Hydrogeology Journal

, Volume 19, Issue 1, pp 31–52

Review: Geothermal heat as a tracer of large-scale groundwater flow and as a means to determine permeability fields

Paper

Abstract

A review of coupled groundwater and heat transfer theory is followed by an introduction to geothermal measurement techniques. Thereafter, temperature-depth profiles (geotherms) and heat discharge at springs to infer hydraulic parameters and processes are discussed. Several studies included in this review state that minimum permeabilities of approximately 5 × 10−17 < kmin <10−15 m2 are required to observe advective heat transfer and resultant geotherm perturbations. Permeabilities below kmin tend to cause heat-conduction-dominated systems, precluding inversion of temperature fields for groundwater flow patterns and constraint of permeabilities other than being <kmin. Values of kmin depend on the flow-domain aspect-ratio, faults and other heterogeneities, anisotropy of hydraulic and thermal parameters, heat-flow rates, and the water-table shape. However, the kmin range is narrow and located toward the lower third of geologic materials, which exhibit permeabilities of 10−21 < k < 10−7 m2. Therefore, a wide range of permeabilities can be investigated by analyzing subsurface temperatures or heat discharge at springs. Furthermore, temperature is easy and economical to measure and because thermal material properties vary far less than hydraulic properties, temperature measurements tend to provide better-constrained groundwater flow and permeability estimates. Aside from hydrogeologic insights, constraint of advective/conductive heat transfer can also provide information on magmatic intrusions, metamorphism, ore deposits, climate variability, and geothermal energy.

Keywords

Review Geothermal Heat Tracer USA 

Revue: La chaleur géothermique en tant que traceur des écoulements souterrains à grande échelle et moyen de caractériser des champs de perméabilité

Résumé

Une synthèse bibliographique de la théorie de l’écoulement de nappe couplé au transfert de chaleur est suivie par une introduction aux techniques de mesures géothermiques. Ensuite, des profils température-profondeur (géothermes) et le flux de chaleur libéré par des sources sont discutés en vue d’inférer processus en jeu et paramètres hydrodynamiques. Plusieurs études relevées indiquent que des perméabilités minimales kmin d’environ 5 × 10−17 à 10−15 m2 sont requises pour observer des transferts de chaleur advectifs et les perturbations des géothermes consécutives. Des perméabilités inférieures à kmin tendent à générer des systèmes dominés par la conduction thermique, ce qui interdit l’inversion des champs de température pour la détermination de la géométrie des écoulements souterrains et limite cette inversion aux perméabilités supérieures à kmin. Les valeurs kmin dépendent de ratios caractéristiques de la forme du domaine d’écoulement, des failles et autres hétérogénéités, de l’anisotropie des paramètres hydrauliques et thermiques, du flux de chaleur, ainsi que de la forme de la surface piézométrique. Cependant, la plage de variation des kmin est faible et se situe dans le tiers inférieur de la gamme des perméabilités k des formations géologiques, qui est comprise, elle, entre 10−21 et 10−7 m2. Par suite, une large gamme de perméabilités peut être caractérisée par l’analyse des températures de subsurface ou du flux de chaleur aux sources. En outre, la mesure de température est facile et peu onéreuse et, comme les propriétés thermiques des matériaux varient beaucoup moins que leurs propriétés hydrodynamiques, les mesures de température tendent à fournir des estimations mieux contraintes de l’écoulement des eaux souterraines et de perméabilité. A côté de l’apport hydrogéologique, les transferts de chaleur par advection/conduction peuvent aussi fournir des informations sur les intrusions magmatiques, le métamorphisme, les gisements métallifères, la variabilité climatique et l’énergie géothermique.

Revisión: El calor geotérmico como un trazador del flujo a gran escala de agua subterránea y como un medio para determinar campos de permeabilidad

Resumen

Se presenta una introducción a las técnicas de mediciones geotérmicas después de una revisión del acoplamiento del agua subterránea y de la teoría de la transferencia del flujo de calor. De allí en adelante se discuten los perfiles de temperatura – profundidad (geotermas) y la descarga del calor en manantiales para inferir los parámetros y los procesos hidráulicos. Varios estudios incluidos en esta revisión manifiestan que se requieren permeabilidades mínimas de aproximadamente 5 × 10−17 < kmin <10−15 m2 para observar la transferencia advectiva de calor y de las resultantes perturbaciones geotérmicas. Las permeabilidades debajo de kmin tienden a causar sistemas dominados por conducción de calor, impidiendo la inversión de los campos de temperaturas para los patrones de flujo de las aguas subterráneas y a restringir las permeabilidades diferentes a aquellas <kmin. Los valores de kmin dependen de la relación del flujo y aspecto del dominio, fallas y otras heterogeneidades, anisotropía de parámetros hidráulicos y térmicos, ritmos de flujo de calor y la forma del nivel freático. Sin embargo, el intervalo de kmin es estrecho y localizado hacia el tercio más bajo de los materiales geológicos, los cuales exhiben permeabilidades entre 10−21 < k < 10−7 m2. Por lo tanto, un amplio rango de permeabilidades pueden ser investigados analizando las temperaturas subsuperficiales o la descarga de calor en manantiales. Además, la temperatura es fácil y económica de medir y debido a que las propiedades termales de los materiales varían menos que las propiedades hidráulicas, las mediciones de la temperatura tienden a proveer mejores estimaciones restringidas del flujo de agua subterránea y de la permeabilidad. Aparte de los conocimientos hidrogeológicos, las restricciones de la transferencia de calor advectivo/conductivo pueden también proveer información sobre intrusiones magmáticas, metamorfismo, depósitos minerales, variabilidad climática y energía geotérmica.

综述: 地热热量做为大尺度地下水流的示踪剂以确定渗透率场

摘要

本文首先对地下水和热量运移耦合理论进行了综述, 然后介绍了地热测量技术。随后, 讨论了根据温度-深度剖面 (等温线) 和经由泉水排泄的热量推断水文参数和过程。综述中包括的一些研究认为, 若要观察到对流热传导及相应的等温线扰动, 渗透率至少应为约 5 × 10−17 < kmin < 10−15m2。若渗透率小于 kmin, 将形成热传导主导的系统, 此时将无法通过温度场反演地下水流场和约束渗透率。kmin 决定于水流域高宽比、断层和其它非均质因素, 水力和热物性的各向异性、热流量, 及水面形状。但 kmin 的变化范围较窄, 并位于地质材料的下三分之一, 其渗透率为 10−21 < k < 10−7m2。因此, 可以通过分析地下温度或泉水热排放量来研究较大变化范围内的渗透率。此外, 温度测量简单经济, 加之材料的热性质较水力参数变化小得多, 温度测量可提供较好约束的对地下水流和渗透率估计。除了水文地质信息, 对对流、传导/热传递的约束还能提供给关于岩浆侵入、变质、矿床沉积、气候变化, 及地热能。

Revisão: Calor geotérmico como traçador de escoamentos subterrâneos em larga escala e como meio de determinação de campos de permeabilidade

Resumo

A uma revisão da teoria acoplada do escoamento de água e da transferência de calor, segue-se uma introdução às técnicas de medição geotérmica. Depois disso, analisam-se perfis temperatura-profundidade (geotérmicas) e descargas de calor em nascentes, para se inferirem parâmetros hidráulicos e processos. Diversos estudos incluídos nesta revisão mostram que são necessárias permeabilidades mínimas de aproximadamente 5 × 10−17 < kmin <10−15 m2 para que se observem transferências térmicas advectivas e as resultantes perturbações nas geotérmicas. Permeabilidades abaixo de kmin tendem a causar sistemas dominados pela condução, impedindo a inversão de campos de temperatura para padrões de escoamento de água subterrânea e a delimitação de outras permeabilidades que não sejam <kmin. Os valores kmin dependem da relação largura/altura do domínio de fluxo, de falhas e outras heterogeneidades, da anisotropia dos parâmetros hidráulicos e térmicos, das taxas de fluxo de calor e da forma da superfície piezométrica. No entanto, o domínio de variação de kmin é restrito e localiza-se no terço inferior dos materiais geológicos que exibem permeabilidades 10−21 < k < 10−7 m2. Daí resulta a possibilidade de poder ser investigada uma ampla gama de permeabilidades analisando as temperaturas subsuperficiais ou as descargas térmicas de nascentes. Para além disso, a temperatura é fácil e economicamente mensurável, e porque as propriedades térmicas dos materiais variam consideravelmente menos do que as propriedades hidráulicas, as medições de temperatura tendem a proporcionar estimativas melhor delimitadas de parâmetros de escoamento subterrâneo e de permeabilidade. Para além da perspectiva hidrogeológica, a delimitação da transferência de calor como advectiva ou condutiva pode também fornecer informação sobre intrusões magmáticas, metamorfismo, depósitos minerais, variabilidade climática e energia geotérmica.

References

  1. Anderson MP (2005) Heat as a ground water tracer. Ground Water 43(6):951–968CrossRefGoogle Scholar
  2. Andrews JN, Burgess WG, Edmunds WM, Kay RLF, Lee DJ (1982) The thermal springs of Bath. Nature 298:339–343CrossRefGoogle Scholar
  3. Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New YorkGoogle Scholar
  4. Beltrami H, Ferguson G, Harris RN (2005) Long-term tracking of climate change by underground temperatures. Geophys Res Lett 32:L19707. doi:10.1029/2005GL023,714
  5. Bense V, Beltrami H (2007) Impact of horizontal groundwater flow and localized deforestation on the development of shallow temperature anomalies. J Geophys Res 112:F04015. doi:10.1029/2006JF000,703
  6. Bense V, Person M (2006) Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resour Res 42:W05421. doi:10.1029/2005WR004,480
  7. Bense V, Person M, Chaudhary K, You Y, Cremer N, Simon S (2008) Thermal anomalies indicate preferential flow along faults in unconsolidated sedimentary aquifers. Geophys Res Lett 35:L24406. doi:10.1029/2008GL036,017
  8. Bense V, Ferguson G, Kooi H (2009) Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Lett 36:L22401. doi:10.1029/2009GL039,225
  9. Birch F (1950) Flow of heat in the Front Range, Colorado. Bull Geol Soc Am 61:567–630CrossRefGoogle Scholar
  10. Blackwell DD (1985) A transient model of the geothermal system of Long Valley Caldera, California. J Geophys Res 90(B13):11229–11241CrossRefGoogle Scholar
  11. Blackwell DD (1992) Geothermal and geophysical data from the Santiam Pass 77-24 well. In: Hill BE (ed) Geology and geothermal resources of the Santiam Pass Area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon. Open-File Report 0-92-3, Oregon Department of Geology and Mineral Industries, Salem, OR, pp 37–52Google Scholar
  12. Blackwell DD, Baker SL (1988) Thermal analysis of the Austin and Breitenbush geothermal systems, Western Cascades, Oregon. In: Sherrod DR (ed) Geology and geothermal resources of the Breitenbush-Austin Hot Springs area, Clackamas and Marion counties, Oregon. Open-File Report 0-88-5, Oregon Department of Geology and Mineral Industries, Salem, OR, pp 47–62Google Scholar
  13. Blackwell DD, Priest GR (1996) Comment on “Rates and patterns of groundwater flow in the Cascades Range volcanic arc and the effect on subsurface temperatures” by S. E. Ingebritsen, D. R. Sherrod, and R. H. Mainer. J Geophys Res 101(B8):17561–17568CrossRefGoogle Scholar
  14. Blackwell DD, Richards M (2004) Geothermal map of North America. 1 sheet, scale 1:6,500,000, American Association of Petroleum Geologists (AAPG), Tulsa, OKGoogle Scholar
  15. Blackwell DD, Steele JL, Brott CA (1980) The terrain effect on terrestrial heat flow. J Geophys Res 85(B9):4757–4772CrossRefGoogle Scholar
  16. Blackwell DD, Bowen RG, Hull DA, Riccio J, Steele JL (1982) Heat-flow, arc volcanism, and subduction in northern Oregon. J Geophys Res 87(10):8735–8754CrossRefGoogle Scholar
  17. Blackwell DD, Steele JL, Frohme MK, Murphey CF, Priest GR, Black GL (1990) Heat flow in the Oregon Cascade Range and its correlation with regional gravity, Curie point depths, and geology. J Geophys Res 95(B12):19475–19493Google Scholar
  18. Blythe AE, Kleinspehn KL (1998) Tectonically versus climatically driven Cenozoic exhumation of the Eurasian Plate margin, Svalbard: fission track analyses. Tectonics 17(4):621–639CrossRefGoogle Scholar
  19. Bodri B, Rybach L (1998) Influence of topographically driven convection on heat flow in the Swiss Alps: a model study. Tectonophysics 291:19–27CrossRefGoogle Scholar
  20. Bodvarsson GS, Benson SM, Witherspoon PA (1982) Theory of the development of geothermal systems charged by vertical faults. J Geophys Res 87(B11):9317–9328CrossRefGoogle Scholar
  21. Bravo H, Feng J, Hunt R (2002) Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system. Water Resour Res 38(8):1153 . doi:10.1029/2000WR000172
  22. Bredehoeft JD (1967) Response of well-aquifer systems to Earth tides. J Geophys Res 72(12):3075–3087CrossRefGoogle Scholar
  23. Bredehoeft J, Papadopulos IS (1965) Rates of vertical groundwater movement estimated from the Earth’s thermal profile. Water Resour Res 1(2):325–328CrossRefGoogle Scholar
  24. Brott CA, Blackwell DD, Ziagos JP (1981) Thermal and tectonic implications of heat flow in the eastern Snake River Plain, Idaho. J Geophys Res 86(B12):11709–11734CrossRefGoogle Scholar
  25. Brumm M, Wang CY, Manga M (2009) Spring temperatures in the Sagehen Basin, Sierra Nevada, CA: implications for heat flow and groundwater circulation. Geofluids 9(3):195–207. doi:10.1111/j.1468–8123.2009.00,254.x Google Scholar
  26. Buck WR, Martinez F, Steckler MS, Cochran JR (1988) Thermal consequences of lithospheric extension: pure and simple. Tectonophysics 7(2):213–234Google Scholar
  27. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, Oxford, UKGoogle Scholar
  28. Cartwright K (1970) Groundwater discharge in the Illinois Basin as suggested by temperature anomalies. Water Resour Res 6(3):912–918Google Scholar
  29. Cermaka V, Bodrib L, Safanda J (2009) Tidal modulation of temperature oscillations monitored in borehole Yaxcopoil-1 (Yucatan, Mexico). Earth Planet Sci Lett 282(1–4):131–139CrossRefGoogle Scholar
  30. Christiansen LB, Hurwitz S, Saar MO, Ingebritsen SE, Hsieh PA (2005) Seasonal seismicity at western United States volcanic centers. Earth Planet Sci Lett 240(2):307–321CrossRefGoogle Scholar
  31. Clauser C, Griesshaber E, Neugebauer HJ (2002) Decoupled thermal and mantle helium anomalies: implications for the transport regime in continental rift zones. J Geophys Res 107. doi:10.1029/2001JB000,675
  32. Constantz J (2008) Heat as a tracer to determine streambed water exchanges. Water Resour Res 44:W00D10. doi:10.1029/2008WR006,996
  33. Coolbaugh M, Arehart G, Faulds J, Garside L (2005) Geothermal systems in the Great Basin, western United States: modern analogues to the role of magmatism, structure, and regional tectonics in the formation of gold deposits. Geological Society of Nevada Symposium 2005: Window to the World, Reno, Nevada, May 2005, pp 1063–1081Google Scholar
  34. Darcy HPG (1856) Les fountaines publiques de la Ville de Dijon [The public fountains of the city of Dijon]. Dalmont, ParisGoogle Scholar
  35. Deming D (1993) Regional permeability estimates from investigations of coupled heat and groundwater flow, North Slope of Alaska. J Geophys Res 98:16271–16286CrossRefGoogle Scholar
  36. Deming D, Nunn J (1991) Numerical simulations of brine migration by topographically driven recharge. J Geophys Res 96(B2):2485–2499CrossRefGoogle Scholar
  37. Domenico PA, Palciauskas VV (1973) Theoretical analysis of forced convective heat transfer in regional ground-water flow. Geol Soc Am Bull 84:3803–3814CrossRefGoogle Scholar
  38. Ellis AJ, Wilson SH (1955) The heat from the Wairakei-Taupo thermal region calculated from the chloride output. NZ J Sci Technol B36:622–631Google Scholar
  39. Evans WC, van Soest MC, Mariner RH, Hurwitz S, Ingebritsen SE, Wicks CW Jr, Schmidt ME (2004) Magmatic intrusion west of Three Sisters, central Oregon, USA: the perspective from spring geochemistry. Geology 32(1):69–72CrossRefGoogle Scholar
  40. Fairley J, Hinds J (2004) Rapid transport pathways for geothermal fluids in an active Great Basin fault zone. Geology 32(9):825–828CrossRefGoogle Scholar
  41. Ferguson G, Beltrami H (2006) Transient lateral heat flow due to land-use changes. 242(1–2):217–222Google Scholar
  42. Ferguson G, Woodbury AD (2007) Urban heat island in the subsurface. Geophys Res Lett 34:L23713. doi:10.1029/2007GL032,324
  43. Ferguson G, Beltrami H, Woodbury AD (2006) Perturbation of ground surface temperature reconstruction by groundwater flow. Geophys Res Lett 33:L13708. doi:10.1020/2006GL026,634
  44. Ferguson G, Grasby SE, Hindle SR (2009) What do aqueous geothermometers really tell us? Geofluids 9(1):39–48CrossRefGoogle Scholar
  45. Forster C, Smith L (1988a) Groundwater flow systems in mountainous terrain 1: numerical modeling technique. Water Resour Res 24(7):999–1010CrossRefGoogle Scholar
  46. Forster C, Smith L (1988b) Groundwater flow systems in mountainous terrain 2: controlling factors. Water Resour Res 24(7):1011–1023CrossRefGoogle Scholar
  47. Forster C, Smith L (1989) The influence of groundwater flow on thermal regimes in mountainous terrain: a model study. J Geophys Res 94:9439–9451CrossRefGoogle Scholar
  48. Fourier JBJ (1822) Theorie Analytique de la Chaleur [The analytical theory of heat]. Didot, ParisGoogle Scholar
  49. Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  50. Furbish DJ (1997) Fluid physics in geology. Oxford University Press, Oxford, UKGoogle Scholar
  51. Garven G, Freeze R (1984a) Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits. 1. Mathematical and numerical model. Am J Sci 284(10):1085–1124CrossRefGoogle Scholar
  52. Garven G, Freeze R (1984b) Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits. 2. Quantitative results. Am J Sci 284(10):1125–1174CrossRefGoogle Scholar
  53. Ge S (1998) Estimation of groundwater velocity in localized fracture zones from well temperature profiles. J Volcanol Geoth Res 84:93–101CrossRefGoogle Scholar
  54. Germanovich LN, Lowell RP, Astakhov DK (2000) Stress-dependent permeability and the formation of seafloor event plumes. JGR 105:8341–8354CrossRefGoogle Scholar
  55. Giardini D (2009) Geothermal quake risks must be faced. Nature 462:848–849CrossRefGoogle Scholar
  56. Gosnold WD (1985) Heat flow and ground water flow in the Great Plains of the United States. J Geodyn 4:247–264CrossRefGoogle Scholar
  57. Gosnold WD (1990) Heat flow in the Great Plains of the United States. J Geophys Res 95(B1):353–374CrossRefGoogle Scholar
  58. Gosnold WD (1999) Basin-scale groundwater flow and advective heat flow: an example from the Northern Great Plains. In: Basin analysis. Kluwer, Dordrecht, The Netherlands, pp 99–116Google Scholar
  59. Herbert A, Jackson C, Lever D (1988) Coupled groundwater flow and solute transport with fluid density strongly dependent upon concentration. Water Resour Res 24(10):1781–1795CrossRefGoogle Scholar
  60. Hildreth W (2007) Quaternary magmatism in the Cascades; geologic perspectives. US Geol Surv Prof Pap P1744, 125 ppGoogle Scholar
  61. Hilton D (2007) The leaking mantle. Science 318:1389–1390CrossRefGoogle Scholar
  62. Hsieh PA (1998) Scale effects in fluid flow through fractured geologic media. In: Sposito G (ed) Scale dependence and scale invariance in hydrology. Cambridge University Press, New York, pp 335–353Google Scholar
  63. Hsieh PA, Bredehoeft JD, Rojstaczer SA (1988) Response of well aquifer systems to Earth tides: problem revisited. Water Resour Res 24(3):468–472CrossRefGoogle Scholar
  64. Hurwitz S, Ingebritsen SE, Sorey ML (2002) Episodic thermal perturbations associated with groundwater flow: an example from Kilauea volcano, Hawaii. J Geophys Res 107:2297Google Scholar
  65. Hurwitz S, Goff F, Janik CJ, Evans WC, Counce DA, Sorey ML, Ingebritsen SE (2003a) Mixing of magmatic volatiles with groundwater and interaction with basalt on the summit of Kilauea Volcano, Hawaii. J Geophys Res 108(B1):ECV8.1–ECV8.12Google Scholar
  66. Hurwitz S, Kipp KL, Ingebritsen SE, Reid ME (2003b) Groundwater flow, heat transport, and water table position within volcanic edifices: implications for volcanic processes in the Cascade range. J Geophys Res 108:ECV1.1–ECV1.19. doi:10.1029/2003JB002,565
  67. Hyun Y, Neuman SP, Vesselinov VV, Illman WA, Tartakovsky DM, Di Federico V (2002) Theoretical interpretation of a pronounced permeability scale effect in unsaturated fractured tuff. Water Resour Res 38(6):1092Google Scholar
  68. Ingebritsen SE, Manning C (2009) Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism. Geofluids 10:193–205. doi:10.1111/j.1468-8123.2010.00278.x Google Scholar
  69. Ingebritsen SE, Sherrod DR, Mariner RH (1989) Heat-flow and hydrothermal circulation in the Cascade Range, north-central Oregon. Science 243(4897):1458–1462CrossRefGoogle Scholar
  70. Ingebritsen SE, Sherrod DR, Mariner RH (1992) Rates and patterns of groundwater flow in the Cascade Range Volcanic Arc, and the effect on subsurface temperatures. J Geophys Res 97:4599–4627CrossRefGoogle Scholar
  71. Ingebritsen SE, Scholl MA, Sherrod DR (1993) Heat flow from four new research drill holes in the Western Cascades, Oregon, U.S.A. Geothermics 22(3):151–163CrossRefGoogle Scholar
  72. Ingebritsen SE, Mariner RH, Sherrod DR (1994) Hydrothermal systems of the Cascades Range, north-central Oregon. US Geol Surv Prof Pap 1044-LGoogle Scholar
  73. Ingebritsen SE, Sherrod DR, Mariner RH (1996) Reply to comment on “Rates and patterns of groundwater flow in the Cascades Range volcanic arc and the effect on subsurface temperatures”. J Geophys Res 101(B8):17569–17576CrossRefGoogle Scholar
  74. Ingebritsen SE, Galloway DL, Colvard EM, Sorey ML, Mariner RH (2001) Time-variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring. J Volcanol Geoth Res 111(1–4):1–23CrossRefGoogle Scholar
  75. Ingebritsen SE, Sanford W, Neuzil C (2006) Groundwater in geologic processes, 2nd edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  76. Ingebritsen SE, Geiger S, Hurwitz S, Driesner T (2010) Numerical simulation of magmatic hydrothermal systems. Rev Geophys 48:RG1002. doi:10.1029/2009RG000,287
  77. James EW, Manga M, Rose TP, Hudson GB (2000) The use of temperature and the isotopes of O H C and noble gases to determine the pattern and spatial extent of groundwater flow. J Hydrol 237:100–112CrossRefGoogle Scholar
  78. Jessop AM (1989) Hydrological distortion of heat flow in sedimentary basins. Tectonophysics 164:211–218CrossRefGoogle Scholar
  79. Keller GV, Grose LT, Murray JC, Skokan CK (1979) Results of an experimental drill hole at the summit of Kilauea Volcano, Hawaii. J Volcanol Geoth Res 5(3–4):345–385CrossRefGoogle Scholar
  80. Kennedy B, van Soest M (2007) Flow of mantle fluids through the ductile lower crust: helium isotope trends. Science 318:1433–1436CrossRefGoogle Scholar
  81. Kestin J, Khalifa H, Correia R (1981) Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20–150°C and the pressure range 0.1–35 MPa. J Phys Chem Ref Data 10(1):71–87CrossRefGoogle Scholar
  82. Lachenbruch AH (1968) Rapid estimation of the topographic disturbance to superficial thermal gradients. Rev Geophys 6(3):365–400CrossRefGoogle Scholar
  83. Lachenbruch AH, Marshall BV (1986) Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science 234(4777):689–696CrossRefGoogle Scholar
  84. López DL, Smith L (1995) Fluid flow in fault zones: analysis of the interplay of convective circulation and topographically driven groundwater flow. Water Resour Res 31(6):1489–1503CrossRefGoogle Scholar
  85. López DL, Smith L (1996) Fluid flow in fault zones: influence of hydraulic anisotropy and heterogeneity on the fluid flow and heat transfer regime. Water Resour Res 32(10):3227–3235CrossRefGoogle Scholar
  86. Lu N, Ge S (1996) Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer. Water Resour Res 32(5):1449–1453CrossRefGoogle Scholar
  87. Manga M (1998) Advective heat transport by low-temperature discharge in the Oregon Cascades. Geology 26(9):799–802CrossRefGoogle Scholar
  88. Manga M (2001) Using springs to study groundwater flow and active geologic processes. Annu Rev Earth Planet Sci 29:201–228CrossRefGoogle Scholar
  89. Manga M, Kirchner JW (2004) Interpreting the temperature of water at cold springs and the importance of gravitational potential energy. Water Resour Res 40(5):W05110.1–W05110.8. doi:10.1029/2004WR002,905
  90. Manning CE, Ingebritsen SE (1999) Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev Geophys 37:127–150CrossRefGoogle Scholar
  91. McCord J, Reiter M, Phillips F (1992) Heat-flow data suggest large ground-water fluxes through Fruitland coals of the northern San Juan basin, Colorado-New Mexico. Geology 20:419–422CrossRefGoogle Scholar
  92. McKenna JR, Blackwell DD (2004) Numerical modeling of transient basin and range extensional geothermal systems. Geothermics 33(4):457–476CrossRefGoogle Scholar
  93. McKenzie J, Voss C, Siegel D (2007) Groundwater flow with energy transport and water-ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs. Adv Water Resour 30(4):966–983CrossRefGoogle Scholar
  94. Meinzer OE (1927) Large springs in the United States. US Geol Surv Water Supp Pap 557:94Google Scholar
  95. Myre J, Walsh SDC, Lilja DJ, Saar MO (2010) Performance analysis of single-phase, multiphase, and multicomponent lattice-Boltzmann fluid flow simulations on GPU clusters. Concurrency Computat Pract Exper. doi:10.1002/cpe.1645
  96. Perkins TK, Johnston OC (1963) A review of diffusion and dispersion in porous media. Soc Pet Eng J 3:70–83Google Scholar
  97. Person M, Mulch A, Teyssier C, Gao Y (2007) Isotope transport and exchange within metamorphic core complexes. Am J Sci 307. doi:10.247/03.2007.01
  98. Person M, Banerjee A, Hofstra A, Sweetkind D, Gao Y (2008) Hydrologic models of modern and fossil geothermal systems in the Great Basin: genetic implications for epithermal Au–Ag and Carlin-type gold deposits. Geosphere 4(5):888–917CrossRefGoogle Scholar
  99. Phillips OM (1991) Flow and reactions in permeable rocks. Cambridge University Press, New YorkGoogle Scholar
  100. Poage MA, Chamberlain CP (2001) Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am J Sci 301(1):1–15CrossRefGoogle Scholar
  101. Pollack HN, Huang S (2000) Climate reconstruction from subsurface temperatures. Annu Rev Earth Planet Sci 28:339–365CrossRefGoogle Scholar
  102. Pollack HN, Hurter SJ, Johnson JR (1993) Heat-flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31(3):267–280CrossRefGoogle Scholar
  103. Pollack HN, Smerdon J, Keken PE (2005) Variable seasonal coupling between air and ground temperatures: a simple representation in terms of subsurface thermal diffusivity. Geophys Res Lett 32:L15405. doi:10.1029/2005GL023,869
  104. Randolph J, Saar M (2010) Coupling geothermal energy capture with carbon dioxide sequestration in naturally permeable, porous geologic formations: a comparison with enhanced geothermal systems. GRC Transaction, Geothermal Resources Council, Davis, CAGoogle Scholar
  105. Rath V, Wolf A, Bücker H (2006) Joint three-dimensional inversion of coupled ground-water flow and heat transfer based on automatic differentiation: sensitivity calculation, verification, and synthetic examples. Geophys J Int 167(1):453–466CrossRefGoogle Scholar
  106. Rinehart JS (1972) Fluctuations in geyser activity caused by variations in Earth tidal forces, barometric pressure, and tectonic stresses. J Geophys Res 77(2):342–350CrossRefGoogle Scholar
  107. Rye DM, Roy RF (1978) The distribution of thorium, uranium, and potassium in Archean Granites from northeastern Minnesota. Am J Sci 278:354–378CrossRefGoogle Scholar
  108. Saar MO, Manga M (1999) Permeability-porosity relationship in vesicular basalts. Geophys Res Lett 26(1):111–114CrossRefGoogle Scholar
  109. Saar MO, Manga M (2003) Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon. Earth Planet Sci Lett 214(3–4):605–618CrossRefGoogle Scholar
  110. Saar MO, Manga M (2004) Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints. J Geophys Res 109:B04204. doi:10.1029/2003JB002855 CrossRefGoogle Scholar
  111. Saar MO, Castro MC, Hall CM, Manga M, Rose TP (2005) Quantifying magmatic, crustal, and atmospheric helium contributions to volcanic aquifers using all stable noble gases: implications for magmatism and groundwater flow. Geochem Geophys Geosys 6(3):Q03008. doi:10.1029/2004GC000828 CrossRefGoogle Scholar
  112. Sánchez-Vila X, Carrera J, Girardi J (1996) Scale effects in transmissivity. J Hydrol 183(1–2):1–22CrossRefGoogle Scholar
  113. Sass JH, Lachenbruch AH, Munroe RJ (1971) Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations. J Geophys Res 76:3391–3401CrossRefGoogle Scholar
  114. Smerdon JE, Pollack HN, Enz JW, Lewis MJ (2003) Conduction-dominated heat transport of the annual temperature signal in soil. J Geophys Res 108(B9). doi:10.1029/2002JB002,351
  115. Smith L, Chapman DS (1983) On the thermal effects of groundwater flow 1: regional scale systems. J Geophys Res 88:593–608CrossRefGoogle Scholar
  116. Smith L, Chapman D (1985) The influence of water table configuration on the near-surface thermal regime. J Geodyn 4:183–198CrossRefGoogle Scholar
  117. Sorey ML (1971) Measurement of vertical groundwater velocity from temperature profiles in wells. Water Resour Res 7(4):963–970CrossRefGoogle Scholar
  118. Sorey ML (1976) A model of the hydrothermal system of Long Valley Caldera, California. Paper presented at the Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, CA, December 1976Google Scholar
  119. Sorey ML, Lewis RE, Olmsted FH (1978) The hydrothermal system of Long Valley Calderra, California. US Geol Surv Prof Pap 1044-AGoogle Scholar
  120. Stallman RW (1963) Computation of ground-water velocity from temperature data. In: Bentall R (ed) Methods of collecting and interpreting ground-water data. US Geol Surv Water Suppl Pap 1544-H. pp 36–46Google Scholar
  121. Stallman RW (1965) Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. J Geophys Res 70(12):2821–2827CrossRefGoogle Scholar
  122. Steele JL, Blackwell DD (1982) Heat flow in the vicinity of the Mount Hood volcano, Oregon. In: Priest GR, Vogt BF (eds) Geology and geothermal resources of the Mount Hood area, Oregon. Special paper 14. Oregon Department of Geology and Mineral Industries, Portland, OR, pp 31–42Google Scholar
  123. Stonestrom DA, Constantz J (2003) Heat as a tool for studying the movement of ground water near streams. US Geol Surv Circ 1260, 96 ppGoogle Scholar
  124. Suzuki S (1960) Percolation measurements based on heat flow through soil with special reference to paddy fields. J Geophys Res 65(9):2883–2885CrossRefGoogle Scholar
  125. Taniguchi M (1993) Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles. Water Resour Res 29(7):2021–2026CrossRefGoogle Scholar
  126. Taniguchi M (1994) Estimated recharge rates from groundwater temperatures in the Nara Basin, Japan. Hydrogeol J 2(4)7–14. doi:10.1007/s100400050,031
  127. Taniguchi M, Shimada J, Tanaka T, Kayane I, Sakura Y, Shimano Y, Dapaah-Siakwan S, Kawashima S (1999a) Disturbances of temperature-depth profiles due to surface climate change and subsurface water flow: 1, an effect of linear increase in surface temperature caused by global warming and urbanization in the Tokyo metropolitan area, Japan. Water Resour Res 35(5):1507–1517CrossRefGoogle Scholar
  128. Taniguchi M, Williamson DR, Peck AJ (1999b) Disturbances of temperature-depth profiles due to surface climate change and subsurface water flow: 2, an effect of step increase in surface temperature caused by forest clearing in southwest-western Australia. Water Resour Res 35(5):1519–1529CrossRefGoogle Scholar
  129. Tester J (2007) The future of geothermal energy: impact of enhanced geothermal systems (EGS) on the United States in the 21st Century. Technical report, Massachusetts Institute of Technology, BostonGoogle Scholar
  130. Turcotte DL, Schubert G (2002) Geodynamics. Cambridge University Press, Cambridge, UKGoogle Scholar
  131. Tyler S, Selker J, Hausner M, Hatch C, Torgersen T, Thodal C, Schladow S (2009) Environmental temperature sensing using Raman spectra DTS fiber-optic methods. Water Resour Res 45:W00D23. doi:10.1029/2008WR007,052
  132. Walsh SDC, Saar MO (2010) Macroscale lattice-Boltzmann methods for low Peclet number solute and heat transport in heterogeneous porous media. Water Resour Res 46:W07517. doi:10.1029/2009WR007895
  133. Walsh SDC, Saar MO, Bailey P, Lilja DJ (2009) Accelerating geoscience and engineering system simulations on graphics hardware. Comput Geosci 35(12):2353–2364CrossRefGoogle Scholar
  134. Walvoord M, Striegl R (2007) Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett 34:L12402. doi:10.1029/2007GL030,216
  135. Wisian KW, Blackwell DD, Bellani S, Henfling JA, Normann RA, Lysne PC, Foerster A, Schroetter J (1998) Field comparison of conventional and new technology temperature logging systems. Geothermics 27(2):131–141CrossRefGoogle Scholar
  136. Woodbury AD, Smith L (1985) On the thermal effects of three-dimensional groundwater flow. J Geophys Res 90(B1):759–767CrossRefGoogle Scholar
  137. Woodbury AD, Smith L (1988) Simultaneous inversion of hydrogeologic and thermal data: 2. incorporation of thermal data. Water Resour Res 24(3):356–372CrossRefGoogle Scholar
  138. Woodbury AD, Smith L, Dunbar WS (1987) Simultaneous inversion of hydrogeologic and thermal data: 1. theory and application using hydraulic head data. Water Resour Res 23(8):1586–1606CrossRefGoogle Scholar
  139. Zablocki CJ, Tilling RI, Peterson DW, Christiansen RL, Keller GV, Murray JC (1974) A deep research drill hole at the summit of an active volcano, Kilauea, Hawaii. Geophys Res Lett 1(7):323–326CrossRefGoogle Scholar
  140. Zeitler PK, Koons PO, Bishop MP, Chamberlain CP, Craw D, Edwards MA, Hamidullah S, Jan MQ, Khan MA, Khattak MUK, Kidd WSF, Mackie RL, Meltzer AS, Park SK, Pecher A, Poage MA, Sarker G, Schneider DA, Seeber L, Shroder JF (2001) Crustal reworking at Nanga Parbat, Pakistan: metamorphic consequences of thermal-mechanical coupling facilitated by erosion. Tectonics 20(5):712–728CrossRefGoogle Scholar
  141. Ziagos JP, Blackwell DD (1986) A model for the transient temperature effects of horizontal fluid flow in geothermal systems. J Volcanol Geoth Res 27:371–397CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Geology and GeophysicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations