Hydrogeology Journal

, 19:1169 | Cite as

Contribution of geophysical methods to karst-system exploration: an overview

  • Konstantinos Chalikakis
  • Valérie Plagnes
  • Roger Guerin
  • Rémi Valois
  • Frank P. Bosch
Report

Abstract

The karst environment is one of the most challenging in terms of groundwater, engineering and environmental issues. Geophysical methods can provide useful subsurface information in karst regions concerning, for instance, hazard estimation or groundwater exploration and vulnerability assessment. However, a karst area remains a very difficult environment for any geophysical exploration; selection of the best-suited geophysical method is not always straightforward, due to the highly variable and unpredictable target characteristics. The state of the art is presented, in terms of the contributions made by geophysical methods to karst-system exploration, based on extensive analysis of the published scientific results. This report is an overview and should be used as a preliminary methodological approach, rather than a guideline.

Keywords

Karst Geophysical methods Overview 

Contribution des méthodes géophysiques à l’exploration des systèmes karstiques: une vue d’ensemble

Résumé

Le milieu karstique est l'un des milieux hydrogéologiques qui présente le plus de défis en termes d’hydrogéologie, d’ingénierie et d’environnement. Les méthodes géophysiques peuvent fournir des informations de subsurface utiles dans les régions karstiques, notamment pour l’estimation des risques géotechniques, la recherche d’eau souterraine et l’évaluation de la vulnérabilité de la ressource en eau. Toutefois, l’exploration géophysique se révèle complexe en milieu karstique; le choix de la méthode la mieux appropriée reste difficile en raison de la structure et des propriétés très hétérogènes du milieu. Un état de l’art sur la contribution des méthodes géophysiques à l’exploration hydrogéologique des systèmes karstiques est présenté ici. Il est basé sur une analyse extensive des résultats scientifiques publiés en la matière. Ce rapport est une vue d’ensemble et doit être considéré davantage comme une approche méthodologique préliminaire que comme un guide.

Contribución de los métodos geofísicos a la exploración de sistemas kársticos: una visión general

Resumen

El ambiente kárstico es uno de los más desafiantes en términos de cuestiones de agua subterránea, de ingenieria y del medio ambiente. Los métodos geofísicos pueden proporcionar información de subsuperficie útil en areas kársticas, en particular para la estimación de peligros o para la exploración de agua subterránea y la evaluación de la vulnerabilidad. Sin embargo, un área kártica sigue siendo un ambiente muy difícil para cualquier exploración geofísica; la selección del método geofísico más apropiado no es siempre directo, debido a las características muy heterogéneo. Un estado del arte sobre la contribución de los métodos geofísicos en la exploración hidrogeológica de los sistemas kársticos se presenta aquí, basados en análisis extensivos de los resultados científicos publicados. Este reporte es una visión general y debe ser usado como una aproximación metodológica preliminar, en lugar de una guía.

地球物理方法对岩溶系统勘探的贡献综述

摘要

无论就地下水,工程地质,还是环境问题而言,岩溶环境都是最具挑战性的类型之一。地球物理方法可提供关于岩溶区的有用的地下信息,比如灾害评估、地下水勘探和脆弱性评价。然而,岩溶区的地球物理勘探仍很困难。由于目标属性的高度可变及不可预测,选择最佳的地球物理方法并不容易。本文基于已出版科学文献的全面分析,按照地球物理方法对岩溶系统勘探的贡献阐述目前发展现状。这篇综述可作为初步的技术路线,而非指导方针。

Contribuição dos métodos geofísicos para a exploração de sistemas cársicos: uma visão geral

Resumo

O ambiente cársico é um dos meios mais desafiadores em termos de água subterrânea, engenharia e questões ambientais. Os métodos geofísicos podem fornecer informações úteis de subsuperfície em regiões cársicas, relativas, por exemplo, à estimativa de risco ou de exploração de águas subterrâneas e à avaliação da vulnerabilidade. No entanto, uma área cársica continua a ser um ambiente muito difícil para qualquer exploração geofísica; a seleção do método geofísico mais adequado nem sempre é fácil, devido às características altamente variáveis e imprevisíveis do meio. É apresentado o estado da arte, em termos de contribuições feitas pelos métodos geofísicos para a exploração de sistemas cársicos, com base na análise exaustiva dos resultados científicos publicados. Este relatório é uma revisão geral e deve ser usado como uma abordagem metodológica preliminar, ao invés de ser usado como um guia orientador.

Notes

Acknowledgements

The authors wish to thank Peter Huggenberger, Arthur Batte, Kristine Walraevens and Timothy Bechtel for their comments and suggestions, which helped to improve this technical report.

References

  1. ABEM France (2010) http://www.abemfrance.eu/. Cited April 2010
  2. Ahmed S, Carpenter PJ (2003) Geophysical response of filled sinkholes, soil pipes and associated bedrock fractures in thinly mantled karst, east-central Illinois. Environ Geol 44:705–716Google Scholar
  3. Al-Fares W, Bakalowicz M, Guérin R, Dukhan M (2002) Analysis of the karst aquifer structure of the Lamalou area (Hérault, France) with ground penetrating radar. J Appl Geophys 51:97–106Google Scholar
  4. Andreo B, Ravbar N, Vias JM (2009) Source vulnerability mapping in carbonate (karst) aquifers by extension of the COP method: application to pilot sites. Hydrogeol J 17:749–758Google Scholar
  5. Arzi A (1975) Microgravimetry for engineering applications. Geophys Prospect 23:408–425Google Scholar
  6. ASTM International (2006) Standard guide for selecting surface geophysical methods. Designation: D 6429-99 (reapproved 2006), ASTM, West Conshohocken, PA, 11 ppGoogle Scholar
  7. Bakalowicz M (1995) La zone d’infiltration des aquifères karstiques : méthodes d’étude—structure et fonctionnement [Infiltration zones in karst aquifers: methods of study—structure and functioning]. Hydrogéologie 4:3–21Google Scholar
  8. Batayneh A, Al-Zoubi A (2000) Detection of a solution cavity adjacent to a highway in southwest Jordan using electrical resistivity methods. J Environ Eng Geophys 5:25–30Google Scholar
  9. Batayneh A, Haddadin G, Toubasi U (1999) Using the head-on resistivity method for shallow rock fracture investigations, Ajlun, Jordan. J Environ Eng Geophys 4:179–184Google Scholar
  10. Batayneh AT, Abueladas AA, Moumani KA (2002) Use of ground penetrating radar for assessment of potential sinkhole conditions: an example from Ghor al Hditha area, Jordan. Environ Geol 41:977–983Google Scholar
  11. Bechtel TD, Bosch FP, Gurk M (2007) Geophysical methods. In: Goldscheider N, Drew D (eds) Methods in karst hydrogeology, chap. 9. Taylor & Francis and Balkema, London, UK and Lisse, the Netherlands, pp 171–199Google Scholar
  12. Belfer I, Bruner I, Keydar S, Kravtsov A, Landa E (1998) Detection of shallow objects using refracted and diffracted seismic waves. J Appl Geophys 38:155–168Google Scholar
  13. Benderitter Y (1997) Karst et investigations géophysiques [Karst and geophysical investigations]. Hydrogéologie 3:19–30Google Scholar
  14. Benson AK (1995) Applications of ground penetrating radar in assessing some geological hazards: examples of groundwater contamination, faults, cavities. J Appl Geophys 33:177–193Google Scholar
  15. Beres M, Luetcher M, Paymond O (2001) Integration of penetrating radar and microgravimetric methods to map shallow caves. J Appl Geophys 46:249–262Google Scholar
  16. Blizkovsky M (1979) Processing and application in microgravity surveys. Geophys Prospect 27:848–861Google Scholar
  17. Bosch FP, Müller I (2001) Continuous gradient VLF measurements: a new possibility for high resolution mapping of karst structures. First Break 19:343–350Google Scholar
  18. Bosch FP, Müller I (2005) Improved karst exploration by VLF-EM-gradient survey: comparison with other geophysical methods. Near Surf Geophys 3:299–310Google Scholar
  19. Boucher M, Legchenko A, Girard JF, Baltassat JM, Dorflinguer N, Chalikakis K (2006) Using 2D inversion of MRS soundings to locate a water-filled karst conduit. J Hydrol 330:413–421Google Scholar
  20. Branston MW, Styles P (2003) The application of time-lapse microgravity for the investigation and monitoring of subsidence at Northwich, Cheshire. Q J Eng Geol Hydrogeol 36:231–244Google Scholar
  21. Butler K (1984) Microgravimetric and gravity gradient techniques for detection of subsurface cavities. Geophysics 49:1084–1096Google Scholar
  22. Busby JP (2000) The effectiveness of azimuthal apparent-resistivity measurements as a method for determining fracture strike orientations. Geophys Prospect 48:677–695Google Scholar
  23. Camacho AG, Vieira R, Montesinos FG, Cuéllar V (1994) A gravimetric 3D global inversion for cavity detection. Geophys Prospect 42:113–130Google Scholar
  24. Cardarelli E, Di Filippo G, Tuccinardi E (2006) Electrical resistivity tomography to detect buried cavities in Rome: a case study. Near Surf Geophys 4:387–392Google Scholar
  25. Carpenter P, Doll W, Kaufmann R (1998) Geophysical character of buried sinkholes on the Oak Ridge reservation, Tennessee. J Environ Eng Geophys 3:133–145Google Scholar
  26. Chamberlain AT, Sellers W, Proctor C, Coard R (2000) Cave detection in limestone using ground penetrating radar. J Archaeol Sci 27:957–964Google Scholar
  27. Chalikakis K (2006) Application de méthodes géophysiques pour la reconnaissance et la protection des ressources en eau dans les milieux karstiques [Geophysical methods applied to water exploration and protection in karst environment]. PhD Thesis, Université Pierre et Marie Curie-Paris 6, France, 217 ppGoogle Scholar
  28. Colley GC (1963) The detection of caves by gravity measurements. Geophys Prospect 11:1–9Google Scholar
  29. Cook JC (1965) Seismic mapping of underground cavities using reflection amplitudes. Geophysics 30:527–538Google Scholar
  30. Cook KL, Van Nostrand RG (1954) Interpretation of resistivity data over filled sinks. Geophys Prospect 21:716–723Google Scholar
  31. Daly D, Dassargues A, Drew D, Dunne S, Goldschneider N, Neal S, Popescu IC, Zwahlen F (2002) Main concept of the “European approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeol J 10:340–345Google Scholar
  32. Davis AD, Long AJ, Wireman M (2002) KARST: a sensitive method for carbonate aquifers in karst terrain. Environ Geol 42:65–72Google Scholar
  33. Debeglia N, Bitri A, Thierry P (2006) Karst investigations using microgravity and MASW: application to Orléans, France. Near Surf Geophys 4:215–225Google Scholar
  34. Dörfliger N, Plagnes V (2009) Cartographie de la vulnérabilité des aquifères karstiques: guide méthodologique de la méthode PaPRIKa [Vulnerability mapping in karst aquifers: methodological guide of PaPRIKa method]. Rapport BRGM RP-57527-FR, BRGM, Orléans, France, 100 ppGoogle Scholar
  35. Doolittle JA, Collins ME (1998) A comparison of EM induction and GPR methods in areas of karst. Geoderma 85:83–102Google Scholar
  36. Dutta N, Bose R, Saikia B (1970) Detection of solution channels in limestone by electrical resistivity method. Geophys Prospect 18:405–414Google Scholar
  37. Elawadi E, El-Qady G, Nigm A, Shaaban F, Ushijima K (2006) Integrated geophysical survey for site investigation at a new dwelling area Egypt. J Environ Eng Geophys 11:249–259Google Scholar
  38. El-Qady G, Hafez M, Abdalla MA, Ushijima K (2005) Imaging subsurface cavities using geoelectric tomography and ground-penetrating radar. J Cave Karst Stud 67:174–181Google Scholar
  39. Ezersky M, Bruner I, Keydar S, Trachtman P, Rybakov M (2006) Integrated study of the sinkhole development site on the western shores of the Dead Sea using geophysical methods. Near Surf Geophys 4:335–343Google Scholar
  40. Expins (2010) http://www.expins.com. Cited April 2010
  41. Fauchard C, Pothérat P (2004) Détection de cavités souterraines par méthodes géophysiques [Underground cavities detection using geophysical methods]. Guide technique, Laboratoire Central des Ponts et Chaussées, Paris, 170 ppGoogle Scholar
  42. Field SM (2002) A lexicon of cave and karst terminology with special reference to environmental karst hydrology. EPA/600/R-02/003, US EPA, Washington, DC, 214 ppGoogle Scholar
  43. Ford DC, Williams PW (2007) Karst geomorphology and hydrology. Chapman and Hall, New York, 601 ppGoogle Scholar
  44. Gautam P, Raj Pant S, Ando H (2000) Mapping of subsurface karst structure with gamma ray and electrical resistivity profiles: a case study from Pokhara valley, central Nepal. J Appl Geophys 45:97–100Google Scholar
  45. Geomatrix (2010) http://www.geomatrix.co.uk. Cited April 2010
  46. Gibson PJ, Lyle P, George DM (2004) Application of resistivity and magnetometry geophysical techniques for near-surface investigations in karst terranes in Ireland. J Cave Karst Stud 66:35–38Google Scholar
  47. Girard JF, Boucher M, Legchenko A, Baltassat JM (2007) 2D magnetic resonance tomography applied to karst conduit imaging. J Appl Geophys 63:103–116Google Scholar
  48. Grandjean G (2006) Imaging sub-surface objects by seismic P-wave tomography: numerical and experimental validations. Near Surf Geophys 4:279–287Google Scholar
  49. Grandjean G, Gourry J (1996) GPR data processing for 3-D fracture mapping in a marble quarry. J Appl Geophys 36:19–30Google Scholar
  50. Greenfield RJ (1979) Review of geophysical approaches to the detection of karst. Bull Assoc Eng Geol 16:393–408Google Scholar
  51. Guérin R, Benderitter Y (1995) Shallow karst exploration using MT-VLF and DC resistivity methods. Geophys Prospect 43:635–653Google Scholar
  52. Guérin R, Baltassat JM, Boucher M, Chalikakis K, Galibert PY, Girard JF, Plagnes V, Valois R (2009) Geophysical characterisation of karst networks: application to the Ouysse system (Poumeyssen, France). CR Geosci 341:810–817Google Scholar
  53. Gutiérrez F, Cooper HA, Johnson KS (2008) Identification, prediction and mitigation of sinkhole hazards in evaporate karst areas. Environ Geol 53:1007–1022Google Scholar
  54. He L, Feng M, He Z, Wang X (2006) Application of EM methods for the investigation of Qiyueshan tunnel, China. J Environ Eng Geophys 11:151–156Google Scholar
  55. Holub P, Dumitresku T (1994) Détection des cavités à l’aide de mesures électriques et du géoradar dans une galerie d’amenée d’eau [Detection of cavities by using electrical methods and the georadar inside a water gallery]. J Appl Geophys 31:185–195Google Scholar
  56. Hoover RA (2003) Geophysical choices for karst investigations. In: Beck BF (ed) Sinkholes and the engineering and environmental impacts of karst. American Society of Civil Engineers, Reston, VA, pp 529–538Google Scholar
  57. Hutchinson DJ, Phillips C, Cascante G (2002) Risk considerations for crown pillar stability assessment for mine closure planning. J Geotech Geol Eng 20:41–64Google Scholar
  58. Iris Instruments (2010) http://www.iris-instruments.com. Cited April 2010
  59. Jacob T, Bayer R, Chéry J, Jourde H, Le Moigne N, Boy JP, Hinderer J, Luck B, Brunet P (2008) Absolute gravity monitoring of water storage variation in a karst aquifer on the Larzac plateau (southern France). J Hydrol 359(1–2):105–117. doi: 10.1016/j.jhydrol.2008.06.020 Google Scholar
  60. Jacob T, Chéry J, Bayer R, Le Moigne N, Boy JP, Vernant P, Boudin F (2009) Time-lapse surface to depth gravity measurements on a karst system reveal the dominant role of the epikarst as a water storage entity. Geophys J Int 177:347–360. doi: 10.1111/j.1365-246X.2009.04118.x Google Scholar
  61. Jacob T, Bayer R, Chéry J, Le Moigne N (2010) Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer. J Geophys Res 115:B06402. doi: 10.1029/2009JB006616 Google Scholar
  62. Jardani A, Revil A, Dupont JP (2006) Self-potential tomography applied to the determination of cavities. Geophys Res Lett 33:L13401Google Scholar
  63. Jardani A, Revil A, Santos F, Fauchard C, Dupont JP (2007) Detection of preferential infiltration pathways in sinkholes using joint inversion of self-potential and EM-34 conductivity data. Geophys Prospect 55:749–760Google Scholar
  64. Johnston MA, Carpenter PJ (1998) Use of seismic refraction surveys to identify mine subsidence fractures in glacial drift and bedrock. J Environ Eng Geophys 2:213–221Google Scholar
  65. Kaspar M, Pecen J (1975) Finding the caves in a karst formation by means of electromagnetic waves. Geophys Prospect 23:611–621Google Scholar
  66. Kaufmann O, Quinif Y (2001) An application of cone penetration tests and combined array 2D electrical resistivity tomography to delineate cover-collapse sinkhole prone areas: geotechnical and environmental applications of karst geology and hydrology. Balkema, Lisse, the Netherlands, pp 359–364Google Scholar
  67. Kavouri K, Plagnes V, Dörfliger N, Trémoulet J, Rejiba F, Marchet P (2011) PaPRIKa: a method for estimating karst resource and source vulnerability? Application to the Ouysse karst system (southwest France). Hydrogeol J 9:339–353. doi: 10.1007/s10040-010-0688-8 Google Scholar
  68. Kofman L, Ronen A, Frydman S (2006) Detection of model voids by identifying reverberation phenomena in GPR records. J Appl Geophys 59:284–299Google Scholar
  69. Kruse S, Grasmueck M, Weiss M, Viggiano D (2006) Sinkhole structure imaging in covered karst terrain. Geophys Res Lett 33:L16405Google Scholar
  70. Lange AL (1999) Geophysical studies at Kartchner Caverns State Park, Arizona. J Cave Karst Stud 61:68–72Google Scholar
  71. Legchenko A, Ezersky M, Camerlynk C, Al-Zoubi A, Chalikakis K, Girard JF (2008a) Locating water-filled karst caverns and estimating their volume using magnetic resonance soundings. Geophysics 73:G51–G61Google Scholar
  72. Legchenko A, Ezersky M, Boucher M, Camerlynk C, Al-Zoubi A, Chalikakis K (2008b) Pre-existing caverns in salt formations could be the major cause of sinkhole hazards along the coast of the Dead Sea. Geophys Res Lett 35:L19404Google Scholar
  73. Leparoux D, Grandjean G (2004) The potential of seismic methods for detecting cavities and buried objects: experimentation at a test site. J Appl Geophys 56:93–106Google Scholar
  74. Leparoux D, Bitri A, Grandjean G (2000) Underground cavity detections: a new method based on seismic Rayleigh waves. Eur J Environ Eng Geophys 5:33–53Google Scholar
  75. Mangin A (1975) Contribution à l’étude hydrodynamique des aquifères karstiques [Contribution to the hydrodynamic study of karst aquifers]. PhD Thesis, Université de Dijon, France, 298 ppGoogle Scholar
  76. Mari JL, Porel G, Bourbiaux B (2009) From 3D seismic to 3D reservoir deterministic model thanks to logging data: the case study of a near surface heterogeneous aquifer. Oil Gas Sci Technol Rev IFP 64:119–131Google Scholar
  77. McGrath RJ, Styles P, Thomas E, Neale S (2002) Integrated high-resolution geophysical investigations as potential tools for water resource investigations in karst terrain. Environ Geol 42:552–557Google Scholar
  78. McMechan GA, Loucks RG, Zeng X, Mescher P (1998) Ground penetrating radar imaging of a collapsed paleocave system in the Ellenburger dolomite, central Texas. J Appl Geophys 39:1–10Google Scholar
  79. Militzer H, Rösler R, Lösch W (1979) Theoretical and experimental investigations for cavity research with geoelectrical resistivity methods. Geophys Prospect 27:640–652Google Scholar
  80. Mochales T, Casas AM, Pueyo EL, Pueyo O, Román MT, Pocoví A, Soriano MA, Ansón D (2008) Detection of underground cavities by combining gravity, magnetic and ground penetrating radar surveys: a case study from the Zaragoza area, NE Spain. Environ Geol 53:1067–1077Google Scholar
  81. Moore DL, Stewart MT (1983) Geophysical signatures of fracture traces in a karst aquifer (Florida, U.S.A.). J Hydrol 61:325–340Google Scholar
  82. Nasseri-Moghaddam A, Cascante G, Hutchinson J (2005) A new quantitative procedure to determine the location and embedment depth of a void using surface waves. J Environ Eng Geophys 10:51–64Google Scholar
  83. Neumann R (1965) La gravimètrie de haute precision : application aux recherches de cavités [High precision gravimetry: application to cavities research]. Geophys Prospect 15:116–134Google Scholar
  84. Noel M, Xu B (1992) Cave detection using electrical resistivity tomography (ERT). Cave Sci 19:91–94Google Scholar
  85. Ogilvy RD, Cuadra A, Jackson PD, Monte JL (1991) Detection of an air-filled drainage gallery by VLF resistivity method. Geophys Prospect 39:845–859Google Scholar
  86. Petrella E, Capuano P, Celico F (2007) Unusual behaviour of epikarst in the Acqua dei Faggi carbonate aquifer (southern Italy). Terra Nova 19:82–88Google Scholar
  87. Piscitelli S, Rizzo E, Cristallo F, Lapenna V, Crocco L, Persico R, Soldovieri F (2007) GPR and microwave tomography for detecting shallow cavities in the historical area of “Sassi of Matera” (southern Italy). Near Surf Geophys 5:273–284Google Scholar
  88. Pueyo-Anchuela O, Juan AP, Soriano MA, Casas-Sainz AM (2009a) Characterization of karst hazards from the perspective of the doline triangle using GPR: examples from Central Ebro Basin (Spain). Eng Geol 108:225–236Google Scholar
  89. Pueyo-Anchuela O, Casas Sainz AM, Soriano MA, Pocoví Juan A (2009b) Mapping subsurface karst features with GPR: results and limitations. Environ Geol 58:391–399Google Scholar
  90. Ravbar N, Goldscheider N (2009) Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeol J 17:725–735Google Scholar
  91. Rey F (2007) Ressources en eau souterraine dans les chaînons béarnais (Pyrénées-Atlantiques, France) [Groundwater resources in the “chaînons béarnais” (Western Pyrenees, France) Geometry and hydrogeological functioning of four carbonated aquifers]. PhD Thesis, Université de Bordeaux I, France, 466 ppGoogle Scholar
  92. Robert A, de Bosset C (1994) Application du géoradar à la localisation de cavités, de nids de gravier et de zones karstiques [Georadar application for cavities localisation, gravel nests and karst zones]. J Appl Geophys 31:197–204Google Scholar
  93. Rybacov M, Goldschmidt V, Fleischer L, Rostein Y (2001) Cave detection and 4-D monitoring: a microgravity case history near the Dead Sea. Leading Edge 20:896–900Google Scholar
  94. Sheehan JR, Doll WE, Mandel WA (2005) An evaluation of methods and available software for seismic refraction tomography analysis. J Environ Eng Geophys 10:21–34Google Scholar
  95. Siart C, Hecht S, Holzhauer I, Altherr R, Meyer HP, Schukraft G, Eitel B, Bubenzer O, Panagiotopoulos D (2009) Karst depressions as geoarchaeological archives: the palaeoenvironmental reconstruction of Zominthos (central Crete), based on geophysical prospection, sedimentological investigations and GIS. Quat Int 216:75–92Google Scholar
  96. Smith DL (1986) Application of the pole–dipole resistivity technique to the detection of solution cavities beneath highways. Geophysics 51:833–837Google Scholar
  97. Šumanovac F, Weisser M (2001) Evaluation of resistivity and seismic methods for hydrogeological mapping in karsts terrains. J Appl Geophys 47:13–28Google Scholar
  98. Steeples D, Knapp R, McElwee C (1986) Seismic reflection investigations of sinkholes beneath Interstate Highway 70 in Kansas. Geophysics 51:295–301Google Scholar
  99. Thierry P, Debeglia N, Bitri A (2005) Geophysical and geological characterisation of karst hazards in urban environments: application to Orléans (France). Bull Eng Geol Environ 64:139–150Google Scholar
  100. Thomas B, Roth MJS (1999) Evaluation of site characterization methods for sinkholes in Pennsylvania and New Jersey. Eng Geol 52:147–152Google Scholar
  101. Turberg P, Barker R (1996) Joint application of radio-magnetotelluric and electrical imaging surveys in complex subsurface environments. First Break 14:105–112Google Scholar
  102. Valois R, Bermejo L, Guérin R, Hinguant S, Pigeaud R, Rodet J (2010) Karstic morphologies identified with geophysics around Saulges caves (Mayenne, France). Archaeol Prospect 17:151–160Google Scholar
  103. Valois R, Camerlynck C, Dhemaied A, Guérin R, Hovhannissian G, Plagnes V, Rejiba F, Robain H (2011) Assessment of doline geometry using geophysics on the Quercy plateau karst (South France). Earth Surf Process Landf. doi: 10.1002/esp.2144
  104. Van Shoor M (2002) Detection of sinkholes using 2D electrical resistivity imaging. J Appl Geophys 50:393–399Google Scholar
  105. Vincenz A (1968) Resistivity investigations of limestone aquifers in Jamaica. Geophysics 33:980–994Google Scholar
  106. Vogelsang D (1987) Examples of electromagnetic prospecting for karst and fault systems. Geophys Prospect 35:604–617Google Scholar
  107. Vouillamoz JM, Legchenko A, Albouy Y, Bakalowicz M, Baltassat JM, Al-Fares W (2003) Localization of karst aquifer with magnetic resonance sounding and resistivity imagery. Ground Water 41:578–587Google Scholar
  108. White WB (2007) A brief history of karst hydrogeology: contributions of the NSS. J Cave Karst Stud 69:13–26Google Scholar
  109. Witten AJ, Won IJ, Norton SJ (1997) Imaging underground structures using broadband electromagnetic induction. J Environ Eng Geophys 2:105–114Google Scholar
  110. Zhou W, Beck BF, Stephenson JB (1999) Investigation of ground water flow in karst areas using component separation natural potential measurements. Environ Geol 37:19–25Google Scholar
  111. Zhou W, Beck BF, Stephenson JB (2000) Reliability of dipole-dipole electrical resistivity tomography for defining depth to bedrock in covered karst terranes. Environ Geol 39:760–766Google Scholar
  112. Zhou W, Beck BF, Adams AL (2002) Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environ Geol 42:922–928Google Scholar
  113. Zwahlen F (2004) COST Action 620: vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report, European Water Framework Directive, EC, Brussels, 297 ppGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Konstantinos Chalikakis
    • 1
  • Valérie Plagnes
    • 2
  • Roger Guerin
    • 2
  • Rémi Valois
    • 2
  • Frank P. Bosch
    • 3
  1. 1.UMR 1114 EMMAH (UAPV-INRA)Université d’Avignon et des Pays de VaucluseAvignonFrance
  2. 2.UMR 7619 SISYPHEUniversité Pierre et Marie Curie–Paris 6Paris cedex 05France
  3. 3.Applied Geophysics and Geothermal Energy (GGE), E.ON Energy Research CenterRWTH Aachen UniversityAachenGermany

Personalised recommendations