Advertisement

Hydrogeology Journal

, Volume 19, Issue 4, pp 901–916 | Cite as

The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh

  • Mohammad ShamsudduhaEmail author
  • Richard G. Taylor
  • Kazi M. Ahmed
  • Anwar Zahid
Report

Abstract

Quantitative evaluations of the impact of groundwater abstraction on recharge are rare. Over a period (1975–2007) during which groundwater abstraction increased dramatically in the Bengal Basin, changes in net groundwater recharge in Bangladesh are assessed using the water-table fluctuation method. Mean annual groundwater recharge is shown to be higher (300–600 mm) in northwestern and southwestern areas of Bangladesh than in southeastern and northeastern regions (<100 mm) where rainfall and potential recharge are greater. Net recharge in many parts of Bangladesh has increased substantially (5–15 mm/year between 1985 and 2007) in response to increased groundwater abstraction for irrigation and urban water supplies. In contrast, net recharge has slightly decreased (−0.5 to −1 mm/year) in areas where groundwater-fed irrigation is low (<30% of total irrigation) and where abstraction has either decreased or remained unchanged over the period of 1985–2007. The spatio-temporal dynamics of recharge in Bangladesh illustrate the fundamental flaw in definitions of “safe yield” based on recharge estimated under static (non-pumping) conditions and reveal the areas where (1) further groundwater abstraction may increase actual recharge to the shallow aquifer, and (2) current groundwater abstraction for irrigation and urban water supplies is unsustainable.

Keywords

Groundwater recharge/water budget Groundwater monitoring Agriculture Over-abstraction Bangladesh 

Impact de l’exploitation intensive des eaux souterraines sur la réalimentation d’un aquifère peu profond d’extension régionale : un exemple au Bangladesh

Résumé

Rares sont les évaluations de l’impact quantitatif des prélèvements en eau souterraine sur la réalimentation. Sur une période qui a vu un accroissement dramatique des prélèvements en eau souterraine dans le bassin du Bengale (1975–2007), les modifications de la réalimentation nette des aquifères au Bangladesh ont été étudiées par la méthode du bilan en eau. La réalimentation annuelle moyenne apparaît plus élevée dans le Nord-Ouest et le Sud-Ouest du pays (300–600 mm), que dans les secteurs Nord-Est et Sud-Est (<100 mm), où les précipitations et la réalimentation potentielle sont supérieures. Dans de nombreuses zones, l’infiltration nette a substantiellement augmenté (5–15 mm/an de 1985−2007) en réponse à l’accroissement des prélèvements en eau souterraine pour irrigation et alimentation en eau potable. A contrario, elle a légèrement décru (−0.5 à −1 mm/an) dans les secteurs où l’irrigation sollicite peu la nappe (<30% de l’irrigation totale), et où les prélèvements ont soit diminué soit stagné de 1985 à 2007. La dynamique spatio-temporelle de la réalimentation au Bangladesh illustre l’imperfection fondamentale de la définition du “débit critique”, basé sur une infiltration estimée en conditions statiques (sans pompage) ; elle montre les secteurs où (1) des prélèvements supplémentaires peuvent accentuer la réalimentation réelle de l’aquifère peu profond, et où (2) les prélèvements actuels pour l’irrigation et l’alimentation en eau potable ne sont pas viables.

El impacto de extracción intensiva de agua subterránea sobre la recarga a un sistema acuífero regional somero: evidencia de Bangladesh

Resumen

Las evaluaciones cuantitativas del impacto de la extracción de agua subterránea sobre la recarga son poco comunes. Se evaluaron los cambios en la recarga neta de agua subterránea en Bangladesh usando el método de fluctuación de los niveles freáticos en un período (1975–2007) durante el cual la extracción de agua subterránea se incrementó dramáticamente en la Cuenca de Bengala. Se demuestra que la recarga media anual de agua subterránea es mayor (300–600 mm) en las áreas noroeste y sudoeste de Bangladesh que en las regiones sudeste y noreste (<100 mm) donde la precipitación y la recarga potencial son mayores. La recarga neta en muchas partes de Bangladesh se ha incrementado sustancialmente (5−15 mm/año entre 1985 y 2007) en respuesta al incremento de la extracción de agua subterránea para irrigación y para abastecimiento urbano. En contraste, la recarga neta ha disminuido levemente (−0.5 a −1 mm/año) en áreas donde la alimentación de agua subterránea por la irrigación es baja (<30% de la irrigación total) y donde la extracción ha disminuido o bien ha permanecido sin cambios en el período de 1985–2007. La dinámica espacio temporal de la recarga en Bangladesh ilustra la falla fundamental en las definiciones de “rendimiento seguro” basada en estimaciones de la recarga bajo condiciones estáticas (sin bombeo) y revela las áreas donde (1) la extracción ulterior de agua subterránea puede incrementar la recarga real hacia el acuífero somero, y (2) la extracción actual de agua subterránea para la irrigación y abastecimiento urbano no es sustentable.

地下水强采对区域浅层含水层补给的影响,以孟加拉国为例

摘要

以往关于地下水开采对补给影响的定量评价很少。在过去的一段时期内( 1975–2007年),孟加拉流域的地下水开采量急剧增加。本文利用水位动态方法对孟加拉国的净地下水补给量的变化进行了评估。多年平均地下水补给量显示,孟加拉国西北和西南地区高(300–600 mm)而东南及东北地区低(<100 mm)。而后者降雨量和潜在补给量大。作为对用于农业灌溉和城市供水的地下水开采的响应,孟加拉国很多地区的地下水净补给量大大增加(1985 到2007年每年增加5–15 mm)。相反,在1985到2007年间农业灌溉依赖地下水较少(<总灌溉量的30%)的地区地下水开采量降低或者保持不变,净补给量略有下降(每年–0.5– –1 mm)。孟加拉国补给量的时空分布表明,基于静态(没有抽水)条件定义的“安全开采量”存在根本缺限,表现在:(1)过量的地下水抽取会增加浅部含水层的实际补给量;(2)目前为灌溉和城市供水而进行的地下水抽取是不可持续的。

O impacte da extração intensiva de água subterrânea na recarga de um sistema aquífero freático regional: exemplo do Bangladesh

Resumo

Avaliações quantitativas do impacte da extração de água subterrânea na recarga são raras. As alterações da recarga efetiva no Bangladesh são aferidas, usando o método da flutuação do nível freático, ao longo de um período (1975–2007) durante o qual a extração de água subterrânea aumentou drasticamente na Bacia de Bengal. A recarga anual média da água subterrânea revela-se mais elevada (300–600 mm) nas áreas noroeste e sudoeste de Bangladesh do que nas regiões sudeste e nordeste (<100 mm), onde a precipitação e a recarga potencial são mais elevadas. Em muitas partes do Bangladesh a recarga efetiva aumentou substancialmente (5–15 mm/ano entre 1985 e 2007) como resposta ao aumento da extracção de água subterrânea para rega e abastecimento urbano. Por outro lado, a recarga efetiva diminuiu ligeiramente (−0.5 to −1 mm/ano) nas áreas onde a alimentação da água subterrânea devido à rega é menor (<30% da rega total) e onde a extração diminuiu ou se manteve constante durante o período de 1985–2007. A dinâmica espaço-temporal da recarga no Bangladesh ilustra o equívoco básico na definição das “extrações sustentáveis” baseada na estimação da recarga sob condições estáticas (sem bombagem) e releva as áreas onde (1) a continuação da extração de água subterrânea pode aumentar a recarga efetiva do aquífero freático e (2) a actual extraçção de água subterrânea para rega e abastecimento urbano é desadequada.

Notes

Acknowledgements

Support from the UK’s Engineering and Physical Sciences Research Council (EPSRC) through a Dorothy Hodgkin Postgraduate Award (Ref. GR/AKFXDHPA 2007–2011) and a Wingate Scholarship (Ref. 4387, 2010–2011) is kindly acknowledged. We thank Richard Chandler (University College London, UK) for his advice on the seasonal-trend decomposition technique. We are also grateful to William Burgess and Mohammad Hoque (University College London, UK), and Peter Cook (CSIRO Land and Water, Australia) for helpful suggestions that improved the clarity of arguments presented in the report.

Supplementary material

10040_2011_723_MOESM1_ESM.pdf (3.4 mb)
Supplementary Figures and Table (PDF 3513 kb)

References

  1. Ahmed N, Allison EH, Muir JF (2009) Rice fields to prawn farms: a blue revolution in southwest Bangladesh? Aquacult Int. doi: 10.1007/s10499-009-9276-0 Google Scholar
  2. Akther H, Ahmed MS, Rasheed KBS (2009) Spatial and temporal analysis of groundwater level fluctuation in Dhaka City, Bangladesh. Asian J Earth Sci 2:49–57CrossRefGoogle Scholar
  3. Alley WM, Leake SA (2004) The journey from safe yield to sustainability. Ground Water 42(1):12–16CrossRefGoogle Scholar
  4. Alley WM, Healy RW, LaBaugh JW, Reilly TE (2002) Flow and storage ingroundwater systems. Science 296:1985–1990Google Scholar
  5. BADC (Bangladesh Agricultural Development Corporation) (2008) Minor irrigation survey report 2007–2008. Survey and Monitoring Project, BADC, Ministry of Agriculture of Bangladesh, DhakaGoogle Scholar
  6. BARC (Bangladesh Agricultural Research Council) (1988) Agro Ecological Zones (AEZ) inventory map, scale: 1:250,000. Bangladesh Agricultural Research Council, DhakaGoogle Scholar
  7. BBS (Bangladesh Bureau of Statistics) (2009) Annual agricultural statistics 2008. Agricultural Wing, Bangladesh Bureau of Statistics, DhakaGoogle Scholar
  8. BGS (British Geological Survey), DPHE (Department of Public Health and Engineering) (2001) Arsenic contamination of groundwater in Bangladesh. In: Kinniburgh DG, Smedley PL (eds) British Geologic Survey Report WC/00/19. BGS, Keyworth, UKGoogle Scholar
  9. Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water 40(4):340–345CrossRefGoogle Scholar
  10. CGWB (Central Ground Water Board) (2006) Dynamic groundwater resources of India (as on (2004) Central Ground Water Board (CGWB). Ministry of Water Resources of India, FaridabadGoogle Scholar
  11. R Development Core Team (2007) R: A language and environment for statistical computing, Version 2.6.0. R Foundation for Statistical Computing, ViennaGoogle Scholar
  12. Döll P (2009) Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett. doi: 10.1088/1748-9326/4/3/035006 Google Scholar
  13. Döll P, Fiedler K (2008) Global-scale modeling of groundwater recharge. Hydrol Earth Syst Sci 12:863–885CrossRefGoogle Scholar
  14. Fekete BM, Vorosmarty CJ, Grabs W (1999) Global composite runoff fields based on observed river discharge and simulated water balances. UNH-GRDC Composite Runoff Fields v.1.0, Global Runoff Data Centre, Koblenz, Germany, 108 ppGoogle Scholar
  15. Giordano M (2009) Global groundwater? issues and solutions. Annu Rev Environ Resour 34:153–178. doi: 10.1146/annurev.environ.030308.100251 CrossRefGoogle Scholar
  16. Goodbred SL, Kuehl SA (2000) The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: late Quaternary stratigraphy and evolution of the Ganges–Brahmaputra delta. Sediment Geol 133:227–248CrossRefGoogle Scholar
  17. Harvey CF, Ashfaque KN, Yu W, Badruzzaman ABM, Ali MA, Oates PM, Michael HA, Neumann RB, Beckie R, Islam S, Ahmed MF (2006) Groundwater dynamics and arsenic contamination in Bangladesh. Chem Geol 228:112–136CrossRefGoogle Scholar
  18. Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109CrossRefGoogle Scholar
  19. Hoque MA, Hoque MM, Ahmed KM (2007) Declining groundwater level and aquifer dewatering in Dhaka metropolitan area, Bangladesh: causes and quantification. Hydrogeol J 15:1523–1534CrossRefGoogle Scholar
  20. IBRD (International Bank for Reconstruction and Development) (1972) Land and water sector study, IBRD, World Bank, Washington, DCGoogle Scholar
  21. Karim MA (1984) Upazila-wise groundwater recharge conditions of Bangladesh. Groundwater Investigation Circle, Bangladesh Water Development Board, DhakaGoogle Scholar
  22. Klump S, Kipfer R, Cirpka OA, Harvey CF, Brennwald MS, Ashfaque KN, Badruzzaman ABM, Hug SJ, Imboden DM (2006) Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium. Environ Sci Technol 40:243–250CrossRefGoogle Scholar
  23. Kundzewicz ZW, Döll P (2009) Will groundwater ease freshwater stress under climate change? Hydrol Sci J 54:665–675CrossRefGoogle Scholar
  24. Michael HA, Voss CI (2009) Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis. Hydrogeol J 17:1561–1577CrossRefGoogle Scholar
  25. Mishra HS, Rathore TR, Pant RC (1997) Root growth, water potential, and yield of irrigated rice. Irrig Sci 17:69–75CrossRefGoogle Scholar
  26. Neumann RB, Ashfaque KN, Badruzzaman ABM, Ali MA, Shoemaker JK, Harvey CF (2009) Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nat Geosci. doi: 10.1038/NGEO685 Google Scholar
  27. Nishat A, Bhuiyan MA, Saleh FM (2003) Assessment of the groundwater resources of Bangladesh. In: Rahman AA, Ravenscroft P (eds) Groundwater resources and development in Bangladesh: background to the arsenic crisis, agricultural potential and the environment, chap. 4. Bangladesh Centre for Advanced Studies, Univ Press, Dhaka, pp 87–114Google Scholar
  28. MPO (Master Plan Organisation) (1987) Groundwater Resources of Bangladesh. Technical Report no 5. Master Plan Organization, Dhaka. Hazra, USA; Sir M MacDonald, UK; Meta, USA; EPC, BangladeshGoogle Scholar
  29. MPO (Master Plan Organisation) (1991) Final Report, National Water Plan Project Phase II. Master Plan Organization, Dhaka. Hazra, USA; Sir M MacDonald, UK; Meta, USA; EPC, BangladeshGoogle Scholar
  30. Ravenscroft P (2003) Overview of the hydrogeology of Bangladesh. In: Rahman AA, Ravenscroft P (eds) Groundwater resources and development in Bangladesh: background to the arsenic crisis, agricultural potential and the environment, chap. 3. Bangladesh Centre for Advanced Studies, Univ Press, Dhaka, pp 43–86Google Scholar
  31. Ravenscroft P, Brammer H, Richards KS (2009) Arsenic pollution: a global synthesis. Wiley-Blackwell, Cichester, UKCrossRefGoogle Scholar
  32. IRRI (International Rice Research Institute) (2010) World rice statistics (WRS), Manila, Philippines. http://beta.irri.org/index.php/Social-Sciences-Division/SSD-Database/. Cited April 2010
  33. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature. doi: 10.1038/nature08238 Google Scholar
  34. Roy RD (1986) The great trigonometrical survey of India in a historical perspective. Indian J Hist Sci 21(1):22–32Google Scholar
  35. Scott CA, Sharma B (2009) Energy supply and the expansion of groundwater irrigation in the Indus-Ganges Basin. Intl J River Basin Manage 7:1–6Google Scholar
  36. Shah T, DebRoy A, Qureshi AS, Wang J (2003) Sustaining Asia’s groundwater boom: an overview of issues and evidence. Nat Resour Forum 27(2):130–140CrossRefGoogle Scholar
  37. Shah T, Burke J, Villholth K (2007) Groundwater: a global assessment of scale and significance. In: Molden D (ed) Water for food water for life: a comprehensive assessment of water management in agriculture. Earthscan, London, pp 395–423Google Scholar
  38. Shamsudduha M, Uddin A (2007) Quaternary shoreline shifting and hydrogeologic influence on the distribution of groundwater arsenic in aquifers of the Bengal Basin. J Asian Earth Sci 31:177–194CrossRefGoogle Scholar
  39. Shamsudduha M, Chandler RE, Taylor RG, Ahmed KM (2009a) Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta. Hydrol Earth Syst Sci 13:2373–2385CrossRefGoogle Scholar
  40. Shamsudduha M, Marzen LJ, Uddin A, Lee M-K, Saunders JA (2009b) Spatial relationship of groundwater arsenic distribution with regional topography and water-table fluctuations in shallow aquifers in Bangladesh. Environ Geol 57:1521–1535CrossRefGoogle Scholar
  41. Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation: a global inventory. Hydrol Earth Syst Sci Discuss 7:3977–4021CrossRefGoogle Scholar
  42. Sophocleous MA (2000) From safe yield to sustainable development of water resources, and the Kansas experience. J Hydrol 235:27–43CrossRefGoogle Scholar
  43. Stute M, Zheng Y, Schlosser P, Horneman A, Dhar RK, Hoque MA, Seddique AA, Shamsudduha M, Ahmed KM, van Geen A (2007) Hydrological control of As concentrations in Bangladesh groundwater. Water Resour Res 43:W09417. doi: 10.1029/2005WR004499 CrossRefGoogle Scholar
  44. Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:L18401. doi: 10.1029/2009GL039401 CrossRefGoogle Scholar
  45. Uddin A, Lundberg N (1998) Cenozoic history of the Himalayan-Bengal system: sand composition in the Bengal Basin, Bangladesh. Geol Soc Am Bull 110:497–511CrossRefGoogle Scholar
  46. UNDP (United Nation Development Programme) (1982) Groundwater survey: the hydrogeological conditions of Bangladesh. Technical Report DP/UN/BGD-74-009/1, UNDP, New YorkGoogle Scholar
  47. WARPO (Water Resources Planning Organization) (2000) National Water Management Plan Project, Draft Development Strategy. Main final, vol 2, WARPO, DhakaGoogle Scholar
  48. BWDB (Bangladesh Water Development Board) (1989) Report on the compilation of aquifer test analysis results, BWDB Water Supply Paper 502, Ground Water Circle II, BWDB, DhakaGoogle Scholar
  49. BWDB (Bangladesh Water Development Board) (1994) Report on the compilation of aquifer test analysis results, BWDB Water Supply Paper 534, Ground Water Circle II, BWDB, DhakaGoogle Scholar
  50. BWDB (Bangladesh Water Development Board) and UNDP (United Nation Development Programme) (1983) Water Balance Studies, Bangladesh. BWDB, Dhaka; UNDP, New York; Sir M MacDonald, Cambridge; Hunting, Hemel Hempstead, UK Google Scholar
  51. WMO (World Meteorological Organization) and GWP (Global Water Partnership) (2003) Integrated flood management, case study: Bangladesh. The Associated Programme on Flood Management, WMO, Geneva. http://www.apfm.info/case_studies.htm. Cited 14 Dec 2010
  52. World Bank (2005) Towards a more effective operational response: arsenic contamination of groundwater in south and East Asian countries. Technical Report, no. 31303, vols I–II, The World Bank, Washington, DCGoogle Scholar
  53. Zhou Y (2009) A critical review of groundwater budget myth, safe yield and sustainability. J Hydrol 370:207–213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mohammad Shamsudduha
    • 1
    Email author
  • Richard G. Taylor
    • 1
  • Kazi M. Ahmed
    • 2
  • Anwar Zahid
    • 3
  1. 1.Department of GeographyUniversity College LondonLondonUK
  2. 2.Department of GeologyUniversity of DhakaDhakaBangladesh
  3. 3.Bangladesh Water Development BoardDhakaBangladesh

Personalised recommendations