Hydrogeology Journal

, Volume 18, Issue 8, pp 1747–1772 | Cite as

Review: Recharge rates and chemistry beneath playas of the High Plains aquifer, USA

Paper

Abstract

Playas are ephemeral, closed-basin wetlands that are hypothesized as an important source of recharge to the High Plains aquifer in central USA. The ephemeral nature of playas, low regional recharge rates, and a strong reliance on groundwater from the High Plains aquifer has prompted many questions regarding the contribution and quality of recharge from playas to the High Plains aquifer. As a result, there has been considerable scientific debate about the potential for water to infiltrate the relatively impermeable playa floors, travel through the unsaturated zone sediments that are tens of meters thick, and subsequently recharge the High Plains aquifer. This critical review examines previously published studies on the processes that control recharge rates and chemistry beneath playas. Reported recharge rates beneath playas range from less than 1.0 to more than 500 mm/yr and are generally 1–2 orders of magnitude higher than recharge rates beneath interplaya settings. Most studies support the conceptual model that playas are important zones of recharge to the High Plains aquifer and are not strictly evaporative pans. The major findings of this review provide science-based implications for management of playas and groundwater resources of the High Plains aquifer and directions for future research.

Keywords

Review High plains aquifer Recharge Playas Nitrate USA 

Revue: Taux de recharge et chimie des playas de l’aquifère High Plains, USA

Résumé

Les playas sont des bassins humides fermés éphémères supposés être une source importante de recharge de l’aquifère High Plains au centre des USA. La nature éphémère des playas, des taux de recharge régionaux lents, et une forte dépendance de l’aquifère High Plains a suscité de nombreuses questions concernant la contribution et la qualité des playas à la recharge l’aquifère High Plains. Par suite, un débat scientifique important a eu lieu sur le potentiel d’infiltration de l’eau dans les substrats relativement imperméables des playas, écoulement à travers les sédiments de la zone non saturée épais de dizaines de mètres, et par suite recharge de l’aquifère High Plains. Cette étude critique examine les études antérieurement publiées sur le processus contrôlant les taux de recharge et la chimie sous les playas. Les taux de recharge sous playas s’échelonnent de moins de 1.0 à plus de 500 mm/an et sont généralement de 1 à 2 fois plus élevés que les taux de recharge sous les interplayas. La plupart des études retiennent le modèle conceptuel faisant des playas des zones importantes de recharge de l’aquifère High Plains et non de strictes surfaces d’évaporation. Les principaux résultats de cette étude sont des recommandations scientifiques concernant la gestion des playas et des ressources en eau de l’aquifère High Plains et des axes de recherche future.

Revisión: Ritmo de recarga y química debajo de las playas del acuífero de High Plains, EEUU

Resumen

Las playas son efímeras, humedales de cuencas cerradas que son supuestas como una importante fuente de recarga del acuífero de High Plains en el centro de EEUU. La naturaleza efímera de las playas, los bajos ritmos de recarga regional, y una fuerte dependencia de las aguas subterráneas del acuífero de las High Plains ha impulsado muchas preguntas acerca de la contribución y calidad de la recarga desde las playas al acuífero de High Plains. Como resultado, ha habido un considerable debate científico acerca del potencial del agua para infiltrar en los lechos relativamente impermeables de la playa, el tránsito a través de los sedimentos de la zona no saturada que tienen decenas de metros de espesor, y la subsecuente recarga del acuífero de High Plains. Esta revisión crítica examina los estudios previamente publicados sobre los procesos que controlan los ritmo de la recarga y química por debajo de las playas. Los ritmos de recarga informados por debajo de las playas oscilaron entre menos de 1.0 y más de 500 mm/año y son generalmente de 1 a 2 órdenes de magnitud más altos que el ritmo de la recarga debajo de la localización de la interplaya. La mayoría de los estudios apoyan el modelo conceptual que las playas son importantes zonas de recarga al acuífero de High Plains y no son depresiones estrictamente evaporativos. Los principales hallazgos de esta revisión proveen implicancias científicas de base para el manejo de las playas, de los recursos de agua subterránea en el acuífero de High Plains y direcciones para investigaciones futuras.

综述: 美国高原含水层来自上覆湿地的补给速率及化学特征

摘要

普雷亚斯 (Playas) 是一种季节性、闭合盆地湿地, 被认为是美国中部高原含水层的重要补给源。该湿地的季节性特点、低区域补给速率, 及对来自于高原含水层中的地下水的强依赖性引发了许多问题, 包括其对补给高原含水层的贡献和水质。结果, 对于水能否通过湿地底部的相对隔水层, 穿过数十米厚的非饱和带沉积物, 最终补给到高原含水层出现了许多的学术争论。本文综述了已发表的有关控制湿地下补给速率和化学的过程的研究。报道的补给速率为不到1.0 至大于 500 mm/yr, 较通常的湿地间地块的补给速率高出1到2个数量级。大部分研究支持湿地为高原含水层的重要补给区, 且非严格的“蒸发皿”这一概念模型。本综述的主要发现为普雷亚斯湿地和高原含水层地下水资源的管理提供了科学依据, 并为未来的研究指明了方向。

Análise: Taxas de recarga e química sob zonas húmidas temporárias (playas) do aquífero dos High Plains, EUA

Resumo

As playas são efémeras, e correspondem a áreas húmidas temporárias associadas a bacias fechadas, que são hipoteticamente uma fonte importante de recarga para o aquífero dos High Plains, no centro dos EUA. A natureza efémera das playas, as baixas taxas regionais de recarga, e a forte dependência da água subterrânea do aquífero dos High Plains, colocou muitas questões no que concerne à contribuição e qualidade da recarga a partir das playas para esse aquífero. Como resultado, tem existido um debate científico considerável sobre o potencial de infiltração de água através das bases relativamente impermeáveis das playas, da circulação através dos sedimentos da zona não saturada, com espessuras de dezenas de metros, e subsequente recarga do aquífero dos High Plains. Esta análise crítica examina estudos previamente publicados sobre o processo que controla as taxas de recarga e a química sob as playas. Taxas de recarga reportadas sob as playas variam desde menos de 1.0 a mais de 500 mm/ano e são geralmente 1 a 2 ordens de magnitude mais elevadas do que as taxas de recarga sob ambientes inter-playa. A maioria dos estudos suportam o modelo conceptual de que as zonas de playas são importantes áreas de recarga para o aquífero dos High Plains e não são estritamente bacias de evaporação. As principais conclusões desta análise fornecem indicações baseadas na ciência para a gestão dos recursos hídricos subterrâneos e playas do aquífero dos High Plains, e indicam direcções para pesquisas futuras.

References

  1. Allen BL, Harris BL, Davis KR, Miller GB (1972) The mineralogy and chemistry of High Plains playa lake soils and sediments. Texas Tech Univ Water Resour Bull WRC–72–4Google Scholar
  2. Aronovici VS, Schneider AD (1972) Deep percolation through Pullman soil in the southern High Plains. J Soil Water Conserv 27:70–73Google Scholar
  3. Aronovici VS, Schneider AD, Jones OR (1970) Basin recharging the Ogallala aquifer through Pleistocene sediments. Spec. Rep. 39, Ogallala Aquifer Symp., Texas Tech. Univ., Lubbock, TX, pp 182–192Google Scholar
  4. Aronovici VS, Schneider AD, Jones OR (1972) Basin recharge of the Ogallala aquifer: American Society Civil Engineers Proceedings. J Irrig Drain Div 98:65–76Google Scholar
  5. Barnes JR, Ellis WC, Leggat ER, Scalapino RA, George WO, Irelan B (1949) Geology and ground water in the irrigated region of the southern High Plains in Texas. Progress report no. 7, Texas Board of Water Eng., Austin, TX, 51 ppGoogle Scholar
  6. Bauchert JA (1996) Physical and chemical characteristics of playa soils in southwest Kansas. MSc Thesis, Texas Tech. Univ., USA, 90 ppGoogle Scholar
  7. Becerra-Muñoz S (2007) On the influence of substrate morphology and surface area on phytofauna. Hydrobiology 575(1):117–128CrossRefGoogle Scholar
  8. Bolen EG, Smith LM, Schramm HL Jr (1989) Playa lakes: prairie wetlands of the southern High Plains. Bioscience 39:651–623CrossRefGoogle Scholar
  9. Broadhurst WL (1942) Recharge and discharge of the ground-water resources on the High Plains of Texas. Trans Am Geophys Union 1:9–15Google Scholar
  10. Brown RF, Signor DC (1973) Artificial-recharge experiments and operations on the southern High Plains of Texas and New Mexico. US Geol Surv Water Resour Invest Rep 10–73:54Google Scholar
  11. Brown RF, Signor DC, Wood WW (1978) Artificial ground-water recharge as a water-management technique on the southern High Plains of Texas and New Mexico. Report 220, Texas Dept of Water Resources, Austin, TX, 32 ppGoogle Scholar
  12. Buck LS (1989) Variations in water quality parameters over time in small impoundments in the Texas southern High Plains. MSc Thesis, Texas Tech. Univ., USA, 158 ppGoogle Scholar
  13. Bureau of Reclamation (1982) Llano Estacado playa water resources study, a special investigation. US Bureau of Reclamation, Southwest Regional Office, Amarillo, TX, variously paginatedGoogle Scholar
  14. Brutsaert W, Gross GW, McGehee RM (1975) C.E. Jacob′s study on the prospective and hypothetical future of the mining of the ground water deposited under the southern High Plains of Texas and New Mexico. Ground Water 13(6):492–505CrossRefGoogle Scholar
  15. Casula K (1995) Classification of playa lakes based on origin, morphology, and water quality parameters. MSc Thesis, Texas Tech. Univ., USA, 91 ppGoogle Scholar
  16. Claborn BJ, Urban LV, Oppel SE (1985) Frequency of significant recharge to the Ogallala aquifer from playa lakes. Water Resour Center Proj G–935–03, Water Resources Center, Univ. of Texas, Austin, TX, 24 ppGoogle Scholar
  17. Clark RN, Schneider AD, Stewart BA (1975) Analysis of runoff from southern Great Plains feedlots. Trans Am Soc Agri Eng 18:319–322Google Scholar
  18. Clyma W, Lotspeich FB (1966) Water resources in High Plains of Texas and New Mexico. Agri Res Serv Bull 41–114, US Department of Agriculture, Washington, DC, 14 ppGoogle Scholar
  19. Covich AP, Fritz SC, Lamb PJ, Marzolf RD, Matthews WJ, Poiani KA, Prepas EE, Richman MB, Winter TC (1997) Potential effects of climate change on aquatic ecosystems of the Great Plains of North America. Hydrol Proc 11:993–1021CrossRefGoogle Scholar
  20. Cronin JG (1961) A summary of the occurrence and development of ground water in the southern High Plains of Texas. Texas Board Water Eng Bull 6107:104Google Scholar
  21. Curtis D, Beierman H (1980) Playa lakes characterization study. US Dept. Inter. Fish Wildl. Serv. Reg 2, Area 1, US Dept. Inter. Fish Wildl. Serv., Austin Texas, 54 ppGoogle Scholar
  22. Davis CA, Smith LM (1998) Ecology and management of migrant shorebirds in the playa lakes region of Texas. Wildlife Society Wildlife Monograph 140, Wildlife Society, Bethesda, MD, 45 ppGoogle Scholar
  23. Dennehy KF, Litke DW, McMahon PB (2002) The High Plains aquifer, USA: groundwater development and sustainability. In: Hiscock KM, Rivett MO, Davison RM (eds) Sustainable groundwater development. Geol Soc Lond Spec Publ 193:99–119Google Scholar
  24. Dugan JT, Zelt RB (2000) Simulation and analysis of soil-water conditions in the Great Plains and adjacent areas, central United States, 1951–80. US Geol Surv Water Suppl Pap 2427, 81 ppGoogle Scholar
  25. Dugan JT, McGrath T, Zelt RB (1994) Water level changes in the High Plains aquifer—Predevelopment to 2002. US Geol Surv Water Resour Invest Rep 94–4027, 56 ppGoogle Scholar
  26. Dutton AR, Reedy AR, Mace RE (2000) Saturated thickness in the Ogallala aquifer in the panhandle water planning areas: simulation of 2000 through 2050 withdrawal projections. Bur Econ Geol Tech Rep, Univ. of Texas, Austin, TX, 39 ppGoogle Scholar
  27. Dvoracek MJ (1981) Modification of the playa lakes in the Texas panhandle. Playa Lake Symposium Proceedings, US Fish Wildl. Serv., Washington, DC, pp 64–82Google Scholar
  28. Dvoracek MJ, Peterson SH (1970) Recharging the Ogallala Formation using shallow holes. Texas Tech. Univ. ICASALS Spec. Rep 39, Texas Tech. Univ., Lubbock, TX, 32 ppGoogle Scholar
  29. Ekanayake AJ, Tsai JS, Allen LJ, Smith LM, Surles JG, Allen EJ (2009) Estimating watershed area for playas in the southern High Plains, USA. Wetlands 29(1):387–395CrossRefGoogle Scholar
  30. Enwright N, Hudak PF (2009) Spatial distribution of nitrate and related factors in the High Plains aquifer, Texas. Environ Geol 58:335–363CrossRefGoogle Scholar
  31. Evans PW (1990) Determining the bimodal infiltration patterns in three playa lakes. MSc Thesis, Texas Tech. Univ., USA, 103 ppGoogle Scholar
  32. Fahlquist L (2003) Ground-water quality of the southern High Plains aquifer, Texas and New Mexico, 2001. US Geol Surv Open File Rep 03–345, 59 ppGoogle Scholar
  33. Felty JR, Moeller RL, Rekers RG, Huddleston EW, Wells DM (1972) Potential pollution of the Ogallala by recharging playa lake water. In: Reeves CC Jr (ed) Playa Lakes Symposium Proceedings. Report No. 4., ICASLS and Dept. of Geosciences, Texas Tech. Univ., Lubbock, TXGoogle Scholar
  34. Finley RJ, Gustavson, TC (1981) Lineament analysis based on Landsat imagery, Texas panhandle. Texas Bur Econ Geol Circ 85–5, 37 ppGoogle Scholar
  35. Fish, EB, Atkinson, EL, Shanks, CH, Brenton, CM, and Mollhagen, T (1998) Playa lakes digital database. College Agric Nat Resour Tech Pub Y–9–813, Texas Tech. Univ., Lubbock, TX, 37 ppGoogle Scholar
  36. Fryar AE, Macko SA, Mullican WF, Romanak KD, Bennett PC (2000) Nitrate reduction during ground-water recharge, southern High Plains, Texas. J Contam Hydrol 40:335–363CrossRefGoogle Scholar
  37. Fryar AE, Mullican WF, Macko SA (2001) Groundwater recharge and chemical evolution in the southern High Plains of Texas, USA. Hydrol J 9(6):522–542Google Scholar
  38. Ganesan G (2010) Estimating recharge through playa lakes to the southern High Plains aquifer. MSc Thesis, Texas Tech. Univ., USA, 80 ppGoogle Scholar
  39. Gilbert GK (1895) Lake basins created by wind erosions. J Geol 13:47–49CrossRefGoogle Scholar
  40. Goudie AS (1991) Pans. Prog Phys Geogr 15(3):211–237Google Scholar
  41. Goudie AS, Wells GL (1995) The nature, distribution and formation of pans in arid zones. Earth Sci Rev 38:1–69CrossRefGoogle Scholar
  42. Gould CN (1906) The geology and water resources of the western portion of the panhandle of Texas. US Geol Surv Water Suppl Pap 154:59Google Scholar
  43. Grubb HW, Parks DL (1968) Multipurpose benefits and costs of modifying playa lakes of the Texas High Plains. ICASLS Spec. report 6, Texas Tech. Univ., Lubbock, 58 ppGoogle Scholar
  44. Gurdak JJ (2008) Ground-water vulnerability: nonpoint-source contamination, climate variability, and the high plains aquifer. VDM, Saarbrucken, Germany, 223 ppGoogle Scholar
  45. Gurdak JJ, Qi SL (2006) Vulnerability of recently recharged ground water in the High Plains aquifer to nitrate contamination. US Geol Surv Sci Invest Rep 2006–5050, 39 ppGoogle Scholar
  46. Gurdak JJ, Roe CD (2009) Recharge rates and chemistry beneath playas of the High Plains aquifer: a literature review and synthesis. US Geol Surv Circ 133, 39 ppGoogle Scholar
  47. Gurdak JJ, Hanson RT, McMahon PB, Bruce BW, McCray JE, Thyne GD, Reedy RC (2007a) Climate variability controls on unsaturated water and chemical movement, High Plains aquifer, USA. Vadose Zone J. doi:10.2136/vzj/2006.0087 Google Scholar
  48. Gurdak JJ, McCray JE, Thyne GD, Qi SL (2007b) Latin hypercube approach to estimate uncertainty in ground water vulnerability. Ground Water 45(3):348–361CrossRefGoogle Scholar
  49. Gurdak JJ, Walvoord MA, McMahon PB (2008) Susceptibility to enhanced chemical migration from depression-focused preferential flow, High Plains aquifer. Vadose Zone J 7(4):1–13. doi:10.2136/vzj2007.0145 CrossRefGoogle Scholar
  50. Gurdak JJ, Hanson RT, Green RT (2009) Effects of climate variability and change on groundwater resources of the United States. US Geol Surv Fact Sheet 2009–3074, 4 ppGoogle Scholar
  51. Gurdak JJ, McMahon PB, Dennehy KF, Qi SL (2009b) Water quality in the High Plains Aquifer, Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1999–2004. US Geol Surv Circ 1337, 63 ppGoogle Scholar
  52. Gustavson TC (1986) Geomorphic development of the Canadian River Valley, Texas panhandle: an example of regional salt dissolution and subsidence. Geol Soc Am Bull 97:459–472CrossRefGoogle Scholar
  53. Gustavson TC (1996) Fluvial and eolian depositional systems, paleosols, and paleoclimate of the upper Cenozoic Ogallala and Blackwater Draw Formations, southern High Plains, Texas and New Mexico. Bur Econ Geol Tech Rep Invest 239, Univ. of Texas, Austin, TX, 62 ppGoogle Scholar
  54. Gustavson TC, Holliday VT, Hovorka SD (1994) Development of playa basins, southern High Plains, Texas and New Mexico. In: Proc. Playa Basin Symp. Water Resources Center, Texas Tech. Univ., Lubbock, TX, pp 5–14Google Scholar
  55. Gustavson TC, Holliday VT, Hovorka SD (1995) Origin and development of playa basins, sources of recharge to the Ogallala aquifer, southern High Plains, Texas and New Mexico. Bur Econ Geol Rep Invest 229, Univ. of Texas, Austin, TX, 44 ppGoogle Scholar
  56. Gutentag ED, Heimes FJ, Krothe NC, Luckey RR, Weeks JB (1984) Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. US Geol Surv Prof Pap 1400–B, 63 ppGoogle Scholar
  57. Guthery FS, Bryant FC (1982) Status of playas in the southern Great Plains. Wildl Soc Bull 10:309–317Google Scholar
  58. Hall DL, Willig MR, Moorhead DL, Mollhagen TR (1995) Variations in playa lakes: islands of diversity in a sea of agriculture and aridity. Bull North Am Benthol Soc 12:221Google Scholar
  59. Hamilton LA (2002) Evaluating the presence of human bacterial pathogens in Lubbock area playa lakes. PhD Thesis, Texas Tech. Univ., USA, 197 ppGoogle Scholar
  60. Harris BL, Davis KR, Miller GB, Allen BL (1972) Mineralogical and selected chemical properties of High Plains playa soils and sediments. In: Proceedings of the playa lake symposium. US Fish Wildl. Serv., Arlington, TX, pp 287–299Google Scholar
  61. Haukos DA (1991) Vegetation manipulation strategies for playa lakes. PhD Thesis, Texas Tech. Univ., USA, 175 ppGoogle Scholar
  62. Haukos DA, Smith LM (1992) Ecology of playa lakes. Fish Wildl Leaflet 13.3.7., Fish Wildl Serv, Arlington, TX, 7 ppGoogle Scholar
  63. Haukos DA, Smith LM (1993) Moist-soil management of playa lakes for migrating and wintering ducks. Wildl Soc Bull 21:288–298Google Scholar
  64. Haukos DA, Smith LM (1994) The importance of playa wetlands to biodiversity of the southern High Plains. Landsc Urban Plan 28:83–98CrossRefGoogle Scholar
  65. Haukos DA, Smith LM (1996) Effects of moist-soil management on playa wetland soils. Wetlands 16:143–149CrossRefGoogle Scholar
  66. Hauser VL (1966) Hydrology conservation and management of runoff water in playas on the southern High Plains. Agric. Res. Serv. Conserv. Res. Rep. 8, USDA, Washington, DC, 26 ppGoogle Scholar
  67. Hauser VL, Lotspeich FB (1968) Treatment of playa-lake water for recharge through wells. Trans Am Soc Agri Eng 11(1):108–111Google Scholar
  68. Havens JS (1966) Recharge studies on the High Plains in northern Lea County, New Mexico. US Geol Surv Water Suppl Pap 1819–F, p 52Google Scholar
  69. Hendrickx JMH, Flury M (2001) Uniform and preferential flow mechanisms in the vadose zone. In: Conceptual models of flow and transport in the fractured vadose zone. National Research Council, Washington, DC, pp 149–188Google Scholar
  70. Hertel L, Smith K (1994) Urban playa lake management: City of Lubbock. In: Proceedings of the Playa Basin Symp., Water Resources Center, Texas Tech. Univ., Lubbock, TX, pp 109–111Google Scholar
  71. Hoagland BW, Collins SL (1997) Heterogeneity of shortgrass prairie vegetation: the role of playa lakes. J Veg Sci 8:277–286CrossRefGoogle Scholar
  72. Holliday VT, Hovorka SD, Gustavson TC (1996) Lithostratigraphy and geochronology of fills in small playa basins on the southern High Plains, United States. Geol Soc Am Bull 108:953–965CrossRefGoogle Scholar
  73. Horne FR (1974) Phyllopods of some southern High Plains saline playas. Southwest Nat 18:475–479CrossRefGoogle Scholar
  74. Hovorka SD (1995) Quaternary evolution of playa lakes on the southern High Plains: a case study from the Amarillo area, Texas. Bur Econ Geol Rep Invest 236, Univ. of Texas, Austin, TX, 52 ppGoogle Scholar
  75. Hovorka SD (1997) Quaternary evolution of ephemeral playa lakes on the southern High Plains of Texas, USA: cyclic variations in lake level recorded in sediments. J Paleolimnol 17:131–146CrossRefGoogle Scholar
  76. Huang AZ (1992) Investigation of selected metals in urban playa lakes. MSc Thesis, Texas Tech. Univ., USA, 117 ppGoogle Scholar
  77. Huda AN (1996) Field verification of a dual-porosity flow model to estimate aquifer recharge rates through playa lakes. MSc Thesis, Texas Tech. Univ., USA, 154 ppGoogle Scholar
  78. Hudak PF (2002) Associations between rural land uses and ground water quality in the Ogallala aquifer, northwest Texas. Ground Water Monit Remediat 22:117–120CrossRefGoogle Scholar
  79. Intergovernmental Panel on Climate Change (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press, Cambridge, UK, 976 ppGoogle Scholar
  80. Irwin RJ, Connor PJ, Baker D, Dodson S, Littlefield C (1996) Playa lakes of the Texas High Plains: a contaminants survey and assessment of biological integrity. US Fish Wildl Serv, Arlington, TX, 94 ppGoogle Scholar
  81. James TS (1998) Hydrologic budget of selected playa lakes in Lubbock, Texas. MSc Thesis, Texas Tech. Univ., USA, p 152Google Scholar
  82. Johnson WD (1901) The High Plains and their utilization. 21st Ann Rep, 1890–1900, part 4, US Geological Survey, Reston, VA, pp 601–741Google Scholar
  83. Jones OR, Schneider AD (1972) Ground-water management on the Texas High Plains. Water Resour Bull 8:516–522Google Scholar
  84. Keese KE, Scanlon BR, Reedy RC (2005) Assessing controls on diffuse groundwater recharge using unsaturated flow modeling. Water Resour Res 41, doi:10.1029/2004WR003841
  85. Kier RS, Stecher LS, Brandes RJ (1984) Rising ground-water levels. In: Proc. Ogallala aquifer symposium II. Water Resour. Center, Texas Tech. Univ., Lubbock, TX, pp 416–439Google Scholar
  86. Klemt WB (1981) Neutron probe measurement of deep soil moisture as an indicator of aquifer recharge rates. Texas Dept. Water Resour. LP–142, TDW, Austin, TX, 31 ppGoogle Scholar
  87. Knowles T, Nordstrom P, Klemt WB (1984) Evaluation of the ground-water resources of the High Plains of Texas. Texas Dept. Water Resour Rep. 288, TDW, Austin, TX, 113 ppGoogle Scholar
  88. Koenig GP (1990) Infiltration through playa lake basin soils. MSc Thesis, Texas Tech. Univ., USA, 147 ppGoogle Scholar
  89. Kuzila MS (1994) Inherited morphologies of two large basins in Clay County, Nebraska. Great Plains Res 4:51–63Google Scholar
  90. LaGrange TG (2005) A guide to Nebraska’s wetlands and their conservation needs. Nebraska Game and Parks Comm., Lincoln, NB, 59 ppGoogle Scholar
  91. Lansford RR, Brutsaert W, Creel BJ, Flores A, Loo W (1974) Water resources evaluation of the southern high plains of New Mexico. New Mexico Water Resour Res Inst Rep 044, NM Water Resour., Albuquerque, NM, 59 ppGoogle Scholar
  92. Lehman OR (1972) Playa water quality for groundwater recharge and use of playas for impoundment of feedyard runoff. In: Playa lake Symposium proceedings, publ. 4. IICASLS and Dept. of Geosciences, Texas Tech. Univ., Lubbock, TX, pp 25–30Google Scholar
  93. Lehman OR, Clark RN (1975) Effect of cattle feedyard runoff on soil infiltration rates. J Environ Qual 4:437–439CrossRefGoogle Scholar
  94. Lotspeich FB, Hauser VL, Lehman OR (1969) Quality of waters from playas on the southern High Plains. Water Resour Res 5(1):48–58CrossRefGoogle Scholar
  95. Lotspeich FB, Lehman O, Hauser VL, Stewart BA (1971) Hydrogeology of a playa near Amarillo, Texas. Agric Resour Serv Tech Rep no. 10, USDA, College Station, Texas, p 35Google Scholar
  96. Luckey RR, Becker MF (1999) Hydrogeology, water use, and simulation of flow in the High Plains aquifer in northwestern Oklahoma, southeastern Colorado, southwestern Kansas, northeastern New Mexico, and northwestern Texas. US Geol Surv Water Resour Invest Rep 99–4104, 68 ppGoogle Scholar
  97. Luckey RR, Gutentag ED, Heimes FJ, Weeks JB (1986) Digital simulation of ground-water flow in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. US Geol Surv Prof Pap 1400–D, 57 ppGoogle Scholar
  98. Luo HR, Smith LR, Allen BL, Haukos DA (1997) Effects of sedimentation on playa wetland volume. Ecol Appl 7(1):247–252CrossRefGoogle Scholar
  99. Matthews JH (2008) Anthropogenic climate change in the Playa Lakes Joint Venture region: understanding impacts, discerning trends, and developing responses. World Wildl Fund rep, WWF, Gland, Switzerland, 40 ppGoogle Scholar
  100. Maupin MA, Barber NL (2005) Estimated withdrawals from principal aquifers in the United States, 2000. US Geol Surv Circ 1279, 46 ppGoogle Scholar
  101. McGuire VL, Johnson MR, Schieffer RL, Stanton JS, Sebree SK, Verstraeten IM (2003) Water in storage and approaches to ground-water management, High Plains aquifer, 2000. US Geol Surv Circ 1243, 51 ppGoogle Scholar
  102. McMahon PB, Dennehy KF, Michel RL, Sophocleous MA, Ellet MA, Hurlbut D (2003) Water movement through thick unsaturated zones overlying the central High Plains aquifer, southwestern Kansas, 2000–2001. US Geol Surv Water Resour Invest Rep 03–4171, 30 ppGoogle Scholar
  103. McMahon PB, Dennehy KF, Bruce BW, Böhlke JK, Michel RL, Gurdak JJ, Hurlbut DB (2006) Storage and transit time of chemicals in thick unsaturated zones under rangeland and irrigated cropland, High Plains, United States. Water Resour Res 42:W03413. doi:10.1029/2005WR004417 CrossRefGoogle Scholar
  104. McMahon PB, Dennehy KF, Bruce BW, Gurdak JJ, Qi SL (2007) Water-quality assessment of the High Plains Aquifer, 1999–2004. US Geol Surv Prof Pap 1749, 136 ppGoogle Scholar
  105. McMahon PB, Burow KR, Kauffman LJ, Eberts SM, Böhlke JK, Gurdak JJ (2008) Simulated response of water quality in public supply wells to land use change. Water Resour Res 44:W00A06, doi:10.1029/2007WR006731
  106. McReynolds D (1994) Ground-water quality near selected South Plains feedlot operations. In: Urban LV, Wyatt AW (eds) Proceedings of the Playa Basin Symposium. Water Resources Center, Texas Tech. Univ., Lubbock, TX, pp 17–186Google Scholar
  107. Melcher CP, Skagen SK (2005a) Grass buffers for playas in agricultural landscapes: a literature synthesis. US Geol Surv Open File Rep 2005–1220, 35 ppGoogle Scholar
  108. Melcher CP, Skagen SK (2005b) Grass buffers for playas in agricultural landscapes: an annotated bibliography. US Geol Surv Open File Rep 2005–1221, 46 ppGoogle Scholar
  109. Mollhagen TR, Urban LV, Ramsey RH, Wyatt AW, McReynolds CD, Ray JT (1993) Assessment of nonpoint-source contamination of playa basins in the High Plains of Texas (Brazos Basin watershed, phase I). Final report, Water Resources Center, Texas Tech. Univ., Lubbock, TX, 23 ppGoogle Scholar
  110. Moody S (1990) Aquifer’s fate may hinge on flow of understanding. Lubbock Avalanche J 17:1–12Google Scholar
  111. Morton RB (1980) Digital-model projection of saturated thickness and recoverable water in the Ogallala aquifer, Texas County, Oklahoma. US Geol Surv Open File Rep 79–565, 34 ppGoogle Scholar
  112. Mullican WF III, Johns ND, Fryar AE (1994) What a difference a playa can make: defining recharge scenarios, rates, and contaminant transport to the Ogallala (High Plains) aquifer. In: Urban LV, Wyatt AW (eds) Proceedings of the Playa Lake Symposium. Texas Tech. Univ., Lubbock, TX, pp 97–106Google Scholar
  113. Mullican WF III, Johns ND, Fryar AE (1997) Playas and recharge of the Ogallala aquifer on the southern High Plains of Texas: an examination using numerical techniques. Texas Bur Econ Geol Rep Invest 242, Univ. of Texas, Austin, TX, 72 ppGoogle Scholar
  114. Nativ R (1988) Hydrogeology and hydrochemistry of the Ogallala aquifer, southern High Plains, Texas Panhandle, and eastern New Mexico. Texas Bur Econ Geol Rep Invest 177, Univ. of Texas, Austin, TX, 64 ppGoogle Scholar
  115. Nativ R (1992) Recharge into southern High Plains Aquifer: possible mechanisms, unresolved questions. Environ Geol Water Sci 19(1):21–32CrossRefGoogle Scholar
  116. Nativ R, Riggio R (1989) Meteorologic and isotopic characteristics of precipitation events with implications for ground-water recharge, southern High Plains. In: Gustavson TC (ed) Geologic framework and regional hydrology: Upper Cenozoic Blackwater Draw and Ogallala formations, Great Plains. Bur. Econ. Geol., Univ. of Texas, Austin, TX, pp 152–179Google Scholar
  117. Nativ R, Smith DA (1987) Hydrology and geochemistry of the Ogallala aquifer, southern High Plains. J Hydrol 91:217–253CrossRefGoogle Scholar
  118. Nelson RW, Logan WJ, Weller EC (1983) Playa wetlands and wildlife on the southern Great Plains: a characterization of habitat. US Fish Wildl Serv Div Biol Serv Rep FWS/OBS–83/28, US Fish Wildl., Washington, DC, variously paginatedGoogle Scholar
  119. Netthisinghe A (2008) Surface and subsurface flow relationships to Ogallala aquifer recharge on the southern High Plains of Texas: PhD Thesis, Texas Tech. Univ., USA, 211 ppGoogle Scholar
  120. Nippert JB, Knapp AK, Briggs JM (2006) Intra-annual rainfall variability and grassland productivity: Can the past predict the future? Plant Ecol 184(1):65–74CrossRefGoogle Scholar
  121. Opie J (2000) Ogallala water for a dry land. Univ Nebraska Press, Lincoln, NB, 475 ppGoogle Scholar
  122. Osterkamp WR, Wood WW (1987) Playa-lake basins on the Southern High Plains of Texas and New Mexico—Part I. Hydrologic, geomorphic, and geologic evidence for their development. Geol Soc Am Bull 99:215–223CrossRefGoogle Scholar
  123. Palacios N (1981) Llano Estacado playa lake water resources study. Proc. Playa Lakes Symp., US Fish Wildlife Serv, Washington, DC, pp 15–20Google Scholar
  124. Parker DB, Rogers WJ, McCullough MC, Cahoon JE, Rhoades MB, Robinson C (2001) Infiltration characteristics of cracked clay soils in bottoms of feedyard playa catchments. ASAE Ann. Intern. Meeting, Meeting Pap. 01–2281, Sacramento, CA, 2001, 20 ppGoogle Scholar
  125. Parks LH (1975) Some trends in ecological succession in temporary aquatic ecosystems (playa lakes). PhD Thesis, Texas Tech. Univ., TX, 79 ppGoogle Scholar
  126. Parry WT, Reeves CC Jr (1968) Clay mineralogy of pluvial lake sediments, southern High Plains, Texas. J Sediment Petrol 38(2):516–529Google Scholar
  127. Pence DB (1981) The effects of modification and environmental contamination of playa lakes on wildlife morbidity and mortality. Proc. Playa Lakes Symp., US Fish Wildl Serv, US Fish Wildl., Washington, DC, pp 83–93Google Scholar
  128. Pezzolesi TP (1994) Nutrients and heavy metal cycling in a playa lake wetland receiving wastewater. MSc Thesis, Texas Tech. Univ., USA, 64 ppGoogle Scholar
  129. Pezzolesi TP, Zartman RE, Hickey MG, Barnes MA (1995) Comparison of soil sampling devices used for sampling submerged soils. Commun Soil Sci Plant Anal 26(15–16):2621–2627CrossRefGoogle Scholar
  130. Pezzolesi TP, Zartman RE, Fish EB, Hickey MG (1998) Nutrients in a playa wetland receiving wastewater. J Environ Qual 27(1):67–74CrossRefGoogle Scholar
  131. Pezzolesi TP, Zartman RE, Hickey MG (2000) Effects of storage methods on chemical values of waterlogged soils. Wetlands 20(1):189–193CrossRefGoogle Scholar
  132. Pool JR (1977) Morphology and recharge potential of certain playa lakes of the Edwards Plateau of Texas. Baylor Geol Stud 32, Baylor University, Waco, TX, 21 ppGoogle Scholar
  133. Purdy CW, Straus DC, Harp JA, Mock R (2001a) Microbial pathogen survival study in a High Plains feed yard playa. Texas J Sci 53:247–266Google Scholar
  134. Purdy CW, Straus DC, Parker DB, Williams BP, Clark RN (2001b) Water quality in cattle feedyard playas in winter and summer. Am J Vet Res 62(9):1402–1407CrossRefGoogle Scholar
  135. Qi SL, Gurdak JJ (2006) Percentage of probability of nonpoint source nitrate contamination of recently recharged ground water in the High Plains aquifer. US Geol Surv Data Ser DS–192. http://water.usgs.gov/lookup/getspatial?ds192_hp_npctprob. Cited 21 January 2008
  136. Quillin JP, Zartman RE, Fish EB (2005) Spatial distribution of playa basins on the Texas High Plains. Texas J Agri Nat Resour 18:1–14Google Scholar
  137. Rainwater KA, Thompson DB (1994) Playa lake influence on ground-water mounding in Lubbock, Texas. In: Urban LV, Wyatt AW (eds) Proc Playa Basin Symp, Water Resources Center, Texas Tech. Univ. Lubbock, TX, 324 ppGoogle Scholar
  138. Ramsey RH III, Zartman RE, Bucks LS, Huang A (1994) Water quality studies in selected playas in the southern High Plains. In: Proc. of the Playa Basin Symp., Water Resources Center, Texas Tech. Univ., Lubbock, TX, pp 127–136Google Scholar
  139. Ramsey RH, Chen Y, Zartman RE (1988) Water quality results from the Shallowater aquifer recharge study: aquifer recharge utilizing playa lake water and filter underdrains. Phase IV Report, Texas Water Dev. Board, Austin, TX, pp 36–60Google Scholar
  140. Rayner FA, Wells DM, Claborn BJ, Smith DD, Sechrist AJ (1973) Mathematical management model of parts of the Ogallala aquifer, Texas. Final report, High Plains Water Conservation District no. 1 and Water Resour Center, Texas Tech. Univ., Lubbock, TX, 111 ppGoogle Scholar
  141. Reddell DL (1965) Water resources of playa lakes. Cross Sect 12(3)Google Scholar
  142. Reed EL (1930) Vegetation of the playa lakes in the staked plains of western Texas. Ecology 11(3):597–600CrossRefGoogle Scholar
  143. Reed A (1994) Hydrologic budgets of playa lake watersheds at the Pantex plant. MSc Thesis, Texas Tech. Univ., USA, 153 ppGoogle Scholar
  144. Reeder HO (1975) Injection-pipe system for artificial recharge. US Geol Surv J Res 3(4):501–503Google Scholar
  145. Reedy RC, Scanlon BR, Nicot JP, Tachnovsky JA (2007) Unsaturated zone arsenic distribution and implications for groundwater contamination. Environ Sci Technol 41(20):6914–6919CrossRefGoogle Scholar
  146. Reeves CC Jr (1966) Pluvial lake basins of west Texas. Geol 74(3):269–291CrossRefGoogle Scholar
  147. Reeves CC Jr (1970) Location, flow and water quality of soil west Texas playa lake springs. Water Resources Center, Texas Tech. Univ., Lubbock, TX, variously paginatedGoogle Scholar
  148. Reeves CC Jr (1990) A proposed sequential development of lake basins, southern High Plains Texas and New Mexico. In: Gustavson TC (ed) Geologic framework and regional hydrology: Upper Cenozoic Blackwater Draw and Ogallala Formations, Great Plains. Bur. Econ. Geol., Univ. of Texas, Lubbock, TX, 209–232 ppGoogle Scholar
  149. Rekers RG, Huddleston EW, Wells DM (1970) Potential pollution of the Ogallala by recharging playa lake water. Texas Water Quality Board, Texas Tech. Univ., Lubbock, TX, pp 1–25Google Scholar
  150. Rettman PL (1981) Theories of playa lake development in the High Plains. Proc. Playa Lakes Symp., US Fish Wildl Serv, Washington, DC, pp 4–6Google Scholar
  151. Ries GV (1981) Distribution and petrography of calcrete zones, southern High Plains, New Mexico and Texas. MSc Thesis, Texas Tech. Univ., USA, 158 ppGoogle Scholar
  152. Sanford WE, Wood WW (1995) Paleohydrologic record from lake brine on the southern High Plains, Texas. Geology 23(3):229–232CrossRefGoogle Scholar
  153. Scanlon BR (1999) Reply to Wood, WW (1999) Comment on “Field study of spatial variability in unsaturated flow beneath and adjacent to playas” by Bridget R Scanlon and Richard S. Goldsmith. Water Resour Res 35(2):603–604CrossRefGoogle Scholar
  154. Scanlon BR, Goldsmith RS (1997) Field study of spatial variability in unsaturated flow beneath and adjacent to playas. Water Resour Res 33(10):2239–2252CrossRefGoogle Scholar
  155. Scanlon BR, Goldsmith RS, Hovorka SD, Mullican III, WF, Xiang J (1994) Evidence for focused recharge beneath playas in the southern High Plains, Texas. In: Urban LV, Wyatt AW (eds) Proceedings of the Playa Basin Symposium. Water Resources Center, Texas Tech. Univ., Lubbock, TX, pp 87–95Google Scholar
  156. Scanlon BR, Goldsmith RS, Mullican III, WF (1995) Spatial variability in subsurface flow through the unsaturated zone in the vicinity of the Pantex Plant, southern High Plains, Texas. Report, US DOE, Washington, DCGoogle Scholar
  157. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10(1):18–39CrossRefGoogle Scholar
  158. Scanlon BR, Dutton A, Sophocleous M (2003) Groundwater recharge in Texas. Report, Texas Water Dev. Board, Austin, TX, 80 ppGoogle Scholar
  159. Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and landcover change on groundwater recharge and quality in the southwestern US. Glob Chang Biol 11:1577–1593CrossRefGoogle Scholar
  160. Scanlon BR, Reedy RC, Tachovsky JA (2007) Semiarid unsaturated zone chloride profiles: archives of past land use change impacts on water resources in the southern High Plains, United States. Water Resour Res 43(10): doi:10.1029/2006WR005769
  161. Scanlon BR, Nicot JP, Reedy RC, Kurtzman D, Mukherjee A, Nordstrom DK (2009) Elevated naturally occurring arsenic in semiarid oxidizing systems, southern High Plains aquifer, Texas, USA. Appl Geochem 24(11):2061–2071CrossRefGoogle Scholar
  162. Schneider AC, Jones OR (1984) Recharge of the Ogallala aquifer through excavated basins. Proc. Ogallala aquifer Symp. II, Water Resources Center, Texas Tech. Univ., Lubbock, TX, pp 319–335Google Scholar
  163. Schneider AC, Jones OR, Signor DC (1971) Recharge of turbid water to the Ogallala aquifer through a dual-purpose well. MP–1001, Texas Agric Exp Station, Texas A&M Univ, College Station, TX, 10 ppGoogle Scholar
  164. Schwiesow WF (1965) Playa lake use and modification in the High Plains. In: Studies of Playa Lakes in the High Plains of Texas. Report 10, Texas Water Dev. Board, Austin, TX, pp 1–8Google Scholar
  165. Seni SJ (1980) Sand-body geometry and depositional systems, Ogallala Formation, Texas. Bur Econ Geol Rep Invest 105, Univ. of Texas, Austin, TX, 36 ppGoogle Scholar
  166. Smith LM (2003) Playas of the Great Plains. Univ Texas Press, Austin, TX, 257 ppGoogle Scholar
  167. Smith LM, Haukos DA (2002) Floral diversity in relation to playa wetland area and watershed disturbance. Conserv Biol 16:964–974CrossRefGoogle Scholar
  168. Southwest Public Service (1999) Cattle-feeding capital of the world: 1999 Federal Cattle Survey. Southwestern Public Service, Amarillo, TX, variously paginatedGoogle Scholar
  169. Steiert J, Meinzer W (1995) Playas: jewels of the plains. Texas Tech. Univ. Press, Lubbock, TX, 134 ppGoogle Scholar
  170. Stewart BA, Smith SJ, Sharpley AN (1994) Nitrate and other nutrients associated with playa storage of feedlot wastes. In: Proceedings of the Playa Basin Symposium. Water Resources Center, Texas Tech. Univ., Lubbock, TX, pp 187–199Google Scholar
  171. Stone WJ (1984) Preliminary estimates of Ogallala-aquifer recharge using chloride in the unsaturated zone, Curry County, New Mexico. In: Proceedings of the Ogallala Aquifer Symposium II, Water Resources Center, Texas Tech. Univ., Lubbock, TX, pp 376–391Google Scholar
  172. Stone WJ (1990) Natural recharge of the Ogallala aquifer through playas and other non-stream-channel settings, eastern New Mexico. In: Gustavson TC (ed) Geologic framework and regional hydrology: Upper Cenozoic Blackwater Draw and Ogallala Formations, Great Plains. Bur. Econ. Geol., Univ Texas, Aistin, TX, pp 180–192Google Scholar
  173. Stone WJ, McGurk BE (1985) Ground-water recharge on the southern High Plains, east-central New Mexico. New Mexico Geological Society Field Conference, 36th, Santa Rosa, NM, Field Conference Guidebook, NM Geol. Soc., Socorro, NM, pp 331–335Google Scholar
  174. Stovall JN, Rainwater KA, Frailey S (2000) Groundwater modeling for the southern High Plains. Final report, Llano Estacado Regional Water Planning Group, Lubbock, TX, variously paginatedGoogle Scholar
  175. Sublette JE, Sublette MS (1967) The limnology of playa lakes on the Llano Estacado, New Mexico and Texas. Southwest Nat 12(4):369–406CrossRefGoogle Scholar
  176. Sweeten JM (1994) Water quality associated with playa basins receiving feedlot runoff. In: Proceedings of the Playa Basin Symposium. Water Resources Center, Texas Tech. Univ., Lubbock, TX, pp 161–174Google Scholar
  177. Sweeten JM, Marek TH, McReynolds D (1995) Ground-water quality near two cattle feedlots in Texas High Plains: a case study. Appl Eng Agri 11(6):845–850Google Scholar
  178. Texas Department of Water Resources (1981) Publication catalog 81: Texas Dep Water Resour Circ C-12, 275 ppGoogle Scholar
  179. Theis CV (1937) Amount of ground-water recharge to the southern High Plains. Trans Am Geophys Union 18:564–568Google Scholar
  180. Thurman EM, Bastian KC, Mollhagen T (2000) Occurrence of cotton herbicides and insecticides in playa lakes of the High Plains of West Texas. Sci Total Environ 248(2–3):189–200CrossRefGoogle Scholar
  181. Traweek MS (1981) An introduction to the aquatic ecology of Texas panhandle playas. Proceedings of the Playa Lakes Symposium. US Fish Wildl Serv, Washington, DC, pp 30–34Google Scholar
  182. Tsai JS, Venne LS, McMurry ST, Smith LM (2007) Influences of land use and wetland characteristics on water loss rates and hydroperiods of playas in the southern High Plains. Wetlands 27(3):683–692CrossRefGoogle Scholar
  183. US Environmental Protection Agency (2008) National primary (and secondary) drinking water standards. http://www.epa.gov/safewater/contaminants/index.html. Cited 6 June 2008
  184. Urban LV, Claborn BJ (1984) Recharge with playa lake water and filter underdrains. In: Whetstone GA (ed) Proceedings of the Ogallala Aquifer Symposium, II, Water Resources Center, Texas Tech. Univ., Lubbock, TX, pp 217–237Google Scholar
  185. Valiant JC (1964) Artificial recharge of surface water to the Ogallala Formation in the High Plains of Texas. Ground Water 2(2):42–45CrossRefGoogle Scholar
  186. van der Kamp G, Hayashi M (2009) Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America. Hydrogeol J 17(1):203–214Google Scholar
  187. Venne LS, Cobb GP, Coimbatore G, Smith LM, McMurry ST (2006) Influence of land use on metal concentrations in playa sediments and amphibians in the southern High Plains. Environ Pollut 144:112–118CrossRefGoogle Scholar
  188. Venne LS, Anderson TA, Zhang B, Smith LM, McMurray ST (2008) Organochlorine pesticide concentrations in sediment and amphibian tissue in playa wetlands in the southern High Plains, USA. Bull Environ Contamin Toxicol 80(6):497–501CrossRefGoogle Scholar
  189. Walvoord MA, Scanlon BR (2004) Hydrologic processes in deep vadose zones in interdrainage arid environments. In: Hogan JF, Phillips FM, Scanlon BR (eds) Groundwater recharge in a desert environment: the southwestern United States. Amn Geophysical Union Water Sci Appl Ser 9:15–28Google Scholar
  190. Walvoord MA, Phillips FM, Stonestrom DA, Evans RD, Hartsough PC, Newman BD, Striegl RG (2003) A reservoir of nitrate beneath desert soils. Science 302:1021–1024CrossRefGoogle Scholar
  191. Ward CR (1964) Ecological changes in modified playa lakes with special emphasis on mosquito production. MSc Thesis, Texas Tech. Univ., USA, 129 ppGoogle Scholar
  192. Ward CR, Huddlestone EW (1979) Multipurpose modification of playa lakes. Proc. 2nd Playa Lake Symposium, Water Resources Center, Texas Tech. Univ., Lubbock, TX, 6 ppGoogle Scholar
  193. Warren WJ (1998) Antibiotic resistance of pathogenic bacteria in playa lakes. MSc Thesis, Texas Tech. Univ., USA, 68 ppGoogle Scholar
  194. Wells DM, Huddleston EW, Rekers RG (1970), Potential pollution of the Ogallala aquifer by recharging playa lake water: pesticides. Water Poll Control Res Ser, Proj Rep No. 16060, US EPA, Washington, DC, variously paginatedGoogle Scholar
  195. West EL (1998) Hydrology of urban playa lakes in Lubbock. Texas Tech. Univ., Lubbock, TX, 144 ppGoogle Scholar
  196. Westerfield MM (1996) Pathogenic bacteria of urban playa lakes. MSc Thesis, Texas Tech. Univ., USA, 133 ppGoogle Scholar
  197. White WN, Broadhurst WL, Lang JW (1946) Ground water in the High Plains of Texas. US Geol Surv Water Supply Pap 889–F, pp 381–420Google Scholar
  198. Willig MR, Hall DL, Moorhead DL, Mollhagen TR, Fish EB (1995) Variations in water quality among playa lakes: a multivariate approach and landscape perspective. Bull Ecol Soc Am 76:285Google Scholar
  199. Wood WW (1999) Comment on “Field study of spatial variability in unsaturated flow beneath and adjacent to playas” by Bridget R. Scanlon and Richard S. Goldsmith. Water Resour Res 35(2):601CrossRefGoogle Scholar
  200. Wood WW, Bassett RL (1975) Water-quality changes related to the development of anaerobic conditions during artificial recharge. Water Resour Res 11(4):553–558CrossRefGoogle Scholar
  201. Wood WW, Osterkamp WR (1984a) Playa lake basins on the southern High Plains of Texas, USA: part II, a hypothesis for their development. In: Proceeding of the Ogallala Aquifer Symposium, II, Water Resources Center, Texas Tech. Univ., Lubbock, TX, pp 304–311Google Scholar
  202. Wood WW, Osterkamp WR (1984b) Recharge to the Ogallala aquifer from playa lake basins on the Llano Estacado: An outrageous proposal? In: Proceedings of the Ogallala aquifer Symposium, II, Water Resources Center, Texas Tech. Univ., Lubbock, TX, pp 338–348Google Scholar
  203. Wood WW, Osterkamp WR (1987) Playa lake basins on the southern High Plains of Texas and New Mexico: part 2, a hydrologic model and mass-balance argument for their development. Geol Soc Am Bull 99:224–230CrossRefGoogle Scholar
  204. Wood WW, Sanford WE (1994) Recharge to the Ogallala: 60 years after C.V. Theis′ analysis. Playa Lake Symp. 1994, 3, Texas Tech. Univ., Lubbock, TX, 8 ppGoogle Scholar
  205. Wood WW, Sanford WE (1995a) Chemical and isotopic methods for quantifying ground-water recharge in a regional environment. Ground Water 33(3):458–468CrossRefGoogle Scholar
  206. Wood WW, Sanford WE (1995b) Eolian transport, saline lake basins, and groundwater solutes. Water Resour Res 31(12):3121–3129CrossRefGoogle Scholar
  207. Wood WW, Rainwater KA, Thompson DB (1997) Quantifying macropore recharge: examples from a semi-arid area. Ground Water 35(6):1097–1106CrossRefGoogle Scholar
  208. Zartman RE (1987) Playa lakes recharge aquifers. Crops Soils 39(5):20Google Scholar
  209. Zartman RE, Fish EB (1989) Size, distribution, and orientation of pattern of playa lakes in northwestern Castro County, Texas. Texas J Agri Nat Resour 8:31–33Google Scholar
  210. Zartman RE, Fish EB (1992) Spatial characteristics of playa lakes in Castro County Texas. Soil Sci 153(1):62–68CrossRefGoogle Scholar
  211. Zartman RE, Evans PW, Ramsey RH (1994a) Playa lakes on the southern High Plains in Texas: reevaluating infiltration. J Soil Water Conserv 49(3):299–301Google Scholar
  212. Zartman RE, Ramsey RH, Evans PW, Koenig G, Truby C, Kamara, L (1994b) Infiltration studies of a playa lake. In: Proceedings of the Playa Lake Symp., Publ. 8, Texas Tech. Univ., Lubbock, TX, pp 77–86Google Scholar
  213. Zartman RE, Ramsey RH, Evans PW, Koenig G, Truby C, Kamara L (1996) Outerbasin, annulus and playa basin infiltration studies. Texas J Agri Nat Resour 9:23–32Google Scholar
  214. Zartman RE, Ramsey RH, Huang A (2001) Variability of total and dissolved elements in Lubbock, Texas playa lakes. J Soil Water Conserv 56(3):262–265Google Scholar
  215. Zartman RE, Quillin JP, Fish EB, Atkinson EL (2003) Relationship between landscape aspect and playa alignment on the Texas High Plains. Texas J Agri Nat Resour 16:34–39Google Scholar

Copyright information

© Springer-Verlag (Outside the USA) 2010

Authors and Affiliations

  1. 1.San Francisco State UniversitySan FranciscoUSA
  2. 2.CH2M HillAnchorageUSA

Personalised recommendations