Hydrogeology Journal

, Volume 19, Issue 2, pp 367–378 | Cite as

Hydrologic processes on tree islands in the Everglades (Florida, USA): tracking the effects of tree establishment and growth

  • Pamela L. Sullivan
  • René M. Price
  • Michael S. Ross
  • Leonard J. Scinto
  • Susana L. Stoffella
  • Eric Cline
  • Thomas W. Dreschel
  • Fred H. Sklar
Report

Abstract

The hydrodynamics of tree islands during the growth of newly planted trees has been found to be influenced by both vegetation biomass and geologic conditions. From July 2007 through June 2009, groundwater and surface-water levels were monitored on eight recently planted tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) facility in Boynton Beach, Florida, USA. Over the 2-year study, stand development coincided with the development of a water-table depression in the center of each of the islands that was bounded by a hydraulic divide along the edges. The water-table depression was greater in islands composed of limestone as compared to those composed of peat. The findings of this study suggest that groundwater evapotranspiration by trees on tree islands creates complex hydrologic interactions between the shallow groundwater in tree islands and the surrounding surface water and groundwater bodies.

Keywords

Groundwater/surface-water relations Groundwater evapotranspiration Tree islands USA Everglades 

Processus hydrologiques sur des îles arborées aux Everglades (Floride, USA): suivi des effets de la plantation et de la croissance d’arbres

Résumé

On a découvert que, durant la croissance d’arbres nouvellement plantés, l’hydrodynamique d’îles arborées avait été influencée à la fois par la biomasse végétale et par le contexte géologique. De juillet 2007 à Juin 2009, l’aquifère et les niveaux de la nappe libre ont été contrôlés sur huit iles récemment arborées du site de Loxahatchee Impoundment Landscape Assessment (LILA), Boynton Beach, Florida, USA. Sur deux années d’étude, l’état du développement a coïncidé avec celui d’une dépression de la nappe libre au centre de chacune des iles, limitée par une ligne de partage des eaux. La dépression de la nappe est plus importante dans les iles calcaires que dans les iles constituées de tourbe. Les résultats de cette étude suggèrent que l’évapotranspiration due aux arbres sur des îles arborées crée des interactions hydrogéologiques complexes entre l’eau de surface et l’eau des nappes.

Procesos hidrológicos en islas de árboles en los Everglades (Florida, EEUU): seguimiento de los efectos de la plantación de los árboles y su crecimiento

Resumen

Se ha encontrado que la hidrodinámica de las islas de árboles durante el crecimiento de árboles recientemente plantados está influenciada por la biomasa de la vegetación y las condiciones geológicas. Desde julio de 2007 hasta junio de 2009, los niveles de aguas subterráneas y superficiales fueron monitoreados en ocho islas de árboles recientemente plantados en las instalaciones del Loxahatchee Impoundment Landscape Assessment (LILA) en Boynton Beach, Florida, EEUU. Durante los dos años de estudio, el desarrollo de las plantaciones coincidió con el desarrollo de la profundización del nivel freático en el centro de cada una de las islas que fueron limitadas por una divisorias hidráulica a los largo de sus bordes. La profundización del nivel freático fue mayor en las islas compuestas de calizas en comparación a aquellas compuestas por turba. Los hallazgos de este estudio sugieren que la evapotranspiración de agua subterránea desde los árboles en tres islas crea interacciones hidrológicas complejas entre el agua subterránea somera en las islas de los árboles y en los cuerpos de agua subterránea y aguas superficiales circundantes.

美国佛罗里达州大沼泽地树岛的水文过程——追踪树木种植及生长的影响

摘要

在新种植树木的生长时期, 树岛的流体力学已被发现受植被生物量和地质条件两个因素的影响。从2007年7月到2009年6月, 对在美国佛罗里达州的Boynton Beach的Loxahatchee蓄水景观评价(LILA)设备的八个最新种植树的岛屿进行地下水位和地表水位的测量. 通过两年的研究, 植物发育与在受沿着边缘的水力分水岭约束的每个岛屿中心的水面降落漏斗的发展相符合. 由石灰岩组成的树岛的水面降落漏斗比由泥岩组成的树岛的水面降落漏斗更大. 本研究结果表明树岛树木的地下水蒸发造成了在树岛浅层地下水, 周围地表水及地下水体之间的复杂的水文相互作用.

Processos hidrológicos em ilhas cobertas de árvores nos Everglades (Flórida, EUA): rastreio dos efeitos da implementação de árvores e do seu crescimento

Resumo

Verificou-se que a hidrodinâmica de ilhas arborizadas durante o crescimento de árvores plantadas de novo é influenciada pela biomassa da vegetação e pelas condições geológicas. De Julho de 2007 até Junho de 2009 os níveis das águas subterrâneas e das águas superficiais foram monitorizados em oito ilhas com árvores recentemente plantadas na instalação de Loxahatchee Impoundment Landscape Assessment (LILA), em Boynton Beach, Flórida, EUA. Ao longo do estudo de dois anos, o desenvolvimento da cultura coincidiu com o desenvolvimento de uma depressão do nível freático no centro de cada ilha que era delimitada por uma divisória hidráulica ao longo das orlas. A depressão do nível freático era maior em ilhas compostas por calcário quando comparada com ilhas compostas por turfa. Os resultados deste estudo sugerem que a evapotranspiração de águas subterrâneas pelas árvores em ilhas arborizadas cria interacções hidrológicas complexas entre a água subterrânea subsuperficial nessas ilhas e as massas de água superficiais e subterrâneas envolventes.

Supplementary material

10040_2010_691_MOESM1_ESM.pdf (255 kb)
ESM 1(PDF 254 kb)

References

  1. Abtew W (1996) Evapotranspiration measurements and modeling for three wetland systems in South Florida. Water Resour Bull 32(3):465–473Google Scholar
  2. Ali A, Abtew W, Van Horn S, Khanal N (2000) Temporal and spatial characterization of rainfall over Central and South Florida. J Am Water Resour Assoc 36(4):833–848CrossRefGoogle Scholar
  3. Boelter HD (1965) Hydraulic conductivity of peats. Soil Sci 100(4):227–231CrossRefGoogle Scholar
  4. Brandt LA, Portier KM, Kitchens WM (2000) Patterns of change in tree islands in Arthur R. Marshall Loxahatchee national wildlife refuge from 1950–1991. Wetlands 20(1):1–14CrossRefGoogle Scholar
  5. Brandt LA, Siliveria JE, Kitchens WM (2002) Tree islands of Arthur R. Marshall Loxahatchee National Wildlife Refuge. In: Sklar FH, van der Valk AG (eds) Tree islands of the Everglades. Kluwers, Dordecht, The NetherlandsGoogle Scholar
  6. Coultas CL, Schawrdon M, Galbraith JM (2008) Petrocalcic horizon formation and prehistoric people’s effect on Everglades tree island soils, Florida. Soil Surv Horiz 49(1):16–21Google Scholar
  7. Daivs SM, Ogden JC (1994) Everglades: the ecosystem and it restoration. St. Lucie, Boca Raton, FLGoogle Scholar
  8. Engel VC, Jobbágy EG, Stieglitz M, Williams M, Jackson RB (2005) Hydrological consequences of Eucalyptus afforestation in the Argentine Pampas. Water Resour Res 41, W10409, 14 ppGoogle Scholar
  9. Eppinga MB, Rietkerk M, Borren W, Lapshina ED, Bleuten W, Wassen MJ (2008) Regular surface patterning of peatlands: confronting theory with field data. Ecosystems 11:520–536CrossRefGoogle Scholar
  10. Ewe SML, da Silveira Lobo Sternberg L, Busch DE (1999) Water-use patterns of woody species in pineland and hammock communities of South Florida. For Ecol Manage 118:139–148CrossRefGoogle Scholar
  11. Ferone JM, Devito KJ (2004) Shallow groundwater-surface water interactions in pond-peatland complexes along Boreal Plains topographic gradient. J Hydrol 292:75–95CrossRefGoogle Scholar
  12. Gann TGT, Childers DL, Randeaau DN (2005) Ecosystem structure, nutrient dynamics, and hydrologic relationships in tree islands of the southern Everglades, Florida, USA. For Ecol Manage 214:11–27CrossRefGoogle Scholar
  13. Gawlik DE, Gronemyer P, Powell RA (2002) Habitat-use patterns of avian seed dispersers in the central Everglades. In: Sklar FH, van der Valk AG (eds) Tree islands of the Everglades. Kluwer, Dordecht, The NetherlandsGoogle Scholar
  14. Gerla PJ (1992) The relationship of water table changes to the capillary fringe, evapotranspiration, and precipitation in intermittent wetlands. Wetlands 12(2):91–98CrossRefGoogle Scholar
  15. German ER, Sumner DM (2002) Evapotranspiration rates from two different sawgrass communities in South Florida during drought conditions. Second Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, 28 July–1 August 2002, 12 ppGoogle Scholar
  16. Glaser PH, Wheeler GA, Gorham E, Wright HE Jr (1981) The patterned mires of the Red Lake peatland, northern Minnesota: vegetation, water chemistry, and landforms. J Ecol 69(2):575–599CrossRefGoogle Scholar
  17. Graf MT, Schwadron M, Stone PA, Ross M, Chmura GL (2008) An enigmatic carbonate layer in Everglades tree island peats. EOS Trans AGU 89(12):117–124CrossRefGoogle Scholar
  18. Harvey WJ, Jackson JM, Mooney RH, Choi J (2000) Interaction between ground water and surface water in Taylor Slough and Vicinity, Everglades National Park, South Florida. US Geol Surv Open-File Rep 00–483Google Scholar
  19. Harvey WJ, Krupa SL, Krest JM (2004) Ground water recharge and discharge in the central Everglades. Ground Water 47(7):1090–1102CrossRefGoogle Scholar
  20. Healy WR, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109CrossRefGoogle Scholar
  21. Heliotis FD (1989) Water storage capacity of wetland used for wastewater treatment. J Environ Eng 115(4):822–834CrossRefGoogle Scholar
  22. Holmgren M, Scheffer M, Huston AM (1997) The interplay of facilitation and competition of plant communities. Ecology 78(7):1966–1975CrossRefGoogle Scholar
  23. Jobbágy EG, Jackson RB (2007) Groundwater and soil chemical changes under phyreatophytic tree plantations. J Geophys Res 112(G0213):1–15Google Scholar
  24. Kamann PJ, Ritzi RW, Dominic DF, Conrad CM (2007) Porosity and permeability in sediment mixtures. Ground Water 45(4):429–438CrossRefGoogle Scholar
  25. Lauenroth WK, Bradford JB (2006) Ecohydrology and the partition AET between transpiration and evaporation in semiarid steppe. Ecosystems 9:756–767CrossRefGoogle Scholar
  26. Le Maitre DC, Scott DF, Colvin C (1999) A review of information on interactions between vegetation and groundwater. Water S A 25(2):137–152Google Scholar
  27. Loheide SP II, Butler JJ Jr, Gorelick SM (2005) Estimating groundwater consumption by phreatophytes using diurnal water table fluctuations: a saturated-unsaturated flow assessment. Water Resour Res 40, W07030Google Scholar
  28. Mason DH, van der Valk A (2002) Vegetation, peat elevation, and peat depth on two tree islands in Water Conservation Area-3A. In: Sklar FH, van der Valk AG (eds) Tree islands of the Everglades. Kluwer, Dordecht, The NetherlandsGoogle Scholar
  29. McCarthy TS, Ellery WN, Danergfield JM (1998) The role of biota in the initiation and growth of islands on the floodplain of the Okavanga Alluvial Fan, Bostwana. Earth Surf Process Land 23:281–316CrossRefGoogle Scholar
  30. Meinzer OE (1923) The occurrence of groundwater in the United States with a discussion of principles. US Geol Surv Water Suppl Pap 489Google Scholar
  31. Meyboom P (1967) Groundwater studies in the Assiniboine River drainage basin: part II, hydrologic characteristics of phyreatophytic vegetation in south-central Saskatchewan. Geol Surv Canada Bull 139Google Scholar
  32. Nachabe MH (2002) Analytical expressions for transient specific yield and shallow water table drainage. Water Resour Res 38(10):1193–1204CrossRefGoogle Scholar
  33. Nachabe M, Shah N, Ross M, Vomacka J (2005) Evapotranspiration of two vegetation covers in shallow water table environment. Soil Sci Soc Am J 69:429–499CrossRefGoogle Scholar
  34. National Resources Conservation Survey (2010) Web soil survey, national cooperative soil survey. National Resources Conservation Survey, Washington, DC. http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx. Cited 21 March 2010
  35. Parker GG, Ferguson GE, Love SK et al (1955) Water resources of southeastern Florida with special reference to the geology and ground water of the Miami area. US Geol Surv Water Suppl Pap 1255Google Scholar
  36. Rietkerk M, van der Koppel J (2008) Regular pattern formation in real ecosystems. Trends Ecol Evol 23(3):169–176CrossRefGoogle Scholar
  37. Rietkerk M, Dekker SC, Wassen MJ, Verkroost AWM, Bierkens MFP (2004) A putative mechanism for bog patterning. Am Naturalist 163(5):699–708CrossRefGoogle Scholar
  38. Rosenberry DO, Winter TC (1997) Dynamics of water-table fluctuations in an upland between two prairie-pothole wetlands in North Dakota. J Hydrol 191:266–289CrossRefGoogle Scholar
  39. Ross MS, Jones DT (2004) Tree islands in the Shark Slough landscape: interactions of vegetation, hydrology and soils. Final report, Submitted to the Everglades National Park, Homestead, FL, 196 ppGoogle Scholar
  40. Ross MS, Mitchell-Brucker S, Sah JP, Stothoff S, Ruiz PL, Reed DL, Jayachandran K, Coultas CL (2006) Interaction of hydrology and nutrient limitation in ridge and slough landscape of southern Florida. Hydrobiology 569:37–59CrossRefGoogle Scholar
  41. Schwadron M (2006) Everglades tree islands prehistory: archeological evidence for regional Holocene variability and early human settlement. Antiquity 80(310)Google Scholar
  42. Sklar FH, van der Valk A (2002) Tree islands of the Everglades: an overview. In: Sklar FH, van der Valk AG (eds) Tree islands of the Everglades. Kluwer, Dordecht, The NetherlandsGoogle Scholar
  43. Sophocleous M (2002) Interactions between groundwater and surface water: the state of science. Hydrogeol J 10:52–67CrossRefGoogle Scholar
  44. Stoffella SL, Ross MS, Sah J, Ruiz P, Lopez l, Colbert N, Dodge C, Heinrich J Trujillo D (2009) Estimating biomass production and nutrient concentrations of tree species growing along hydrologic gradient on LILA tree islands Biomass Estimation. Report to the South Florida Water Management District. SFWMD, West Palm Beach, FL, 12 ppGoogle Scholar
  45. Stoffella SL, Ross MS, Sah JP, Price MP, Sullivan PL, Cline AE, Scinto LJ (2010) Survival and growth responses of eight Everglades tree species along an experimental hydrologic gradient on two tree island types. Appl Veg Sci. doi:10.1111/j.1654-109X.2010.01081.x
  46. Stone PA, Gleason PJ, Chmura GL (2002) Bayhead Tree Islands on deep peats of the northeastern Everglades, chapter 3. In: Sklar FH, van der Valk AG (eds) Tree islands of the Everglades. Kluwer, Dordecht, The NetherlandsGoogle Scholar
  47. Sumner DM (2007) Effects of capillarity and microtopography on wetlands specific yield. Wetlands 27(3):693–701CrossRefGoogle Scholar
  48. Tóth J (1963) A theoretical analysis of groundwater flow in a small drainage basin. J Geophys Res 68(16):4795–4812Google Scholar
  49. van der Valk AG, Wetzel P, Cline E, Sklar FH (2008) Restoring Tree Islands in the Everglades: experimental studies of tree seedling survival. Restor Ecol 16(2):281–289CrossRefGoogle Scholar
  50. Wetzel PR, van der Valk AG, Newman S, Gawlik DE, Gann TT, Coronado-Moliana CA, Childers DL, Sklar FH (2005) Maintaining tree islands in the Florida Everglades: nutrient redistribution is the key. Front Ecol Environ 3(7):370–376CrossRefGoogle Scholar
  51. White WN (1932) A method of estimating ground-water supplies based on discharge by plants and evaporations from soils: results of investigations in Escalante Valley, Utah. US Geol Surv Water Suppl Pap 659-AGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Pamela L. Sullivan
    • 1
  • René M. Price
    • 1
    • 2
  • Michael S. Ross
    • 1
    • 2
  • Leonard J. Scinto
    • 1
    • 2
  • Susana L. Stoffella
    • 2
  • Eric Cline
    • 3
  • Thomas W. Dreschel
    • 3
  • Fred H. Sklar
    • 3
  1. 1.Department of Earth and the EnvironmentFlorida International UniversityMiamiUSA
  2. 2.Southeastern Environmental Research CenterFlorida International UniversityMiamiUSA
  3. 3.South Florida Water Management DistrictEverglades DivisionWest Palm BeachUSA

Personalised recommendations