Hydrogeology Journal

, Volume 19, Issue 5, pp 981–994 | Cite as

Evaluating salinity sources of groundwater and implications for sustainable reverse osmosis desalination in coastal North Carolina, USA

  • David S. Vinson
  • Haylee G. Schwartz
  • Gary S. Dwyer
  • Avner Vengosh
Paper

Abstract

The natural and pumping-induced controls on groundwater salinization in the coastal aquifers of North Carolina, USA, and the implications for the performance of a reverse osmosis (RO) desalination plant have been investigated. Since installation of the well field in the Yorktown aquifer in Kill Devil Hills of Dare County during the late 1980s, the groundwater level has declined and salinity of groundwater has increased from ∼1,000 to ∼2,500 mg/L. Geochemical and boron isotope analyses suggest that the salinity increase is derived from an upflow of underlying saline groundwater and not from modern seawater intrusion. In the groundwater of four wells supplying the plant, elevated boron and arsenic concentrations were observed (1.3–1.4 mg/L and 8–53 μg/L, respectively). Major ions are effectively rejected by the RO membrane (96–99% removal), while boron and arsenic are not removed as effectively (16–42% and 54–75%, respectively). In coming decades, the expected rise of salinity will be associated with higher boron content in the groundwater and consequently also in the RO-produced water. In contrast, there is no expectation of an increase in the arsenic content of the salinized groundwater due to the lack of increase of arsenic with depth and salinity in Yorktown aquifer groundwater.

Keywords

Coastal aquifers Stable isotopes Arsenic Reverse osmosis desalination USA 

Évaluation des sources de salinité des eaux souterraines et implications pour un usage durable de la désalinisation par osmose inverse sur la côte de Caroline du Nord, États-Unis

Résumé

Les facteurs qui régissent la salinisation naturelle et induite par pompage des eaux souterraines des aquifères côtiers de Caroline du Nord, États-Unis, et les implications sur les performances d’une usine de dessalement par osmose inverse (OI) ont été étudiés. Depuis la mise en fonctionnement, à la fin des années 80, du champ captant de l’aquifère de Yorktown à Kill Devil Hills, dans le district de Dare, le niveau piézométrique a baissé et la salinité de l’eau souterraine a augmenté, passant de ∼1,000 à ∼2,500 mg/L. La géochimie et les analyses isotopiques du bore suggèrent que l’augmentation de la salinité est due à une remontée d’eaux souterraines profondes salées et non à l’intrusion d’eau de mer actuelle. Des concentrations élevées en bore et en arsenic (respectivement 1.3–1.4 mg/L et 8–53 μg/L) ont été observées dans les eaux de quatre forages alimentant l’usine. Les ions majeurs sont efficacement éliminés par les membranes d’OI (96–99% d’élimination) alors que le bore et l’arsenic ne le sont pas aussi efficacement (respectivement 16–42 et 54–75%). Dans les prochaines décennies, l’augmentation attendue de la salinité sera associée à de plus fortes concentrations en bore dans les eaux souterraines et, par conséquent aussi, dans les eaux produites par OI. Au contraire, une augmentation des concentrations en arsenic des eaux souterraines salinisées n’est pas attendue car il n’y a pas d’augmentation des concentrations en arsenic avec la profondeur et la salinité dans l’aquifère de Yorktown.

Evaluación de las fuentes de salinidad del agua subterránea e implicancias para la desalinización sustentable por ósmosis inversa en la costa de Carolina del Norte, EEUU

Resumen

Se investigaron los controles naturales e inducidos por bombeo sobre la salinización del agua subterránea en los acuíferos costeros de Carolina del Norte, EEUU, y las implicancias para el rendimiento de una planta de ósmosis inversa (RO). Desde la instalación de un campo de pozos en el acuífero Yorktown en Kill Devil Hills de Dare County durante los fines de los 1980, el nivel de agua subterránea se ha profundizado y la salinidad del agua subterránea se han incrementado desde ∼1,000 a ∼2,500 mg/L. Los análisis geoquímicos de isótopos del boro sugieren que el incremento de la salinidad proviene del flujo ascendente de agua subterránea salina subyacente y no a partir de la intrusión de agua de mar moderna. En el agua subterránea de cuatro pozos que abastecen a la planta, se observaron elevados contenidos de boro y arsénico (1.3–1.4 mg/L and 8–53 μg/L, respectivamente). Los iones mayoritarios son efectivamente rechazados por la membrana RO (96–99% de eliminación), mientras que el boro y arsénico no son eliminados con efectividad (16–42 y 54–75%, respectivamente). En las próximas décadas, la elevación esperada de la salinidad será asociada con mayores contenidos de boro en el agua subterránea y consecuentemente también en el agua producida por RO. En contraste, no exista ninguna expectativa de un incremento en el contenido de arsénico del agua salinizada debido a la falta de un incremento de arsénico con la profundidad y la salinidad en el agua subterránea del acuífero de Yorktown.

美国北卡罗来纳州海岸地下水盐分来源及其对可持续反渗透淡化的涵义

摘要

本文研究了美国北卡罗来纳州海岸天然及抽水诱发的含水层地下水咸化及其对反渗透(RO)淡化厂有效性的涵义。八十年代末开始,由于Dare县Kill Devil山Yorktown水源地的使用,地下水水位下降,盐度从1,000 mg/L上升到2,500 mg/L。地球化学和硼同位素分析表明,盐分来源为下覆咸水的上涌,而不是现代海水入侵。在供应淡化厂的4口地下水井中,观测到较高的硼和砷浓度(分别为1.3–1.4 mg/L 和 8–53 μg/L)。主要离子被RO隔膜有效地阻隔(96–99%被清除),然而硼和砷并未被有效地阻隔(分别被清除16–42和54–75%)。可以预见,在未来数十年里,盐度的升高可以导致地下水中以及RO装置过滤后的水中的硼含量升高。与此相反,地下水中的砷含量不会升高,因为砷含量的与Yorktown含水层的深度及盐度关系不大。

Avaliação das origens da salinidade em águas subterrâneas e implicações para a dessalinização sustentável por osmose inversa na zona costeira da Carolina do Norte, EUA

Resumen

Investigaram-se os controlos naturais e induzidos por bombagem na salinização de águas subterrâneas de aquíferos costeiros da Carolina do Norte, EUA, e as implicações para o desempenho de uma central dessalinizadora por osmose inversa (OI). Desde a instalação do campo de captações no aquífero de Yorktown em Kill Devil Hills, no Dare County, durante o final da década de 1980, o nível das águas subterrâneas desceu e a salinidade das águas subterrâneas aumentou de ∼1,000 para ∼2,500 mg/L. As análises geoquímicas e do isótopo de boro sugerem que a subida da salinidade é devida à ascensão de fluxo de águas subterrâneas salinas subjacentes e não à intrusão de água do mar moderna. Nas águas subterrâneas de quatro furos que abastecem a central foram observadas concentrações elevadas de boro e arsénio (1.3–1.4 mg/L e 8–53 µg/L, respectivamente). Os iões maiores são efectivamente rejeitados pela membrana de OI (remoção de 96–99%), enquanto o boro e o arsénio não são removidos de modo tão eficaz (16–42 e 54–75%, respectivamente). Nas próximas décadas, a esperada subida da salinidade estará associada a teores de boro mais elevados nas águas subterrâneas e, consequentemente, também na água produzida por OI. Em contraste, não é expectável que o teor de arsénio da água subterrânea salinizada aumente, uma vez que não há um incremento dos valores de arsénio nem com a profundidade, nem com a salinidade das águas subterrâneas no aquífero de Yorktown.

References

  1. AMTA (American Membrane Technology Association) (2011) AMTA membrane water treatment facilities. AMTA, Stuart, FL. http://www.membranes-amta.org/map.html. Cited 6 Jan 2011.
  2. Andersen MS, Nyvang V, Jakobsen R, Postma D (2005) Geochemical processes and solute transport at the seawater/freshwater interface of a sandy aquifer. Geochim Cosmochim Acta 69:3979–3994CrossRefGoogle Scholar
  3. Barlow PM (2003) Ground water in freshwater-saltwater environments of the Atlantic Coast. US Geol Surve Circ 1262Google Scholar
  4. Cengeloglu Y, Arslan G, Tor A, Kocak I, Dursun N (2008) Removal of boron from water by using reverse osmosis. Sep Purif Technol 64:141–146CrossRefGoogle Scholar
  5. Chapelle FH, Knobel LL (1983) Aqueous geochemistry and the exchangeable cation composition of glauconite in the Aquia aquifer, Maryland. Ground Water 21:343–352CrossRefGoogle Scholar
  6. Chapelle FH, McMahon PB (1991) Geochemistry of dissolved inorganic carbon in a coastal plain aquifer. 1. Sulfate from confining beds as an oxidant in microbial CO2 production. J Hydrol 127:85–108CrossRefGoogle Scholar
  7. Custodio E (1997) Detection, in seawater intrusion in coastal aquifers: guidelines for study, monitoring, and control. Water reports, FAO, Rome, pp 7–23Google Scholar
  8. Dare County Water Department (2006) North Reverse Osmosis water plant. http://www.co.dare.nc.us/water/NRO/rokdh.htm. Cited 19 April 2009
  9. D’Avino D, Spandre R (1995) Presence of boron in groundwater in the coastal plain of the Cornia River, Italy. J Environ Hydrol 3(1):3–10Google Scholar
  10. dePaul VT, Rice DE, Zapecza OS (2008) Water-level changes in aquifers of the Atlantic Coastal Plain: predevelopment to 2000. US Geol Surv Sci Invest Rep 2007–5247Google Scholar
  11. Dickson AG (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res 37:755–766CrossRefGoogle Scholar
  12. Dwyer GS, Vengosh A (2008) Alternative filament loading solution for accurate analysis of boron isotopes by negative thermal ionization mass spectrometry. EOS Trans AGU Fall Meet Suppl 89(53), abstract H51C-0824Google Scholar
  13. Environmental Protection Agency (2008) Drinking water health advisory for boron. Document 822-R-08-013, Office of Water, US EPA, Washington, DCGoogle Scholar
  14. European Community Council Directive (1998) 98/83/EC on the quality of water intended for human consumption. Off J Eur Comm L330:32–54Google Scholar
  15. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  16. George CM, Smith AH, Kalman DA, Steinmaus CM (2006) Reverse osmosis filter use and high arsenic levels in private well water. Arch Environ Occup Health 61:171–175CrossRefGoogle Scholar
  17. Georghiou G, Pashafidis L (2007) Boron in groundwaters of Nicosia (Cyprus) and its treatment by reverse osmosis. Desalination 215:104–110CrossRefGoogle Scholar
  18. Geucke T, Deowan SA, Hoinkis J, Patzold C (2009) Performance of a small-scale RO desalinator for arsenic removal. Desalination 239:198–206CrossRefGoogle Scholar
  19. Gorenflo A, Brusilovsky M, Faigon M, Liberman B (2007) High pH operation in seawater reverse osmosis permeate: first results from the world’s largest SWRO plant in Ashkelon. Desalination 203:82–90CrossRefGoogle Scholar
  20. Haque S, Ji J, Johannesson KH (2008) Evaluating mobilization and transport of arsenic in sediments and groundwaters of Aquia aquifer, Maryland, USA. J Contam Hydrol 99:68–84CrossRefGoogle Scholar
  21. Hyung H, Kim J-H (2006) A mechanistic study on boron rejection by sea water reverse osmosis membranes. J Membr Sci 286:269–278CrossRefGoogle Scholar
  22. Jacob C (2007) Seawater desalination: boron removal by ion exchange technology. Desalination 205:47–52CrossRefGoogle Scholar
  23. Jones BF, Vengosh A, Rosenthal E, Yechieli Y (1999) Geochemical investigations. In: Seawater intrusion in coastal aquifers: concepts, methods, and practices. Kluwer, Dordrecht, the Netherlands, pp 51–71Google Scholar
  24. Kennedy CD, Genereux DP (2007) 14C Groundwater age and the importance of chemical fluxes across aquifer boundaries in confined Cretaceous aquifers of North Carolina, USA. Radiocarbon 49:1181–1203Google Scholar
  25. Kirk MF, Holm TR, Park J, Jin Q, Sanford RA, Fouke BW, Bethke CM (2004) Bacterial sulfate reduction limits natural arsenic contamination in groundwater. Geology 32:953–956CrossRefGoogle Scholar
  26. Kloppmann W, Vengosh A, Guerrot C, Millot R, Pankratov I (2008) Isotope and ion selectivity in reverse osmosis desalination: geochemical tracers for man-made freshwater. Environ Sci Technol 42:4723–4731CrossRefGoogle Scholar
  27. Knobel LL, Chapelle FH, Meisler H (1998) Geochemistry of the northern Atlantic Coastal Plain aquifer system. US Geol Surv Prof Pap 1404-LGoogle Scholar
  28. Lautier, JC (2009) Hydrogeologic framework and ground water conditions in the North Carolina East Central Coastal Plain. Ground Water Management Section Report 30, North Carolina Division of Water Resources, Raleigh, NCGoogle Scholar
  29. Mane PP, Park P-K, Hyung H, Brown JC, Kim J-H (2009) Modeling boron rejection in pilot- and full-scale reverse osmosis desalination processes. J Membr Sci 338:119–127CrossRefGoogle Scholar
  30. Manheim FT, Horn MK (1968) Composition of deeper subsurface waters along the Atlantic continental margin. Southeast Geol 9:215–236Google Scholar
  31. Meisler, H (1989) The occurrence and geochemistry of salty ground water in the northern Atlantic Coastal Plain. US Geol Surv Prof Pap 1404-DGoogle Scholar
  32. Millero FJ (1995) Thermodynamics of the carbon dioxide system in the oceans. Geochim Cosmochim Acta 59:661–677CrossRefGoogle Scholar
  33. Millero FJ, Sohn ML (1991) Chemical oceanography. CRC, Boca Raton, FLGoogle Scholar
  34. Moore KW, Huck PM, Siverns S (2008) Arsenic removal using oxidative media and nanofiltration. J Am Water Works Assoc 100:74–83Google Scholar
  35. Nadler A, Magaritz M, Mazor E (1980) Chemical reactions of sea water with rocks and freshwater: experimental and field observations on brackish waters in Israel. Geochim Cosmochim Acta 44:879–886CrossRefGoogle Scholar
  36. North Carolina Geological Survey (1985) Geologic map of North Carolina, scale 1:500,000, North Carolina Geological Survey, Raleigh, NC Google Scholar
  37. North Carolina Office of State Budget and Management (2010) Annual county populations. North Carolina Office of State Budget and Management, State Demographics Branch. http://www.osbm.state.nc.us/ncosbm/facts_and_figures/socioeconomic_data/population_estimates/county_projections.shtm. Cited 6 Jan 2011
  38. Oreskovich RW, Watson IC (2003) Dealing with arsenic (III) in brackish water RO permeate. International Desalination Association proceedings BAH03. http://www.idadesal.org/publications/Summary.asp?UniqueID=3028. May 2003
  39. Ozturk N, Kavak D, Kose TE (2008) Boron removal from aqueous solution by reverse osmosis. Desalination 223:1–9CrossRefGoogle Scholar
  40. Parks JL, Edwards M (2005) Boron in the environment. Crit Rev Environ Sci Technol 35:81–114CrossRefGoogle Scholar
  41. Pawlak Z, Zak S, Zablocki L (2006) Removal of hazardous metals from groundwater by reverse osmosis. Pol J Environ Stud 15:579–583Google Scholar
  42. Prats D, Chillon-Arias MF, Rodriguez-Pastor M (2000) Analysis of the influence of pH and pressure on the elimination of boron in reverse osmosis. Desalination 128:269–273CrossRefGoogle Scholar
  43. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  44. Ranjan P, Kazama S, Sawamoto M (2006) Effects of climate change on coastal fresh groundwater resources. Glob Environ Change 16:388–399CrossRefGoogle Scholar
  45. Sagiv A, Samiat R (2004) Analysis of parameters affecting boron permeation through reverse osmosis membranes. J Membr Sci 243:79–87CrossRefGoogle Scholar
  46. Salgot M, Tapias JC (2004) Non-conventional water resources in coastal areas: a review on the use of reclaimed water. Geol Acta 2:121–133Google Scholar
  47. Scanlon BR, Nicot JP, Reedy RC, Kurtzman D, Mukherjee A, Nordstrom DK (2009) Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA. Appl Geochem 24:2061–2071CrossRefGoogle Scholar
  48. Schmidt GA, Bigg GR, Rohling EJ (1999) Global seawater oxygen-18 database, version 1.19a. http://data.giss.nasa.gov/o18data. Cited 16 Nov 2010
  49. Sivan O, Yechieli Y, Herut B, Lazar B (2005) Geochemical evolution and timescale of seawater intrusion into the coastal aquifer of Israel. Geochim Cosmochim Acta 69:579–592CrossRefGoogle Scholar
  50. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRefGoogle Scholar
  51. Spivack AJ, Palmer MR, Edmond JM (1987) The sedimentary cycle of the boron isotopes. Geochim Cosmochim Acta 51:1939–1949CrossRefGoogle Scholar
  52. Taylor HE (2001) Inductively coupled plasma-mass spectrometry: practices and techniques. Academic, San Diego, CAGoogle Scholar
  53. Vengosh A (2003) Salinization and saline environments. In: Sherwood Lollar B (ed) Treatise on geochemistry, vol 9. Elsevier, Amsterdam, pp 333–365Google Scholar
  54. Vengosh A, Spivack AJ (1999) Boron isotopes in groundwater. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Dordrecht, the Netherlands, pp 479–485Google Scholar
  55. Vengosh A, Gill J, Davisson ML, Hudson GB (2002) A multi-isotope (B, Sr, O, H, and C) and age dating (3H-3He and 14C) study of groundwater from Salinas Valley, California: hydrochemistry, dynamics, and contamination processes. Water Resour Res 38: doi: 10.1029/2001WR000517
  56. Walker M, Seiler RL, Meinert M (2008) Effectiveness of household reverse-osmosis systems in a western US region with high arsenic in groundwater. Sci Total Environ 389:245–252CrossRefGoogle Scholar
  57. Weinthal E, Parag Y, Vengosh A, Muti A, Kloppmann W (2005) The EU Drinking Water Directive: the boron standard and scientific uncertainty. Eur Environ 15:1–12CrossRefGoogle Scholar
  58. Winner MD, Coble RW (1996) Hydrogeologic framework of the North Carolina coastal plain. US Geol Surv Prof Pap 1404-IGoogle Scholar
  59. World Health Organization (2008) Guidelines for drinking-water quality, incorporating 1st and 2nd addenda, vol 1: Recommendations, 3rd edn. WHO, GenevaGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • David S. Vinson
    • 1
  • Haylee G. Schwartz
    • 1
    • 2
  • Gary S. Dwyer
    • 1
  • Avner Vengosh
    • 1
  1. 1.Division of Earth and Ocean Sciences, Nicholas School of the EnvironmentDuke UniversityDurhamUSA
  2. 2.School of LawUniversity of CaliforniaLos AngelesUSA

Personalised recommendations