Advertisement

Hydrogeology Journal

, Volume 19, Issue 1, pp 195–207 | Cite as

Tritium–helium groundwater age used to constrain a groundwater flow model of a valley-fill aquifer contaminated with trichloroethylene (Quebec, Canada)

  • Samantha MurphyEmail author
  • Thomas Ouellon
  • Jean-Marc Ballard
  • René Lefebvre
  • Ian D. Clark
Paper

Abstract

Tritium–helium groundwater dating was carried out in a trichloroethylene (TCE)-contaminated valley-fill aquifer system in Quebec, Canada, where a numerical groundwater flow model was developed. Forty seven discrete groundwater and dissolved gas samples were obtained along two flow paths originating from known TCE source zones whose related plumes converge down gradient to form a single plume. Sampling points in monitoring wells were projected onto vertical sections showing particle tracks along the two flow paths. At these points, simulated advective ages obtained from particle tracking were matched to tritium–helium ages using different porosity values; the best match was 0.35. Ages were also obtained above and below a prodeltaic silty aquitard in a portion of the aquifer where some source zones are located, which provide groundwater and TCE transit times through the aquitard as well as a mean vertical hydraulic conductivity that agrees with previous estimates used in the model. In certain locations, anomalously old ages associated with high terrigenic 4He indicate areas where groundwater from the underlying proglacial unit flows upward into the deltaic sand aquifer through aquitard windows. Upflow locations correspond with increased TCE concentrations, suggesting significant TCE provenance through the proglacial unit originating from a previously unrecognized TCE source zone.

Keywords

Tritium–helium groundwater dating Numerical modeling Model validation Groundwater transit time Canada 

Utilisation de l’âge tritium–hélium d’une nappe pour borner un modèle d’écoulement d’aquifère alluvial contaminé par du trichloréthylène (Québec, Canada)

Résumé

On a effectué la datation Tritium–Hélium d’un système aquifère alluvial contaminé au trichloréthylène (TCE), Québec, Canada, et développé un modèle numérique d’écoulement souterrain. Une série de quarante sept échantillons d’eau souterraine et de gaz dissous ont été prélevés le long de deux lignes d’écoulement provenant de sources de TCE connues, dont les panaches convergent en aval pour n’en former qu’un seul. Les emplacements des piézomètres de contrôle ont été projetés sur deux sections verticales montrant le cheminement des particules le long des deux lignes d’écoulement. En ces points, les âges advectifs obtenus par suivi particulaire (particle tracking) ont été comparés aux âges Tritium–Hélium avec différentes valeurs de porosité; le meilleur accord est 0,35. Des âges ont également été obtenus pour des niveaux situés en-dessous et au-dessus d’un aquitard pro-deltaïque silteux dans une partie de l’aquifère où des zones source de TCE sont localisées ; ces âges donnent des temps de transit de l’eau et du TCE à travers l’aquitard ainsi qu’une conductivité hydraulique verticale moyenne, concordants avec des estimations antérieures utilisées dans le modèle. En certains emplacements, des âges anomaliques anciens et beaucoup de 4He terrigène indiquent des zones où l’eau de l’unité proglaciaire sous-jacente remonte dans l’aquifère sableux deltaïque à travers des fenêtres de l’aquitard. Des emplacements de flux ascendant correspondent à des concentrations en TCE plus grandes, suggérant un apport significatif de TCE à travers l’unité proglaciaire en provenance d’une zone source de TCE antérieurement non reconnue.

Edad de tritio – helio del agua subterránea usada para restringir un modelo de flujo de agua subterránea de un acuífero de un valle relleno contaminado con tricloroetileno (Quebec, Canadá)

Resumen

Se llevó a cabo la datación del tritio y del helio en agua subterránea en un sistema acuífero de valle relleno contaminado con tricloroetileno (TCE) en Quebec, Canadá, donde se desarrolló un modelo numérico de flujo de agua subterránea. Se obtuvieron cuarenta y siete muestras discretas de agua subterránea y de gas disuelto a lo largo de dos huellas de flujo originadas a partir de las zonas fuentes de TCE, cuyas plumas relativas convergen gradiente abajo para formar una pluma simple. Los puntos de muestreo en los pozos de monitoreo fueron proyectados en secciones verticales que mostraban las huellas de las partículas a lo largo de dos trayectorias de flujos. En estos puntos, se compararon las edades advectivas simuladas obtenidas a partir de las huellas de las partículas con las edades de tritio – helio usando diferentes valores de porosidad; la mejor comparación fue 0.35. Las edades fueron también obtenidas encima y debajo de un acuitardo limoso prodeltaico en una porción del acuífero donde algunas zonas fuentes están localizadas, las cuales proveen tiempos de tránsitos de agua subterránea y de TCE a través del acuitardo así como una conductividad hidráulica vertical media que coincide con las estimaciones previas usadas en el modelo. En ciertas lugares, viejas edades anómalas asociadas con un alto valor de 4He terrígeno indican áreas donde el agua subterránea proveniente desde las unidades proglaciales subyacentes asciende hacia el acuífero arenoso deltaico a través de las ventanas acuitardas. Los sitios de flujo ascendente corresponden con concentraciones incrementadas de TCE, lo que sugiere la significativa procedencia del TCE a través de la unidad proglacial originada a partir de una zona fuente previamente no reconocida de TCE.

用氚–氦地下水年龄约束受三氯乙烯污染的河谷堆积含水层的地下水流模型 (加拿大魁北克)

摘要

摘要 : 本文在加拿大魁北克的一个受三氯乙烯污染的河谷堆积含水层系统中测定了氚–氦地下水年代, 并且建立了该地区地下水流数值模型。沿着两条起源于已知的TCE来源区的流线, 采集了47个离散的地下水和溶解气体样品。TCE来源区相关的晕沿着梯度向下汇集, 形成一个单一的晕。沿着两条流线, 将观测井中的取样点投到显示颗粒路径的垂面上。通过颗粒示踪得到的采样点模拟的平流年龄与利用不同孔隙度得到的氚–氦年龄相一致, 最佳匹配为0.35。该含水层中有一前三角洲粉砂质弱透水层, 是一些污染物来源区, 经过其中的地下水及TCE传递时间, 以及平均的垂向水力传导系数与模拟中先前的估计相一致。弱透水层之上和之下的年龄也已经得到。在特定的地点, 与高的4He相联系的异常老年龄表明这一地区是一个地下水起源于下覆冰前的单元, 并通过弱透水层的天窗流向三角洲的含沙含水层。上升流位置与TCE浓度的增加相一致, 表明主要的TCE的来源是一个起源于以前未被认定的TCE来源区的冰期前单元。

Idade da água subterrânea pelo método do trítio–hélio para constrangimento de um modelo de escoamento de um aquífero de enchimento de vale contaminado por tricloroetileno (Quebeque, Canadá)

Resumo

Efectuou-se a datação por trítio–hélio das águas subterrâneas de um sistema aquífero em vale, contaminado por tricloroetileno (TCE), no Quebeque, Canadá, onde se desenvolveu um modelo numérico de escoamento. Foram recolhidas quarenta e sete amostras pontuais de água subterrânea e de gás dissolvido ao longo de duas linhas de escoamento originadas a partir de conhecidas fontes de TCE cujas respectivas plumas convergem para jusante formando uma só pluma. Os pontos de amostragem nos furos de monitorização foram projectados em secções verticais mostrando o percurso das partículas ao longo das duas linhas de escoamento. Nesses pontos, as idades convectivas simuladas a partir do encaminhamento de partículas foram ajustadas às idades obtidas por trítio–hélio utilizando diferentes valores de porosidade; o melhor ajuste foi obtido para 0.35. As idades foram ainda obtidas acima e abaixo de um aquitardo siltoso pró-deltaico numa parte do aquífero onde se localizam algumas fontes, permitindo fornecer tempos de percurso para a água subterrânea e para o TCE através do aquitardo, bem como a condutividade hidráulica vertical média que está de acordo com as estimativas prévias usadas no modelo. Nalguns locais, idades anomalamente antigas associadas a altos valores de 4He terrígeno indicam áreas onde a água subterrânea da unidade pro-glacial inferior migra superiormente para o aquífero arenoso deltaico através de janelas no aquitardo. As zonas de ascendência correspondem a aumentos de concentração de TCE, sugerindo uma significativa proveniência de TCE na unidade pro-glacial com origem numa fonte de TCE anteriormente desconhecida.

Notes

Acknowledgements

Defense Canada is acknowledged for supporting this work and granting permission to publish. The first author acknowledges the support from a scholarship from the Natural Science and Engineering Research Council (NSERC) of Canada. R.L. and I.D.C. acknowledge Discovery Grants from NSERC that also supported the development and communication of this study. Authors also wish to thank Dr. Stephan M. Weise, an anonymous reviewer and Guest Editor Dr. Werner Aeschbach-Hertig for their constructive reviews.

Supplementary material

10040_2010_662_MOESM1_ESM.pdf (88 kb)
Table ESM (PDF 87 kb)

References

  1. Baalousha H (2005) Using CRD method for quantification of groundwater recharge in the Gaza Strip, Palestine. Environ Geol 48:889–900CrossRefGoogle Scholar
  2. Bohlke JK, Denver JM (1995) Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resour Res 31(9):2319–2339CrossRefGoogle Scholar
  3. Bottomley DJ, Ross JD, Clarke WB (1984) Helium and neon isotope geochemistry of some ground waters from the Canadian Precambrian Shield. Geochim Cosmochim Acta 48:1973–1985CrossRefGoogle Scholar
  4. Boutin A, Lefebvre R, Blais V, Martel R, Therrien R, Parent M (2004) Modeling of groundwater flow and TCE transport in the Valcartier area aquifer system. Proceedings, 57th Canadian Geotechnical Conference and 5th Joint CGS/IAH Conference, Quebec City, Canada, 24–27 October 2004, pp 36–43Google Scholar
  5. Cook PG, Solomon DK, Sanford WE, Busenberg E, Plummer LN, Poreda RJ (1996) Inferring shallow groundwater flow in saprolite and fractured rock using environmental tracers. Water Resour Res 32(6):1501–1509CrossRefGoogle Scholar
  6. Ekwurzel B, Schlosser P, Smethie WM, Plummer LN, Busenberg E, Michel RL, Weppernig R, Stute M (1994) Dating of shallow groundwater: comparison of the transient tracers 3H/3He, chlorofluorocarbons, and 85Kr. Water Resour Res 30(6):1693–1708CrossRefGoogle Scholar
  7. Fagnan N, Bourque É, Michaud Y, Lefebvre R, Boisvert É, Parent M, Martel R (1999) Hydrogeology of the deltaic complexes along the north shore of the Champlain Sea, Quebec. Hydrogéologie 4:9–22Google Scholar
  8. Fauveau, E (2006) Caractérisation hydrogéologique et reconnaissance des faciès des dépôts meubles avec les sondages par enfoncement et par rotopercussion [Hydrogeological characterization and facies recognition in surficial sediments using direct push and rotopercussion soundings]. MSc Thesis, INRS-Eau, Terre et Environnement, CanadaGoogle Scholar
  9. Fauveau É, Lefebvre R, Ballard J-M, Fortier R, Martel R (2005) Examples of hydrogeological characterization of unconsolidated sediments with direct push and rotopercussion technologies. Proceedings, 58th Canadian Geotechnical Conference and 6th Joint CGS/IAH Conference, Saskatoon, Canada, October 2005, Session 11EA, Paper 565, 8 ppGoogle Scholar
  10. GeoInsight (2006) HydraSleeve field manual. GeoInsight, Las Cruces, NM . www.geoinsightonline.com. Cited November 2007
  11. Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109CrossRefGoogle Scholar
  12. Heemskerk AR, Johnson J (1998) Tritium analysis: technical procedure 1.0. University of Waterloo, Waterloo, ONGoogle Scholar
  13. International Atomic Energy Agency/World Meteorological Organization (2006) Global network of isotopes in precipitation: the GNIP database. http://www-naweb.iaea.org/napc/ih/index.html. Cited 12 December 2007
  14. ITRC (Interstate Technology & Regulatory Council) (2007) Protocol for use of five passive samplers to sample for a variety of contaminants in groundwater. DSP-5. Diffusion/Passive Sampler Team, ITRC, Washington, DC. http://www.itrcweb.org. Cited 10 December 2007
  15. Kipfer R, Aeschbach-Hertig W, Peeters F, Stute M (2002) Noble gases in lakes and ground waters. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Rev Mineral Geochem 27:615–700Google Scholar
  16. Konikow LF, Bredehoeft JD (1992) Ground-water models cannot be validated. Adv Water Resour 15:75–83CrossRefGoogle Scholar
  17. Labolle EM, Fogg GE, Eweis JB (2006) Diffusive fractionation of 3H and 3He in groundwater and its impact on groundwater age estimates. Water Resour Res 42(7):W07202. doi:10.1029/2005WR004756
  18. Lefebvre R, Maltais I, Paradis D, Michaud Y (2009) Recharge assessment using daily soil moisture balance and well hydrographs in deltaic unconfined aquifers. Paper 1147, AGU 2009 Joint Assembly, Toronto, 24–27 May 2009, pp 24–27 Google Scholar
  19. Lefebvre R, Boutin A, Martel R, Therrien R, Parent M, Blais V (2003) Caractérisation et modélisation numérique de l'écoulement et de la migration de la contamination en TCE dans l'eau souterraine du secteur Valcartier, Québec, Canada [Characterization and numerical modeling of flow and TCE contaminant migration in groundwater of the Valcartier sector, Québec, Canada]. Research Report R-631 submitted to the Ministry of National Defense, May 2003, 99 pp, 28 plates and separate appendix volumeGoogle Scholar
  20. Lefebvre R, Boutin A, Blais V, Martel R, Therrien R, Parent M, Ouellon T, Roy N, Lapointe M (2004) Characterization of the hydrogeological context and dissolved TCE plume in the granular aquifer system of the Valcartier area, Quebec, Canada. In: Proceedings 57th Canadian geotechnical Conference and 5th Joint CGS/IAH Conference, Quebec City, Canada, 24–27 October 2004, Session 4B, pp 28–35Google Scholar
  21. Maltais I (2006) Estimation de la recharge par le bilan hydrologique quotidien dans la région de Portneuf [Recharge assessment using daily soil water balance in the Portneuf area]. BSc project report, Université Laval, Quebec City, CanadaGoogle Scholar
  22. Manning AH, Solomon DK, Sheldon AL (2003) Applications of a total dissolved gas pressure probe in ground water studies. Ground Water 41(4):440–448CrossRefGoogle Scholar
  23. Murphy S (2009) Characterization of a TCE-contaminated aquifer using tritium–helium dating and geochemical tracers, Valcartier, Quebec, Canada. MSc Thesis, University of Ottawa, CanadaGoogle Scholar
  24. Murphy S, Ouellon T, Lefebvre R, Clark ID, Ballard J-M (2009) Tritium–Helium dating and geochemical characterization of groundwater in the Valcartier deltaic aquifer system. Research report R-960, INRS, Centre-Eau Terre Environnement, 75 pp and 21 platesGoogle Scholar
  25. Ouellon T, Lefebvre R, Marcotte D, Boutin A, Blais V, Parent M (2008) Hydraulic conductivity heterogeneity of a local deltaic aquifer system from the kriged 3D distribution of hydrofacies from borehole logs, Valcatier, Canada. J Hydrol 351(1–2):71–86CrossRefGoogle Scholar
  26. Paradis D, Martel R, Karanta G, Lefebvre R, Michaud Y, Therrien R, Nastev M (2007) Comparative study of methods for wellhead protection delineation. Ground Water 45(2):158–167CrossRefGoogle Scholar
  27. Parent M, Girard F, Fagnan N, Michaud Y, Boisvert É, Fortier R (2008) Caractérisation géologique des formations superficielles enfouies [Subsurface geological characterization of surficial sediments]. In: Michaud et al. (ed) Guide méthodologique pour la cartographie hydrogéologique régionale des aquifères granulaires. [Subsurface geological characterization of surficial sediments]. In: Technical guide for the regional hydrogeological mapping of granular aquifers.) Dépôt légal - Bibliothèque et Archives nationales du Québec, Montreal, pp 23–40Google Scholar
  28. Reilly TE, Plummer LN, Phillips PJ, Busenberg E (1994) The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer. Water Resour Res 30(2):421–433CrossRefGoogle Scholar
  29. Sanford WE, Shropshire RG, Solomon DK (1996) Dissolved gas tracers in groundwater: simplified injection, sampling, and analysis. Water Resour Res 32(6):1635–1642CrossRefGoogle Scholar
  30. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater discharge. Hydrogeol J 10:18–39CrossRefGoogle Scholar
  31. Schlosser P, Stute M, Dorr H, Sonntag C, Munnich KO (1988) Tritium/3He dating of shallow groundwater. Earth Planet Sci Lett 89:353–362CrossRefGoogle Scholar
  32. Schlosser P, Stute M, Sonntag C, Munnich KO (1989) Tritiogenic 3He in shallow groundwater. Earth Planet Sci Lett 94:245–256CrossRefGoogle Scholar
  33. Shapiro S, Rowe G, Schlosser P, Ludin A, Stute M (1998) Tritium–helium-3 dating under complex conditions in hydraulically stressed areas of a buried aquifer. Water Resour Res 34:1165–1180CrossRefGoogle Scholar
  34. Shapiro S, LeBlanc D, Schlosser P, Ludin A (1999) Characterizing a sewage plume using the 3H–3He dating technique. Ground Water 37(6):861–878CrossRefGoogle Scholar
  35. Sheets RA, Bain ES, Rowe GL (1998) Use of 3H/3He ages to evaluate and improve groundwater flow models in a complex buried-valley aquifer. Water Resour Res 34:1077–1089CrossRefGoogle Scholar
  36. Solomon DK, Sudicky EA (1991) Tritium and helium 3 isotope ratios for direct estimation of spatial variations in groundwater recharge. Water Resour Res 27(9):2309–2319CrossRefGoogle Scholar
  37. Solomon DK, Podera RJ, Schiff SL, Cherry JA (1992) Tritium and helium 3 as groundwater age tracers in the Borden aquifer. Water Resour Res 28(3):741–755CrossRefGoogle Scholar
  38. Solomon DK, Poreda RJ, Cook PG, Hunt A (1995) Site characterization using 3H/3He ground-water ages, Cape Cod, MA. Ground Water 33(6):988–996CrossRefGoogle Scholar
  39. Szabo Z, Rice DE, Plummer LN, Busenberg E, Drenkard S, Schlosser P (1996) Age dating of shallow groundwater with chlorofluorocarbons, tritium/helium 3, and flow path analysis, southern New Jersey coastal plain. Water Resour Res 32(4):1023–1038CrossRefGoogle Scholar
  40. WASY (2005) FEFLOW 5.2 finite element subsurface flow and transport simulation system: user’s manual. WASY Institute, Berlin, 192 ppGoogle Scholar
  41. Weiss RF (1971) Solubility of helium and neon in water and seawater. J Chem Eng Data 16(2):235–241CrossRefGoogle Scholar
  42. Zinn BA, Konikow LF (2007) Potential effects of regional pumpage on groundwater age distribution. Water Resour Res 43, W06418. doi:10.1029/2006WR004865

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Samantha Murphy
    • 1
    Email author
  • Thomas Ouellon
    • 2
    • 3
  • Jean-Marc Ballard
    • 2
  • René Lefebvre
    • 2
  • Ian D. Clark
    • 1
  1. 1.Department of Earth SciencesUniversity of OttawaOttawaCanada
  2. 2.Institut national de la recherche scientifique, Centre - Eau Terre EnvironnementQuebec CityCanada
  3. 3.Golder Associates Inc.MontrealCanada

Personalised recommendations