitrato-N deverá permanecer nas águas subterrâneas menos profundas, a menos de 6–9 m de profundidade. O aumento das taxas de aplicação que resultam da intensificação da procura agrícola pode causar o avanço da frente de nitrato-N até 16–23 m, dentro da zona de captação das águas subterrâneas.

References

  1. Aeschbach-Hertig W, El-Gamal H, Wieser M, Palcsu L (2008) Modeling excess air and degassing in groundwater by equilibrium partitioning with a gas phase. Water Resour Res 44:W08449. doi:10.1029/2007WR006454 CrossRefGoogle Scholar
  2. Agrawal GD, Lunkad SK, Malkhed T (1999) Diffuse agricultural nitrate pollution of groundwaters in India. Water Sci Technol 39:67–75CrossRefGoogle Scholar
  3. Arthur JK (1994) Thickness of the upper and lower confining units of the Mississippi River Valley alluvial aquifer in northwestern Mississippi. US Geol Surv Water Resour Invest Rep 94–4172Google Scholar
  4. Arthur JK (1995) Changes in the volume of water in the Mississippi River Valley alluvial aquifer in the Delta, northwestern Mississippi, 1980–94. US Geol Surv Water Resour Invest Rep 95–4127, 12 ppGoogle Scholar
  5. Arthur JK (2001) Hydrogeology, model description, and flow analysis of the Mississippi River alluvial aquifer in Northwestern Mississippi. US Geol Surv Water Resour Invest Rep 01–4035, 47 ppGoogle Scholar
  6. Autin WJ, Burns SF, Miller BJ, Saucier RT, Snead JI (1991) Quaternary geology of the Lower Mississippi Valley. In: Morrison RB (ed) Quaternary nonglacial geology: conterminous US. The geology of North America, vol K-2. Geological Society of America, Boulder, CO, pp 547–582Google Scholar
  7. Blicher-Mathiesen G, McCarty GW, Nielsen LP (1998) Denitrification and degassing in groundwater estimated from dissolved dinitrogen and argon. J Hydrol 208:16–24CrossRefGoogle Scholar
  8. Böhlke JK (2002) Groundwater recharge and agricultural contamination. Hydrogeol J 10:153–179CrossRefGoogle Scholar
  9. Boswell EH, Cushing EM, Hosman RL (1968) Quaternary aquifers in the Mississippi Embayment. US Geol Surv Prof Pap 448-E, 15 ppGoogle Scholar
  10. Busenberg E, Plummer LN (1992) Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: the alluvium and terrace system of central Oklahoma. Water Resour Res 28(9):2257–2283CrossRefGoogle Scholar
  11. Busenberg E, Plummer LN (2000) Dating young groundwater with sulfur hexafluoride: natural and anthropogenic sources of sulfur hexafluoride. Water Resour Res 36(10):3011–3030CrossRefGoogle Scholar
  12. Chapelle FH (1993) Ground-water microbiology and geochemistry. Wiley, New York, 424 ppGoogle Scholar
  13. Chen J, Tang C, Sakura Y, Yu J, Fukushima Y (2005) Nitrate pollution from agriculture in different hydrogeological zones of the regional groundwater flow system in the North China Plain. Hydrogeol J 13:481–492CrossRefGoogle Scholar
  14. Cook PG, Böhlke JK (2000) Determining timescales for groundwater flow and solute transport. In: Cook PG, Herczeg A (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 1–30CrossRefGoogle Scholar
  15. Coupe RH (2002) Nitrogen and phosphorus concentrations and fluxes of streams in the Mississippi Embayment study unit. US Geol Surv Water Resour Invest Rep 01–4024, 65 ppGoogle Scholar
  16. Doherty J (2008) PEST: Model-independent parameter estimation user manual, 5th edn., Watermark Computing, Corinda, Australia, 336 ppGoogle Scholar
  17. Dubrovsky, NM, Burow, KR, Clark, GM, Gronberg, JM, Hamilton, PA, Hitt, KJ, Mueller, DK, Munn, MD, Nolan, BT, Puckett, LJ, Rupert, MG, Short, TM, Spahr, NE, Sprague, LA, Wilber, WG (2010) The quality of our nation’s waters—nutrients in the nation’s streams and groundwater, 1992–2004. US Geol Surv Circ 1350, 174 ppGoogle Scholar
  18. Fetter CW (1994) Applied hydrogeology, 3rd edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  19. Fisher LH, Healy RW (2008) Water movement within the unsaturated zone in four agricultural areas of the United States. J Environ Qual 37(3):1051–1063CrossRefGoogle Scholar
  20. Fishman MJ, Friedman LC eds. (1989) Methods for determination of inorganic substances in water and fluvial sediments. US Geol Surv Techniques of Water Resources Investigations, book 5, chapter A1, US Geological Survey, Reston, VA, 545 ppGoogle Scholar
  21. Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJ, 604 ppGoogle Scholar
  22. Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53(4):341–356CrossRefGoogle Scholar
  23. Gonthier GJ (2003) Quality of ground water in Pleistocene and Holocene subunits of the Mississippi River Valley alluvial aquifer, 1998. US Geol Surv Water Resour Invest Rep 03–4202, 80 ppGoogle Scholar
  24. Green CT, Fisher LH, Bekins BA (2008a) Nitrogen fluxes through unsaturated zones in five agricultural settings across the Unites States. J Environ Qual 37:1073–1108CrossRefGoogle Scholar
  25. Green CT, Puckett LJ, Böhlke JK, Bekins BA, Phillips SP, Kauffman LJ, Denver JM, Johnson HM (2008b) Limited occurrence of denitrification in four shallow aquifers in agricultural areas of the United States. J Environ Qual 37(3):994–1009CrossRefGoogle Scholar
  26. Green CT, Böhlke JK, Bekins BA, Phillips SP (2010) Mixing effects on apparent reaction rates and isotope fractionation factors during denitrification in a heterogeneous aquifer. Water Resour Res 46:W08525. doi:10.1029/2009WR008903 CrossRefGoogle Scholar
  27. Hallberg GR (1989) Pesticide pollution of groundwater in the humid United States. Agric Ecosys Environ 26:299–367CrossRefGoogle Scholar
  28. Hamilton PA, Helsel DR (1995) Effects of agriculture on ground-water quality in five regions of the United States. Ground Water 33(2):217–226CrossRefGoogle Scholar
  29. Hansen B, Thorling L, Dalgaard T, Erlandsen M (2011) Trend reversal of nitrate in Danish groundwater: a reflection of agricultural practices and nitrogen surpluses since 1950. Environ Sci Technol 45:228–234CrossRefGoogle Scholar
  30. Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109CrossRefGoogle Scholar
  31. Hill MC, Tiedeman CR (2007) Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley, Chichester, UK, 464 ppGoogle Scholar
  32. Johnson AI (1967) Specific yield: compilation of specific yields for various materials. US Geol Surv Water Suppl Pap 1662-D, 74 ppGoogle Scholar
  33. Keeney DR (1986) Sources of nitrate to ground water. Crit Rev Environ Control 16:257–304CrossRefGoogle Scholar
  34. Korom SF (1992) Natural denitrification in the saturated zone: a review. Water Resour Res 28(6):1657–1668CrossRefGoogle Scholar
  35. Koterba MT, Wilde FD, Lapham WW (1995) Ground-water data collection protocols and procedures for the national water-quality assessment program: collection and documentation of water-quality samples and related data. US Geol Surv Open-File Rep 95–399, 113 ppGoogle Scholar
  36. Krinitzsky EL, Wire JC (1964) Ground water in alluvium of lower Mississippi Valley (upper and central areas). Technical report 3–658, vols 1 and 2, US Army Corps Engineers Waterways Experimentation Station, Vicksburg, MS, 400 ppGoogle Scholar
  37. Landreth S (2008) Mississippi Delta agricultural chemical groundwater monitoring program: summary of results Mississippi Delta region, March 1, 1989 through December 31, 2007. Mississippi Department of Environmental Quality, Jackson, MSGoogle Scholar
  38. Lasdon LS, Waren AD, Jain A, Rather M (1978) Design and testing of a generalized reduced code for nonlinear programming. ACM Trans Math Softw 4(1):34–50CrossRefGoogle Scholar
  39. Liu GD, Wu WL, Zhang J (2005) Regional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in groundwater in north China. Agric Ecosys Environ 107:211–220CrossRefGoogle Scholar
  40. Maupin MA, Barber NL (2005) Estimated withdrawals from principal aquifers in the United States, 2000. US Geol Surv Circ 1279, 46 ppGoogle Scholar
  41. McWhorter D, Sunada D (1977) Ground-water hydrology and hydraulics. Water Resources, Littleton, CO, 290 ppGoogle Scholar
  42. Meyer SL (1975) Data analysis for scientists and engineers. Wiley, New York, 513 ppGoogle Scholar
  43. Mississippi State University (2009) Delta 2010 planning budgets: budget report 2009–06. Department of Agricultural Economics, MSU, Starkville, MS, 185 ppGoogle Scholar
  44. Mueller DK, Helsel DR (1996) Nutrients in the Nation’s waters: too much of a good thing? US Geol Surv Circ 1136, 24 ppGoogle Scholar
  45. Murphree CE, Mutchler CK (1981) Sediment yield from a flatland watershed. Trans ASAE 24(4):966–969Google Scholar
  46. Murphree CE, Mutchler CK, McDowell LL (1976) Sediment yields from a Mississippi Delta watershed, Proc. 3rd Fed. Interagency Sedimentation Conf., Denver, CO, 22–25 March 1976, pp 99–109Google Scholar
  47. National Atmospheric Deposition Program (2009) NADP/NTN National Trends Network. NADP Program Office, Champaign, IL. Data accessed at http://nadp.sws.uiuc.edu/. Cited April 2009
  48. National Research Council (1993) Ground water vulnerability assessment: contamination potential under conditions of uncertainty. National Academy Press, Washington, DCGoogle Scholar
  49. Nolan BT, Healy RW, Taber PE, Perkins K, Hitt KJ, Wolock DM (2007) Factors influencing ground-water recharge in the eastern United States. J Hydrol 332:187–205CrossRefGoogle Scholar
  50. Plummer LN, Michel RL, Thurman EM, Glynn PD (1993) Environmental tracers for age dating young ground water. In: Alley WM (ed) Regional ground-water quality. Reinhold, New York, pp 255–293Google Scholar
  51. Postma D, Boesen C, Kristiansen H, Larsen F (1991) Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling. Water Resour Res 27:2027–2045CrossRefGoogle Scholar
  52. Puckett LJ, Tesoriero AJ, Dubrovsky NM (2011) Nitrogen contamination of surficial aquifers: a growing legacy. Environ Sci Technol 45:839–844CrossRefGoogle Scholar
  53. Rabalais N (2002) Nitrogen in aquatic ecosystems. Ambio 31:102–112Google Scholar
  54. Rebich RA (2001) Quality of runoff in the Mississippi Delta management systems evaluation areas project, 1996–1999 In: Mississippi Delta management systems evaluation areas project, 1995–1999. Mississippi Agric For Exper Station Info Bull 377Google Scholar
  55. Reilly TE, Dennehy KF, Alley WM, Cunningham WL (2008) Ground-water availability in the United States. US Geol Surv Circ 1323, 70 ppGoogle Scholar
  56. Renken RA (1998) Ground water atlas of the United States segment 5 Arkansas, Louisiana, and Mississippi. US Geol Surv Hydrol Invest Atlas 730-F, 10 ppGoogle Scholar
  57. Révész K, Casciotti K (2007) Determination of the δ(15 N/14N) and δ(18O/16O) of nitrate in water: RSIL Lab Code 2900, chap. C17. In: Révész K, Kinga, and Coplen, Tyler B (eds) Methods of the Reston Stable Isotope Laboratory: Reston, Virginia, US Geol Surv Techniques and Methods, book 10, sec. C, chap. 17, US Geological Survey, Reston, VA, 24 ppGoogle Scholar
  58. Saucier RT (1994) Geomorphology and quaternary geologic history of the Lower Mississippi Valley, vol 1. US Army Engineers Waterways Experiment Station, Vicksburg, MS, 398 ppGoogle Scholar
  59. Shaw DR, Schraer SM, Prince J, Boyette M (2006) Herbicide dynamics in the Bogue Phalia watershed in the Yazoo River basin of Mississippi. Weed Sci 54:807–813CrossRefGoogle Scholar
  60. Slack LJ, Darden D (1991) Summary of aquifer tests in Mississippi, June 1942 through May 1988. US Geol Surv Water Resour Invest Rep 90–4155, 40 ppGoogle Scholar
  61. Thatcher LL, Janzer VJ, Edwards KW (1977) Methods for determination of radioactive substances in water and fluvial sediments. USGS Techniques of Water Resources Investigations, book 5, chap. A5, US Geological Survey, Reston, VAGoogle Scholar
  62. US Department of Agriculture (2010a) National Agriculture Statistics Service. Accessed at http://www.nass.usda.gov/Statistics_by_State/Mississippi/Charts_and_Maps/index.asp. Cited 29 January 2010
  63. US Department of Agriculture (2010b) Economic research service fertilizer use data set. Accessed at http://www.ers.usda.gov/Data/FertilizerUse/. Cited 29 January 2010
  64. US Environmental Protection Agency (2006) 2006 edition of the Drinking Water Standards and Health Advisories. EPA-822-R-06-013, USEPA, Washington, DCGoogle Scholar
  65. US Geological Survey (2006) Dissolved gas sampling instructions. US Geological Survey, Reston, VA. Accessed at http://water.usgs.gov/lab/dissolved-gas/. Cited 5 April 2011
  66. US Geological Survey (2009) CFC sampling method: bottles. The Reston Chlorofluorocarbon Lab., US Geological Survey, Reston, VA. Accessed at http://water.usgs.gov/lab/chlorofluorocarbons/sampling/bottles/. Cited 5 April 2011
  67. US Geological Survey (2010) SF6 sampling. The Reston Chlorofluorocarbon Lab., US Geological Survey, Reston, VA. Accessed at http://water.usgs.gov/lab/sf6/sampling/. Cited 5 April 2011
  68. Ward MH, deKok TM, Levallois P, Brender J, Gulis G, Nolan BT, VanDerslice J (2005) Workgroup report: drinking-water nitrate and health—recent findings and research needs. Env Health Perspec 113(11):1607–1614CrossRefGoogle Scholar
  69. Weiss RF (1970) The solubility of nitrogen, oxygen, and argon in water and seawater. Deep Sea Res 17:721–735Google Scholar
  70. Welch HL, Kingsbury JA, Tollett RW, Seanor RC (2009) Quality of shallow groundwater and drinking water in the Mississippi Embayment-Texas Coastal uplands aquifer system and Mississippi River Valley alluvial aquifer, south-central United States, 1994–2004. US Geol Surv Sci Invest Rep 2009–5091, 51 ppGoogle Scholar
  71. World Health Organization (2004) Guidelines for drinking-water quality, 3rd edn., vol 1: recommendations. WHO, GenevaGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  • Heather L. Welch
    • 1
  • Christopher T. Green
    • 2
  • Richard H. Coupe
    • 1
  1. 1.US Geological SurveyJacksonUSA
  2. 2.US Geological SurveyMenlo ParkUSA

Personalised recommendations