Hydrogeology Journal

, Volume 19, Issue 4, pp 757–778 | Cite as

Review: The potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources

Paper

Abstract

Underground geological storage of CO2 in deep saline aquifers is considered for reducing greenhouse gases emissions into the atmosphere. However, some issues were raised with regard to the potential hazards to shallow groundwater resources from CO2 leakage, brine displacement and pressure build-up. An overview is provided of the current scientific knowledge pertaining to the potential impact on shallow groundwater resources of geological storage of CO2 in deep saline aquifers, identifying knowledge gaps for which original research opportunities are proposed. Two main impacts are defined and discussed therein: the near-field impact due to the upward vertical migration of free-phase CO2 to surficial aquifers, and the far-field impact caused by large-scale displacement of formation waters by the injected CO2. For the near-field, it is found that numerical studies predict possible mobilization of trace elements but concentrations are rarely above the maximum limit for potable water. For the far-field, numerical studies predict only minor impacts except for some specific geological conditions such as high caprock permeability. Despite important knowledge gaps, the possible environmental impacts of geological storage of CO2 in deep saline aquifers on shallow groundwater resources appears to be low, but much more work is required to evaluate site specific impacts.

Keywords

Review Groundwater protection Contamination Carbon sequestration Saline aquifers 

Article de synthèse: L’impact potentiel, sur les nappes superficielles, du stockage géologique souterrain de gaz carbonique dans des aquifères salins profonds

Résumé

Le stockage géologique souterrain de gaz carbonique dans des aquifères salins profonds est envisagé pour la réduction des émissions de gaz à effet de serre dans l’atmosphère. Cependant, certains risques potentiels vis à vis des nappes superficielles ont été invoqués du fait des fuites de CO2: migration de saumure, augmentations de pression. Une vue d’ensemble d’état de l’art concernant l’impact potentiel sur les ressources superficielles en eau souterraine du stockage géologique du CO2 dans des aquifères salins profonds est présentée, identifiant des lacunes de connaissances pour lesquelles des opportunités de recherche originale sont proposées. Deux impacts principaux sont définis et discutés ci-dessous : l’impact en champ proche dû à la migration verticale ascendante de la phase CO2 libre vers les aquifères superficiels, et l’impact en champ lointain causé par le déplacement à grande échelle des eaux de l’aquifère induit par le CO2 injecté. Pour le champ proche, les simulations numériques prévoient la mobilisation possible d’éléments trace ; néanmoins, les concentrations sont rarement au dessus du seuil de potabilité. Pour le champ lointain, les simulations numériques prévoient seulement des impacts mineurs, à l’exception de certains contextes géologiques spécifiques tels ceux comportant des roches de couvertures de forte perméabilité. En dépit d’importantes lacunes de connaissances, les impacts environnementaux potentiels du stockage géologique souterrain de CO2 dans des aquifères salins profonds, sur les nappes superficielles, apparaissent faibles. Mais beaucoup plus de travail est nécessaire pour évaluer les impacts spécifiques sur site.

Revisión: El impacto potencial del almacenamiento geológico subterráneo de dióxido de carbono en acuíferos salinos profundos en los recursos de agua subterránea someros

Resumen

El almacenamiento geológico subterráneo de CO2 en acuíferos salinos profundos es tenido en cuenta para la reducción de la emisión de gases invernaderos en la atmósfera. Sin embargo se plantearon algunas cuestiones en relación a los riesgos potenciales para los recursos de agua subterránea someros a partir de la filtración de CO2 , desplazamiento de las salmueras y acumulación de presión. Se expone una visión general del conocimiento científico actual concerniente al impacto potencial del almacenamiento geológico de CO2 en acuíferos salinos profundos sobre los recursos de agua subterránea someros, identificando los baches de conocimiento para lo cual se proponen oportunidades originales de investigación. Se definen y discuten dos de los principales impactos: el impacto de campo local debido a la migración vertical ascendente de la fase libre de CO2 a los acuíferos superficiales, y el impacto de campo a gran distancia causado por desplazamiento a gran escala de aguas de formación con el CO2 inyectado. Se encontró para el campo local que los estudios numéricos predicen la posible movilización de elementos trazadores pero las concentraciones están raramente por encima del límite máximo para agua potable. Para el campo a gran distancia, los estudios numéricos predicen solamente impactos menores, excepto para algunas condiciones geológicas específicas tales como alta permeabilidad de la roca de cubierta. A pesar de los importantes baches en el conocimiento, los posibles impactos ambientales sobre los recursos de agua subterránea somera debido al almacenamiento geológico de CO2 en acuíferos salinos profundos parecen ser bajos, pero se requiere mucho más trabajo para evaluar los impactos en sitios específicos.

综述:深部咸水层中二氧化碳地质封存对浅层地下水资源的潜在影响

摘要

摘要: 深部咸水层中二氧化碳的地质封存被认为可以减少大气圈中温室气体的排放。但考虑到二氧化碳封存造成的泄漏、卤水位移和压力积聚,它可能对浅层地下水资源造成潜在的危害。本文总结了现有的相关知识,对深部咸水层中二氧化碳地质封存对浅层地下水资源的潜在影响进行了综述,并理出了为原创性研究提供机会的知识缺口。本文定义并讨论了两个主要影响:自由态的二氧化碳向浅部含水层的垂直迁移造成的近场地影响;二氧化碳的注入导致地层水大尺度位移造成的远场地影响。在近场地影响中,数值研究能预测痕量元素的运移,但含量很少超过饮用水中规定的最高允许值。数值研究结果显示远场地影响极小,但盖层渗透性较高的场地除外。尽管存在重要的知识缺口,深部咸水层中二氧化碳的地下地质封存对浅层地下水资源的可能环境影响小,但评估特定场地的具体影响时需要做更多工作。

Revisão: Impacte potencial do armazenamento geológico subterrâneo de dióxido de carbono em aquíferos salinos profundos nos recursos hídricos subterrâneos subsuperficiais

Resumo

O armazenamento subterrâneo de CO2 em aquíferos salinos profundos está a ser considerado, com vista à redução das emissões de gases de estufa para a atmosfera. No entanto, têm-se levantado algumas questões relacionadas com os riscos potenciais para as águas subterrâneas menos profundas, resultantes da drenância do CO2, da deslocação das salmouras e da subida da pressão. É feita uma revisão dos conhecimentos científicos atuais sobre o impacte potencial do armazenamento geológico subterrâneo de CO2 nos recursos hídricos subterrâneos menos profundos, identificando lapsos de conhecimento para os quais são sugeridas oportunidades de pesquisa futura. Dois impactes principais são definidos e discutidos neste documento: o impacte, próximo da zona de introdução do CO2, da migração vertical da fase livre de CO2 para os aquíferos superiores, e o impacte, nos campos mais afastados, causado pela deslocação em larga escala de águas da formação, influenciada pela injeção de CO2. Para o campo próximo, verificou-se que os estudos numéricos predizem uma possível mobilização de elementos traço, mas as concentrações raramente estrão acima do limite máximo para águas potáveis. Para o campo mais afastado, os estudos numéricos predizem apenas impactes menores, excepto para algumas condições geológicas específicas, tal como uma permeabilidade elevada das rochas de cobertura. Apesar de lapsos importantes de conhecimento, os impactes ambientais do armazenamento geológico de CO2 em aquíferos salinos profundos nos recursos hídricos subterrâneos menos profundos parece ser pequeno, mas é necessária muito mais investigação para avaliar os reais impactes em cada local específico.

References

  1. Allison JD, Brown DS, Novo-Gradac KJ (1991) MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems, version 3.0 user’s manual. US Environmental Protection Agency report EPA/600/3-91/021, US EPA, Washington, DCGoogle Scholar
  2. Apps JA, Zhang Y, Zheng L, Xu T, Birkholzer JT (2009) Identification of thermodynamic controls defining the concentrations of hazardous elements in potable ground waters and the potential impact of increasing carbon dioxide partial pressure. Energy Procedia 1:1917–1924CrossRefGoogle Scholar
  3. Apps JA, Zheng L, Zhang Y, Xu T, Birkholzer JT (2010) Evaluation of potential changes in groundwater quality in response to CO2 leakage from deep geologic storage. Transp Porous Media 82(1):215–246. doi:10.1007/s11242-009-9509-8 CrossRefGoogle Scholar
  4. Audigane P, Gaus I, Czernichowski-Lauriol I, Pruess K, Xu T (2007) Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site, North Sea. Am J Sci 307(7):974–1008. doi:10.2475/07.2007.02 CrossRefGoogle Scholar
  5. Audigane P, Chiaberge C, Lions J, Humez P (2009) Modeling of CO2 leakage through an abandoned well from a deep saline aquifer to fresh groundwater, Proceedings of TOUGH Symposium 2009, Lawrence Berkeley National Laboratory, Berkeley, 8 ppGoogle Scholar
  6. Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44:277–289. doi:10.1007/s00254-003-0762-9 CrossRefGoogle Scholar
  7. Bachu S (2008) CO2 storage in geological media: role, means, status and barriers to deployment. Prog Energy Combust Sci 34:254–273. doi:10.1016/j.pecs.2007.10.001 CrossRefGoogle Scholar
  8. Bachu S, Adams JJ (2003) Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifer to sequester CO2 in solution. Energy Convers Manage 44:3151–3175CrossRefGoogle Scholar
  9. Bachu S, Celia MA (2009) Assessing the potential for CO2 leakage, particularly through wells, from geological storage sites. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. AGU Monograph, pp 203–216, AGU, Washington, DCGoogle Scholar
  10. Bachu S, Gunter WD, Perkins EH (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers Manage 34(4):269–279. doi:10.1016/0196-8904(94)90060-4 CrossRefGoogle Scholar
  11. Bense VF, Person MA (2008) Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles. J Geophys Res 113:F04005. doi:10.1029/2007JF000969 CrossRefGoogle Scholar
  12. Berger A, Loutre M-F (2004) A quand la prochaine glaciation? [When will be the next glaciation?]. Dossiers Rech 17:18–22Google Scholar
  13. Bergman PD, Winter EM (1995) Disposal of carbon dioxide in aquifers in the US. Energy Convers Manage 36(6–9):523–526. doi:10.1016/0196-8904(95)00058-L CrossRefGoogle Scholar
  14. Bethke CM (2008) Geochemical and biogeochemical reaction modeling, 2nd edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  15. Birkholzer JT, Zhou Q (2009) Basin-scale hydrogeologic impacts of CO2 storage: capacity and regulatory implications. Int J Greenhouse Gas Control 3:745–756. doi:10.1016/j.ijggc.2009.07.002 CrossRefGoogle Scholar
  16. Birkholzer JT, Apps J, Zheng L, Zhang Y, Xu T, Tsang C-F (2008a) Research project on CO2 geological storage and groundwater resources, quality effects caused by CO2 Intrusion into Shallow Groundwater, Technical Report, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 352 ppGoogle Scholar
  17. Birkholzer JT, Zhou Q, Zhang K, Jordan P, Rutqvist J, Tsang C-F (2008b) Research project on CO2 geological storage and groundwater resources: large-scale hydrogeological evaluation and impact on groundwater systems, Annual Report October 1, 2007 to September 30, 2008, Lawrence Berkeley National Laboratory, Berkeley, CAGoogle Scholar
  18. Birkholzer JT, Zhou Q, Tsang C-F (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int J Greenhouse Gas Control 3:181–194. doi:10.1016/j.ijggc.2008.08.002 CrossRefGoogle Scholar
  19. Birkholzer JT, Zheng L, Spycher N, Varadharajan C, Nico PS (2010) Groundwater quality changes in response to CO2 leakage from deep geological storage. Geol Soc Am Abstr 42(5):45Google Scholar
  20. Bredehoeft JD (2003) From models to performance assessment: the conceptualization problem. Ground Water 41(5):571–577CrossRefGoogle Scholar
  21. Carey JW, Wigand M, Chipera SJ, WoldeGabriel G, Pawar R, Lichtner PC, Wehner SC, Raines MA, Guthrie GD Jr (2007) Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA. Int J Greenhouse Gas Control 1(1):75–85. doi:10.1016/S1750-5836(06)00004-1 CrossRefGoogle Scholar
  22. Carroll S, Haoa Y, Aines R (2009) Transport and detection of carbon dioxide in dilute aquifers. Energy Procedia 1:2111–2118. doi:10.1016/j.egypro.2009.01.275 CrossRefGoogle Scholar
  23. Celia MA, Nordbotten JM (2009) Practical modeling approaches for geological storage of carbon dioxide. Ground Water 47(5):627–638. doi:10.1111/j.1745-6584.2009.00590.x CrossRefGoogle Scholar
  24. Cherry JA (1983) Migration of contaminants in groundwater at a landfill: a case study. J Hydrol 63:1–2, vii–ixCrossRefGoogle Scholar
  25. Class H, Ebigbo A, Helmig R, Dahle HK, Nordbotten JM, Celia MA, Audigane P, Darcis M, Ennis-King J, Fan Y, Flemisch B, Gasda SE, Jin M, Krug S, Labregere D, Naderi Beni A, Pawar RJ, Sbai A, Thomas SG, Trenty L, Wei L (2009) A benchmark study on problems related to CO2 storage in geologic formations. Comput Geosci 13:409–434. doi:10.1007/s10596-009-9146-x CrossRefGoogle Scholar
  26. Dong Y, Li G, Li M, Wu R (2009) Impact of large-scale CO2 geologic storage in deep saline aquifers: an example from the Songliao Basin, China, Proceeding of the TOUGH Symposium 2009, Lawrence Berkeley National Laboratory, Berkeley, CA, 6 ppGoogle Scholar
  27. Doughty C, Pruess K, Benson SM, Hovorka SD, Knox PR, Green CT (2001) Capacity investigation of brine-bearing sands of the Frio Formation for geologic sequestration of CO2. Proceedings of First National Conference on Carbon Sequestration, 14–17 May 2001, Washington, DC, USDOE/NETL-2001/1144 Paper, National Energy Technology Laboratory, US DOE, Washington, DC, pp 32–48, available on CD-ROMGoogle Scholar
  28. Ennis-King JP, Paterson L (2003) Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. SPE paper no. 84344, Presented at Society of Petroleum Engineers Annual Technical Conference and Exhibition, Denver, CO, 5–8 October 2003, SPE, Richardson, TXGoogle Scholar
  29. Gasda SE, Bachu S, Celia MA (2004) Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ Geol 46:707–720. doi:10.1007/s00254-004-1073-5 CrossRefGoogle Scholar
  30. Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. Int J Greenhouse Gas Control 4:73–89CrossRefGoogle Scholar
  31. Gaus I, Audigane P, André L, Lions J, Jacquemet N, Durst P, Czernichowski-Lauriol I, Azaroual M (2008) Geochemical and solute transport modelling for CO2 storage, what to expect from it? Int J Greenhouse Gas Control 2(4):605–625CrossRefGoogle Scholar
  32. Grasby S, Osadetz K, Betcher R, Render F (2000) Reversal of the regional-scale flow system of the Williston basin in response to Pleistocene glaciation. Geology 28(7):635–638CrossRefGoogle Scholar
  33. Gustafson G, Gylling B, Selroos J-O (2009) The Äspö Task Force on groundwater flow and transport of solutes: bridging the gap between site characterization and performance assessment for radioactive waste disposal in fractured rocks. Hydrogeol J 17:1031–1033. doi:10.1007/s10040-008-0419-6 CrossRefGoogle Scholar
  34. Hitchon B, Gunter WD, Gentzis T, Bailey RT (1999) Sedimentary basins and greenhouse gases: a serendipitous association. Energy Convers Manage 40:835–843. doi:10.1016/S0196-8904(98)00146-0 CrossRefGoogle Scholar
  35. Holloway SH (1997) An overview of the underground disposal of carbon dioxide. Energy Convers Manage 38(1):193–198CrossRefGoogle Scholar
  36. Holloway SH, Savage D (1993) The potential for aquifer disposal of carbon dioxide in the UK. Energy Convers Manage 34(9–11):925–932. doi:10.1016/0196-8904(93)90038-C CrossRefGoogle Scholar
  37. IPCC (2005) IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 442 ppGoogle Scholar
  38. Jaffé PR, Wang S (2003) Potential effect of CO2 releases from deep reservoirs on the quality of fresh-water aquifers. In: Gale J, Kaya Y (eds) Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Pergamon, New York, pp 1657–1660Google Scholar
  39. Jost A, Violette S, Gonçalvès J, Ledoux E, Guyomard Y, Guillocheau F, Kageyama M, Ramstein G, Suc J-P (2007) Long-term hydrodynamic response induced by past climatic and geomorphologic forcing: the case of the Paris basin, France. Phys Chem Earth 32:368–378. doi:10.1016/j.pce.2006.02.053 Google Scholar
  40. Keating EH, Fessenden J, Kanjorski N, Koning DJ, Pawar R (2010) The impact of CO2 on shallow groundwater chemistry: observations at a natural analog site and implications for carbon sequestration. Environ Earth Sci 60(3):521–536. doi:10.1007/s12665-009-0192-4 CrossRefGoogle Scholar
  41. Kharaka YK, Cole DR, Hovorka SD, Gunter WD, Knauss KG, Freifeld BM (2006) Gas-water-rock interactions in Frio Formation following CO2 injection: implications for the storage of gases in sedimentary basins. Geology 34(7):577–580. doi:10.1130/G22357.1 CrossRefGoogle Scholar
  42. Kharaka YK, Thordsen JJ, Hovorka SD, Nance HS, Cole DR, Phelps TJ, Knauss KG (2009) Potential environmental issues of CO2 storage in deep saline aquifers: geochemical results from the Frio-I Brine Pilot test, Texas, USA. Appl Geochem 24:1106–1112. doi:10.1016/j.apgeochem.2009.02.010 CrossRefGoogle Scholar
  43. Kharaka YK, Thordsen JJ, Kakouros E, Ambats G, Herkelrath WN, Beers SR, Birkholzer JT, Apps JA, Spycher NF, Zheng L, Trautz RC, Rauch HW, Gullickson KS (2010) Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site, Bozeman, Montana. Environ Earth Sci 60:273–284. doi:10.1007/s12665-009-0401-1 CrossRefGoogle Scholar
  44. Kolak JJ, Burruss RC (2006) Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds. Energy Fuels 20:566–574CrossRefGoogle Scholar
  45. Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  46. LeBlanc DR, Garabedian SP, Hess KM, Gelhar LW, Quadri RD, Stollenwerk KG, Wood WW (1991) Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 1. experimental design and observed tracer movement. Water Resour Res 27(5):895–910CrossRefGoogle Scholar
  47. Lemieux J-M, Sudicky EA, Peltier WR, Tarasov L (2008a) Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation. J Geophys Res 113:F01011. doi:10.1029/2007JF000838 CrossRefGoogle Scholar
  48. Lemieux J-M, Sudicky EA, Peltier WR, Tarasov L (2008b) Simulating the impact of glaciations on continental groundwater flow systems: 1. relevant processes and model formulation. J Geophys Res 113:F03017. doi:10.1029/2007JF000928 CrossRefGoogle Scholar
  49. Lemieux J-M, Sudicky EA, Peltier WR, Tarasov L (2008c) Simulating the impact of glaciations on continental groundwater flow systems: 2 model application to the Wisconsinian glaciation over the Canadian landscape. J Geophys Res 113:F03018. doi:10.1029/2007JF000929 CrossRefGoogle Scholar
  50. Lewicki JL, Birkholzer J, Tsang C-F (2007) Natural and industrial analogues for leakage of CO2 from storage reservoirs: identification of features, events, and processes and lessons learned. Environ Geol 52:457–467. doi:10.1007/s00254-006-0479-7 CrossRefGoogle Scholar
  51. McGrath AE, Upson GL, Caldwell MD (2007) Evaluation and mitigation of landfill gas impacts on cadmium leaching from native soils. Ground Water Monit Rem 27(4):99–109CrossRefGoogle Scholar
  52. McPherson BJOL, Cole BS (2000) Multiphase CO2 flow, transport and sequestration in the Powder River Basin, Wyoming, USA. J Geochem Explor 69–70(65–69). doi:10.1016/S0375-6742(00)00046-7
  53. Michael K, Gola A, Shulakov V, Ennis-King J, Allinson G, Sharma S, Aiken T (2010) Geological storage of CO2 in saline aquifers: a review of the experience from existing storage operations. Int J Greenhouse Gas Control 4:659–667. doi:10.1016/j.ijggc.2009.12.011 CrossRefGoogle Scholar
  54. Nicot J-P (2008) Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: an example from the Texas Gulf Coast Basin. Int J Greenhouse Gas Control 2:582–593. doi:10.1016/j.ijggc.2008.03.004 CrossRefGoogle Scholar
  55. Nicot J-P, Hovorka SD, Choi J-W (2009) Investigation of water displacement following large CO2 sequestration operations. Energy Procedia 1:4411–4418. doi:10.1016/j.egypro.2009.02.256 CrossRefGoogle Scholar
  56. Nitao JJ (1998) Reference manual for the NUFT flow and transport code, version 2.0. UCRL-MA-130651, Lawrence Livermore National Laboratory, Livermore, CAGoogle Scholar
  57. Nordbotten JM, Celia MA, Bachu S (2004) Analytical solutions for leakage rates through abandoned wells. Water Resour Res 40:W04204. doi:10.1029/2003WR002997 CrossRefGoogle Scholar
  58. Park Y-J, Sudicky EA, Sykes JF (2009) Effects of shield brine on the safe disposal of waste in deep geologic environments. Adv Water Resour 32:1352–1358. doi:10.1016/j.advwatres.2009.06.003 CrossRefGoogle Scholar
  59. Person M, McIntosh J, Bense V, Remenda VH (2007) Pleistocene hydrology of North America: the role of ice sheets in reorganizing groundwater flow systems. Rev Geophys 45:RG3007. doi:10.1029/2006RG000206 CrossRefGoogle Scholar
  60. Person M, Banerjee A, Rupp J, Medina C, Lichtner P, Gable C, Pawar R, Celia M, McIntosh J, Bense V (2010) Assessment of basin-scale hydrologic impacts of CO2 sequestration, Illinois basin. Int J Greenhouse Gas Control 4:840–854. doi:10.1016/j.ijggc.2010.04.004 CrossRefGoogle Scholar
  61. Pruess K (2005) ECO2N: a TOUGH2 fluid property module for mixtures of water, NaCl, and CO2. Technical report LBNL-57952, Lawrence Berkeley National Laboratory, Berkeley, CA, 76 ppGoogle Scholar
  62. Pruess K (2008) On CO2 fluid flow and heat transfer behavior in the subsurface, following leakage from a geologic storage reservoir. Environ Geol 54:1677–1686. doi:10.1007/s00254-007-0945-x CrossRefGoogle Scholar
  63. Pruess K, Oldenburg CM, Moridis G (1999) TOUGH2 user’s guide, version 2.0. Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, CAGoogle Scholar
  64. Pruess K, García J, Kovscek T, Oldenburg C, Rutqvist J, Steefel C, Xu T (2004) Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2. Energy 29:1431–1444. doi:10.1016/j.energy.2004.03.077 CrossRefGoogle Scholar
  65. Rivera A (2005) How well do we understand groundwater in Canada? A science case study. Geological Society of Canada, Ottawa, ONGoogle Scholar
  66. Rivett MO, Feenstra S, Cherry JA (1992) Groundwater zone transport of chlorinated solvents: a field experiment. Paper presented at Modern Trends in Hydrogeology, Conference of the Canadian Chapter, International Association of Hydrogeologists, Hamilton, ONGoogle Scholar
  67. Rutqvist J, Tsang C-F (2002) A study of caprock hydromechanical changes associated with CO2 injection into a brine formation. Environ Geol 42:296–305. doi:10.1007/s00254-001-0499-2 CrossRefGoogle Scholar
  68. Rutqvist J, Birkholzer J, Cappa F, Tsang C-F (2007) Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers Manage 48:1798–1807. doi:10.1016/j.enconman.2007.01.021 CrossRefGoogle Scholar
  69. Simmons CT, Fenstemaker TR, Sharp JM (2001) Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J Contam Hydrol 52(1–4):245–275CrossRefGoogle Scholar
  70. Smyth RC, Hovorka SD, Lu J, Romanak KD, Partin JW, Wong C, Yang C (2009) Assessing risk to fresh water resources from long term CO2 injection: laboratory and field studies. Energy Procedia 1:1957–1964. doi:10.1016/j.egypro.2009.01.255 CrossRefGoogle Scholar
  71. Spangler LH, Dobeck LM, Repasky KS, Nehrir AR, Humphries SD, Barr JL, Keith CJ, Shaw JA, Rouse JH, Cunningham AB, Benson SM, Oldenburg CM, Lewicki JL, Wells AW, Diehl JR, Strazisar BR, Fessenden JE, Rahn TA, Amonette JE, Barr JL, Pickles WL, Jacobson JD, Silver EA, Male EJ, Rauch HW, Gullickson KS, Trautz R, Kharaka Y, Birkholzer J, Wielopolski L (2009) A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models. Environ Earth Sci 60:227–239. doi:10.1007/s12665-009-0400-2 CrossRefGoogle Scholar
  72. Sudicky EA (1986) A natural-gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour Res 22(13):2069–2082CrossRefGoogle Scholar
  73. Tsang C-F, Stephansson O, Jing L, Kautsky F (2009) DECOVALEX Project: from 1992 to 2007. Environ Geol 57:1221–1237. doi:10.1007/s00254-008-1625-1 CrossRefGoogle Scholar
  74. van der Meer LGH (1992) Investigations regarding the storage of carbon dioxide in aquifers in the Netherlands. Energy Convers Manage 33(5–8):611–618Google Scholar
  75. Wang S, Jaffe PR (2004) Dissolution of a mineral phase in potable aquifers due to CO2 releases from deep formations: effect of dissolution kinetics. Energy Convers Manage 45:2833–2848. doi:10.1016/j.enconman.2004.01.002 CrossRefGoogle Scholar
  76. Xu T, Sonnenthal EL, Spycher N, Pruess K (2004) TOUGHREACT user’s guide: a simulation program for non-isothermal multiphase reactive geochemical transport in variable saturated geologic media. Report LBNL-55460. Lawrence Berkeley National Laboratory, Berkeley, CACrossRefGoogle Scholar
  77. Yamamoto H, Zhang K, Karasaki K, Marui A, Uehara H, Nishikawa N (2009) Numerical investigation concerning the impact of CO2 geologic storage on regional groundwater flow. Int J Greenhouse Gas Control 3:586–599. doi:10.1016/j.ijggc.2009.04.007 CrossRefGoogle Scholar
  78. Zhang K, WU YS, Pruess K (2008) User’s guide for TOUGH2-MP: a massively parallel version of the TOUGH2 code. Report LBNL-315E, Lawrence Berkeley National Laboratory, Berkeley, CAGoogle Scholar
  79. Zheng L, Apps JA, Zhang Y, Xu T, Birkholzer JT (2009a) On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage. Chem Geol 268:281–297. doi:10.1016/j.chemgeo.2009.09.007 CrossRefGoogle Scholar
  80. Zheng L, Apps JA, Zhang Y, Xu T, Birkholzer JT (2009b) Reactive transport simulations to study groundwater quality changes in response to CO2 leakage from deep geological storage. Energy Procedia 1:1887–1894. doi:10.1016/j.egypro.2009.01.246 CrossRefGoogle Scholar
  81. Zheng L, Apps AA, Spycher N, Birkholzer JT, Kharaka Y, Thordsen J, Kakouros E, Trautz R (2009c) Geochemical modeling of changes in shallow groundwater chemistry observed during the MSU-ZERT CO2 injection experiment. Proceeding of the TOUGH Symposium 2009, Lawrence Berkeley National Laboratory, Berkeley, CA, 10 ppGoogle Scholar
  82. Zhou Q, Birkholzer JT, Mehnert E, Lin Y-F, Zhang K (2010) Modeling basin- and plume-scale processes of CO2 storage for full scale deployment. Ground Water 48(4):494–514. doi:10.1111/j.1745-6584.2009.00657.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Département de géologie et de génie géologiqueUniversité LavalQuébecCanada

Personalised recommendations