Hydrogeology Journal

, Volume 18, Issue 7, pp 1547–1570 | Cite as

Recent advances in subseafloor hydrogeology: focus on basement–sediment interactions, subduction zones, and continental slopes

Paper

Abstract

Focused, interdisciplinary research in the subseafloor environment has advanced our understanding of fluid flow paths and the interrelationship between fluid pressure and deformation, heat flow, and diagenesis. Recent investigations in the Pacific Ocean, the Gulf of Mexico, and the North Sea provide examples of high rates of fluid flow in the permeable basement, with the flow affecting properties of overlying sediments. There are also some indications that flow could continue into subduction. Studies on continental slopes provide evidence for sedimentation-driven overpressures that can destabilize slopes. These studies particularly emphasize the contributions of lateral flow driven by uneven loading. Similarly, evidence continues to build that stratigraphic horizons and faults help to dewater subduction zones. A recent development is the monitoring of pore pressure, temperatures, flow, and fluid chemistry, which aids the understanding of transient behavior and response to strain events.

Keywords

Compaction Groundwater flow Hydraulic properties Unconsolidated sediments Coupled flow Deformation 

Avancées récentes dans l’hydrogéologie du plancher marin: focus sur les interactions substrat–sédiment, zones de subduction et talus continentaux

Résumé

Une recherche interdisciplinaire ciblée sur l’environnement du plancher marin, a accru notre connaissance des chenaux d’écoulement fluide, des interrelations pression du fluide- déformation et flux thermique- diagénèse. Des investigations récentes dans l’Océan Pacifique, le Golfe du Mexique et la Mer du Nord fournissent des exemples d’écoulement fluide à fort gradient dans le substrat perméable, avec incidence sur les propriétés des sédiments de couverture. Des indices montrent aussi que le flux pourrait continuer à s’écouler en subduction. Des études sur des talus continentaux mettent en évidence que des surpressions dues à la sédimentation peuvent déstabiliser les pentes. Ces études mettent particulièrement l’accent sur la contribution du flux latéral causé par une charge inégale. De la même façon, on met en évidence que des niveaux stratigraphiques et des failles contribuent à déshydrater des zones de subduction. Un progrès récent est le contrôle de la pression dans les pores, celui des températures, du flux, de la chimie du fluide, qui aide à comprendre les états transitoires et la réponse aux contraintes.

Avances recientes en la hidrogeología del subsuelo marino: Enfoques sobre las interacciones entre los sedimentos y el lecho marino, zonas de subducción, y taludes continentales

Resumen

La investigación interdisciplinaria enfocada al ambiente del subsuelo marino ha hecho adelantar nuestro conocimiento de las trayectorias de flujo de fluido y la interrelación entre la presión del fluido y la deformación, el flujo de calor, y la diagénesis. Recientes investigaciones en el Océano Pacífico, el Golfo de Méjico, y el Mar del Norte proveen ejemplos de altos ritmos de flujo de fluido en el lecho permeable del mar, donde el flujo afecta las propiedades de los sedimentos suprayacentes. Hay también algunas indicaciones de que el flujo podría continuar dentro de la subducción. Los estudios sobre los taludes continentales proporcionan evidencias de sobrepresiones forzadas por sedimentación que pueden desestabilizar los taludes. Estos estudios particularmente enfatizan la contribución de flujo lateral forzado por cargas desiguales. De manera similar, se aportan pruebas que los horizontes estratigráficos y las fallas ayudan a escurrir las zonas de subducción. Un desarrollo reciente es el monitoreo de la presión poral, temperaturas, flujos, y química del fluido, los cuales ayudan a la comprensión del comportamiento transitorio y la respuesta a eventos de deformación.

海床水文地质的最新进展: 集中在基底-沉积物相互作用、俯冲带及大陆斜坡

摘要

针对海床环境的多学科研究有助于理解流体运移路径、流体压力与变形、热流、成岩作用之间的相互关系。近来对太平洋、墨西哥湾和北海的研究为渗透性基底中的可影响上覆沉积物特性的高流速流体的研究提供了案例。某些迹象显示, 流体能继续运移至俯冲带中。沉积驱动的超高压能导致斜坡的不稳定, 对大陆坡的研究为这一命题提供了证据。这些研究强调了不均匀负荷对水平流的贡献。相似地, 越来越多的证据表明, 水平层理和断层有利于俯冲带脱水。对孔隙压力、温度、水流及流体化学特征的监测将有助于瞬态特征和对应力事件的响应。

Avanços recentes na hidrogeologia dos subfundos marinhos: Foco nas interacções do sedimento–subsolo, zonas de subducção e taludes continentais

Resumo

A investigação interdisciplinar focada no ambiente do subfundo marinho avançou o nosso entendimento dos percursos de escoamento de fluidos e da inter-relação entre a pressão do fluido e a deformação, o fluxo de calor e a diagénese. As recentes investigações no Oceano Pacífico, no golfo do México, e no Mar do Norte, dão exemplos de altas taxas de escoamento de fluido no subsolo permeável, com o escoamento a afectar as propriedades dos sedimentos sobrepostos. Também há indicação de que o escoamento pode continuar para a zona de subducção. Os estudos dos taludes continentais fornecem evidências de sobrepressões devido à sedimentação que podem desestabilizar os taludes. Estes estudos enfatizam particularmente as contribuições de escoamento lateral causado por carga desigual. Da mesma forma, há evidência crescente de que os horizontes estratigráficos e as falhas ajudam a retirar água das zonas de subducção. Um desenvolvimento recente é a monitorização da pressão dos poros, das temperaturas, do escoamento e da química dos fluidos, o que ajuda à compreensão do comportamento transitório e da resposta a eventos de tensão.

References

  1. Adatia RH, Maltman AJ (2004) Data report: initial permeability determinations on sediments from the Nankai Trough accretionary prism, ODP Sites 1173 and 1174. Proc ODP Sci Results 190/196:1–12. doi:10.2973/odp.proc.sr.190196.214.2004 Google Scholar
  2. Ashi J, Kuramoto S, Morita S et al (2002) Structure and cold seep of the Nankai accretionary prism off Kumano: outline of the off Kumano survey during YK01-04 Leg 2 cruise. JAMSTEC J Deep Sea Res 20:1–8Google Scholar
  3. Ashi K, Okubo M, Ishii H et al (2005) Co-seismic strain-steps associated with the 2004 off the Kii peninsula earthquakes observed with Ishii-type borehole strainmeters and quartz-tube extensometers. Earth Planets Space 57:309–314Google Scholar
  4. Athy LF (1930) Density, porosity, and compaction of sedimentary rocks. AAPG Bull 14:1–24Google Scholar
  5. Bangs NL, Moore GF, Gulick SPS et al (2009) Broad, weak regions of the Nankai Megathrust and implications for shallow coseismic slip. Earth Planet Sci Lett 284:44–49CrossRefGoogle Scholar
  6. Becker K, Davis EE (2005) A review of CORK designs and operations during the Ocean Drilling Program. Proc. IODP, vol 301. IODP, College Station, TX. doi:10.2204/iodp.proc.301.104.2005
  7. Becker K, Fisher A (2008) Borehole packer tests at multiple depths resolve distinct hydrologic intervals in 3.5 Ma upper oceanic crust, eastern flank of Juan de Fuca Ridge. J Geophys Res. doi:10.1029/2007JB005446 Google Scholar
  8. Bekins BA, McCaffrey AM, Dreiss SJ (1994) The influence of kinetics on the smectite to illite transition in the Barbados accretionary prism. J Geophys Res 99:18147–18158. doi:10.1029/94JB01187 CrossRefGoogle Scholar
  9. Bekins BA, McCaffrey AM, Dreiss SJ (1995) Modeling the origin of low chloride pore waters in a modern accretionary complex. Water Resour Res 31:3205–3215CrossRefGoogle Scholar
  10. Bekins BA, Spivack AJ, Davis EE, Mayer LA (2007) Enhanced ventilation of ocean crust due to dissolution of biogenic ooze over oceanic basement edifices. Geology 35:679–682. doi:10.1130/G23797A.1 CrossRefGoogle Scholar
  11. Berg K, Solheim A, Bryn P (2005) The Pleistocene to recent geological development of the Ormen Lange area. Mar Petrol Geol 22:45–56CrossRefGoogle Scholar
  12. Bethke CM (1985) A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins. J Geophys Res 90:6817–6828CrossRefGoogle Scholar
  13. Binh NTT, Tokunaga T, Nakamura T et al (2009) Physical properties of the shallow sediments in late Pleistocene formations, Ursa Basin, Gulf of Mexico, and their implications for generation and preservation of shallow overpressures. Mar Petrol Geol 26:474–486CrossRefGoogle Scholar
  14. Bourlange S, Jouniaux L, Henry P (2004) Data report: permeability, compressibility, and friction coefficient measurements under confining pressure and strain, Leg 190, Nankai Trough. Proc ODP Sci Results 190/196, ODP College Station, TX. doi:10.2973/odp.proc.sr.190196.215.2004
  15. Boutt DF, Kano Y, Flemings PB et al (2009) Downhole hydrologic testing in the Kumano Basin and underlying sediments: results from NanTroSEIZE Expedition 319. EOS Trans AGU Fall Meeting, San Francisco, December 2009, Abstract T21C-1837Google Scholar
  16. Bray CJ, Karig DE (1985) Porosity of sediments in accretionary prisms and some implications for dewatering processes. J Geophys Res 90:768–778CrossRefGoogle Scholar
  17. Bredehoeft JD, Hanshaw BB (1968) On the maintenance of anomalous fluid pressures, I: thick sedimentary sequences. Geol Soc Am Bull 79:1097–1106CrossRefGoogle Scholar
  18. Brown KM, Saffer DM, Bekins BA (2001) Smectite diagenesis, pore-water freshening, and fluid flow at the toe of the Nankai wedge. Earth Planet Sci Lett 194:97–109Google Scholar
  19. Brown KM, Tryon MD, DeShon HR et al (2005) Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone. Earth Planet Sci Lett 238:189–203. doi:10.1016/j.epsl.2005.06.055 CrossRefGoogle Scholar
  20. Brown HE, Holbrook WS, Hornbach MJ, Nealon J (2006) Slide structure and role of gas hydrate at the northern boundary of the Storegga slide, offshore Norway. Mar Geol 229:179–186CrossRefGoogle Scholar
  21. Bryant WR (2002) Permeability of clays, silty-clays and clayey-silts. Gulf Coast Assoc Geol Soc Trans 52:1069–1077Google Scholar
  22. Bryn P, Berg K, Forsberg CF et al (2005) Explaining the Storegga Slide. Mar Petrol Geol 22:11–19CrossRefGoogle Scholar
  23. Cardace D, Morris JD (2009) Geochemical evidence for sediment accretion in the Costa Rica Frontal Prism. Geology 37:891–894CrossRefGoogle Scholar
  24. Chan LH, Kastner M (2000) Lithium isotopic compositions of pore fluids and sediments in the Costa Rica subduction zone: implications for fluid processes and sediment contribution to the arc volcanoes. Earth Planet Sci Lett 183:275–290CrossRefGoogle Scholar
  25. Christiansen LB, Garven G (2003) A theoretical comparison of buoyancy-driven and compaction-driven fluid flow in oceanic sedimentary basins. J Geophys Res 108:2130. doi:10.1029/2002JB001956 CrossRefGoogle Scholar
  26. Coumou D, Driesner T, Geiger S et al (2009a) High-resolution three-dimensional simulations of mid-ocean ridge hydrothermal systems. J Geophys Res 114:B07104. doi:10.1029/2008JB006121 CrossRefGoogle Scholar
  27. Coumou D, Driesner T, Weis P, Heinrich CA (2009b) Phase separation, brine formation, and salinity variation at Black Smoker hydrothermal systems. J Geophys Res 114, B03212. doi:10.1029/2008JB005764 CrossRefGoogle Scholar
  28. Cutillo PA, Ge S, Screaton E (2006) Hydrodynamic response of subduction zones to seismic activity: a case study for the Costa Rica Margin. Tectonophys 426:167–187. doi:10.1016/j.tecto.2006.02.017 CrossRefGoogle Scholar
  29. Davis EE, Becker K (2007) On the fidelity of “CORK” borehole hydrologic observatory pressure records. Sci Drill 5:54–59Google Scholar
  30. Davis EE, Villinger HW (2006) Transient formation fluid pressures and temperatures in the Costa Rica forearc prism and subducting oceanic basement: CORK monitoring at ODP sites 1253 and 1255. Earth Planet Sci Lett 245:232–244. doi:10.1016/j.epsl.2006.02.042 CrossRefGoogle Scholar
  31. Davis EE, Becker K, Pettigrew T et al (1992) CORK: a hydrologic seal and downhole observatory for deep-ocean boreholes. In: Davis EE, Mottl MJ, Fisher AT et al (eds) Proc ODP, initial reports, vol 139. ODP, College Station, TX, pp 43–53. doi:10.2973/odp.proc.ir.139.103.1992 CrossRefGoogle Scholar
  32. Davis EE, Wang K, He J et al (1997) An unequivocal case for high Nusselt-number hydrothermal convection in sediment-buried igneous oceanic crust. Earth Planet Sci Lett 146:137–150CrossRefGoogle Scholar
  33. Davis EE, Wang K, Becker K, Thomson RE (2000) Formation-scale hydraulic and mechanical properties of oceanic crust inferred from pore pressure response to periodic seafloor loading. J Geophys Res 105:13423–13435CrossRefGoogle Scholar
  34. Davis EE, Wang W, Thomson RE et al (2001) An episode of seafloor spreading and associated plate deformation inferred from crustal fluid pressure transients. J Geophys Res 106(B10):21953–21963CrossRefGoogle Scholar
  35. Davis EE, Becker K, Wang K et al (2006) A discrete episode of seismic and aseismic deformation of the Nankai trough subduction zone accretionary prism and incoming Philippine Sea plate. Earth Planet Sci Lett 242:73–84CrossRefGoogle Scholar
  36. Davis EE, Becker K, Wang K, Kinoshita M (2009a) Co-seismic and post-seismic pore-fluid pressure changes in the Philippine Sea plate and Nankai decollement in response to a seismogenic strain event off Kii Peninsula, Japan. Earth Planets Space 61:649–657Google Scholar
  37. Davis EE, Saffer DM, Kopf A et al (2009b) A “Mini-CORK” “smart bridge plug” for initial NanTroSEIZE borehole monitoring. EOS Trans Am Geophys Union NH31A-1102Google Scholar
  38. Davis EE, LaBonte A, He J et al (2010) Thermally stimulated “runaway” downhole flow in a super-hydrostatic ocean-crustal borehole: observations, simulations, and inferences regarding crustal permeability. J Geophys Res. doi:10.1029/2009JB006986
  39. D’Hondt SL, Jørgensen BB, Miller DJ (2003) Proceedings of the Ocean Drilling Program, initial reports, vol 201. ODP, College Station, TX. doi:10.2973/odp.proc.ir.201.2003 CrossRefGoogle Scholar
  40. Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology. Wiley, New YorkGoogle Scholar
  41. Dugan B (2008) Fluid flow in the Keathley Canyon 151 Mini-Basin, Northern Gulf of Mexico. Mar Petrol Geol 25:919–923. doi:10.1016/j.marpetgeo.2007.12.005 CrossRefGoogle Scholar
  42. Dugan B, Germaine JT (2008) Near-seafloor overpressure in the deepwater Mississippi Canyon, northern Gulf of Mexico. Geophys Res Lett 35, L02304.l. doi:10.1029/2007GL032275 CrossRefGoogle Scholar
  43. Dugan B, Marone C, Hong T, Migyanka M (2004) Data report: compressibility, permeability, and grain size of shallow sediments, Sites 1194 and 1198. Proc ODP Sci Results 194:1–28. doi:10.2973/odp.proc.sr.194.003.2004 Google Scholar
  44. Elliot WC, Matisoff G (1996) Evaluation of kinetic models for the smectite to illite transformation. Clays Clay Miner 44:77–87. doi:10.1346/CCMN.1996.0440107 CrossRefGoogle Scholar
  45. Emmanuel S, Berkowitz B (2006) Suppression and stimulation of seafloor hydrothermal convection by exothermic mineral hydration. Earth Planet Sci Lett 243:657–668CrossRefGoogle Scholar
  46. Engelen B, Ziegelmueller K, Wolf L et al (2008) Fluids from the oceanic crust support microbial activities within the deep biosphere. Geomicrobiol J 25:56–66CrossRefGoogle Scholar
  47. Erickson S, Jarrard R (1998) Velocity–porosity relationships for water-saturated siliciclastic sediments. J Geophys Res 103:30385–30406CrossRefGoogle Scholar
  48. Ernst WG, Calvert SE (1969) An experimental study of the recrystallization of porcelanite and its bearing on the origin of some bedded cherts. Am J Sci 267-A:114–133Google Scholar
  49. Faccenda M, Gerya TV, Burlini L (2009) Deep slab hydration induced by bending-related variations in tectonic pressure. Nat Geosci 2:790–793. doi:10.1038/ngeo656 CrossRefGoogle Scholar
  50. Ferguson IJ, Westbrook GK, Langseth MG, Thomas GP (1993) Heat flow and thermal models of the Barbados Ridge accretionary complex. J Geophys Res 98:4121–4142CrossRefGoogle Scholar
  51. Fisher AT (1998) Permeability within basaltic oceanic crust. Rev Geophys 36:143–182CrossRefGoogle Scholar
  52. Fisher AT (2005) Marine hydrogeology: future prospects for major advances. Hydrogeol J 13:69–97. doi:10.1007/s10040-004-0400-y CrossRefGoogle Scholar
  53. Fisher AT, Harris RN (2010) Using seafloor heat flow as a tracer to map subseafloor fluid flow in the ocean crust. Geofluids 10:142–160. doi:10.1111/j.1468-8123.2009.00274.x Google Scholar
  54. Fisher AT, Zwart G and Ocean Drilling Program Leg 156 Scientific Party (1996) Relation between permeability and effective stress along a plate-boundary fault, Barbados accretionary complex. Geology 24:307–310. doi:10.1130/0091-7613(1996)024<0307:RBPAES>2.3.CO;2 Google Scholar
  55. Fisher AT, Davis EE, Becker K (2008) Borehole-to-borehole hydrologic response across 2.4 km in the upper oceanic crust: implications for crustal scale properties. J Geophys Res 113:B07106. doi:10.1029/2007JB005447 CrossRefGoogle Scholar
  56. Fitts TG, Brown KM (1999) Stress-induced smectite dehydration: ramifications for patterns of freshening and fluid expulsion in the N. Barbados accretionary wedge. Earth Planet Sci Lett 172:179–197. doi:10.1016/S0012-821X(99)00168-5 CrossRefGoogle Scholar
  57. Flemings PB, Behrmann JH, John CM, the Expedition 308 Scientists (2006) Proc IODP 308. IODP, College Station, TX. doi:10.2204/iodp.proc.308.101.2006
  58. Flemings PB, Long H, Dugan B et al (2008) Erratum to “Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of Mexico” [Earth Planet Sci Lett 269/3–4 (2008) 309–32]. Earth Planet Sci Lett 274:269–283. doi:10.1016/j.epsl.2008.06.027 CrossRefGoogle Scholar
  59. Fontaine FJ, Wilcock WSD (2007) Two dimensional models of hydrothermal convection at high Rayleigh and Nusselt numbers: implications for mid-ocean ridges, Geochem Geophys Geosyst 8(7), Q07010, doi:10.1029/2007GC001601
  60. Freeze RA, Witherspoon PA (1967) Theoretical analysis of regional ground water flow: 2. effect of water-table configuration and subsurface permeability variation. Water Resour Res 3:623–634CrossRefGoogle Scholar
  61. Fryer P, Gharib J, Ross K et al (2006) Variability in serpentinite mudflow mechanisms and sources: ODP drilling results on Mariana forearc seamounts. Geochem Geophys Geosyst 7:Q08014. doi:10.1029/2005GC001201 CrossRefGoogle Scholar
  62. Gamage K, Screaton E (2003) Data report: permeabilities of Nankai accretionary prism sediments. Proc ODP Sci Results 190/196:1–21. doi:10.2973/odp.proc.sr.190196.213.2003 Google Scholar
  63. Gamage K, Screaton E (2006) Characterization of excess pore pressures at the toe of the Nankai accretionary complex, Ocean Drilling Program Sites 1173, 1174, and 808: results of one-dimensional modeling. J Geophys Res 111, B04103. doi:10.1029/2004JB003572
  64. Gamage K, Bekins B, Screaton E (2005) Data report: permeabilities of eastern equatorial Pacific and Peru margin sediments. Proc ODP Sci Results 201:1–18. doi:10.2973/odp.proc.sr.201.103.2005 Google Scholar
  65. Ge S, Screaton E (2005) Modeling seismically induced deformation and fluid flow in the Nankai subduction zone. Geophys Res Lett 32, L17301. doi:10.1029/2005GL023473 CrossRefGoogle Scholar
  66. Ge S, Stover SC (2000) Hydrodynamic response to strike and dip-slip faulting in a half space. J Geophys Res 105:25513–25524CrossRefGoogle Scholar
  67. Gibson RE (1958) The progress of consolidation in a clay layer increasing in thickness with time. Geotechnique 8:171–182CrossRefGoogle Scholar
  68. Grevemeyer I, Kaul N, Diaz-Naveas J et al (2005) Heat flow and bending-related faulting at subduction trenches: case studies offshore of Nicaragua and central Chile. Earth Planet Sci Lett 236:238–248CrossRefGoogle Scholar
  69. Gutierrez M, Wangen M (2005) Modeling of compaction and overpressuring in sedimentary basins. Mar Petrol Geol 22:351–363CrossRefGoogle Scholar
  70. Haflidason H, Lien R, Sejrup HP et al (2005) The dating and morphometry of the Storegga Slide. Mar Petrol Geol 22:123–136CrossRefGoogle Scholar
  71. Harris RN, Higgins SM (2008) A permeability estimate in 56 Ma crust at ODP Hole 642E, Vøring Plateau Norwegian Sea. Earth Planet Sci Lett 267:378–385CrossRefGoogle Scholar
  72. Heesemann M, Villinger H, Jannasch HW et al (2006) Data report: long-term temperature measurements in Holes 1253A and 1255A off Costa Rica, ODP Leg 205. Proc ODP Sci Results 205:1–20. doi:10.2973/odp.proc.sr.205.209.2006 Google Scholar
  73. Hensen C, Wallmann Schmidt KM et al (2004) Fluid expulsion related to mud extrusion off Costa Rica: a window to the subducting slab. Geology 32:201–204CrossRefGoogle Scholar
  74. Hubbert MK, Rubey WW (1959) Role of fluid pressure in mechanics of overthrust faulting. I. mechanics of fluid-filled porous solids and its application to overthrust faulting. Geol Soc Am Bull 70:115–166CrossRefGoogle Scholar
  75. Hughes KLH, Masterlark T, Mooney WD (2010) Poroelastic stress-triggering of the 2005 M8.7 Nias earthquake by the 2004 M9.2 Sumatra–Andaman earthquake. Earth Planet Sci Lett 293(3–4):289–299. doi:10.1016/j.epsl.2010.02.043 CrossRefGoogle Scholar
  76. Hüpers A, Kopf AJ (2009) The thermal influence on the consolidation state of underthrust sediments from the Nankai margin and its implications for excess pore pressure. Earth Planet Sci Lett 286:324–332CrossRefGoogle Scholar
  77. Hustoft S, Dugan B, Mienert J (2009) Effects of rapid sedimentation on developing the Nyegga pockmark field: constraints from hydrological modeling and 3-D seismic data, offshore mid-Norway. Geochem Geophys Geosyst 10, Q06012. doi:10.1029/2009GC002409 CrossRefGoogle Scholar
  78. Hutnak M, Fisher AT, Stein CA et al (2007) The thermal state of 18-24 Ma upper lithosphere subducting below the Nicoya Peninsula, Northern Costa Rica Margin. In: Dixon TH, Moore JC (eds) The seismogenic zone of subduction thrusts. Columbia Univ. Press, New York, pp 86–122Google Scholar
  79. Hutnak MA, Fisher AT, Harris RN et al (2008) Large heat and fluid fluxes driven through mid-plate outcrops on ocean crust. Nat Geosci. doi:10.1038/ngeo264 Google Scholar
  80. Ike T, Moore GF, Kuramoto S et al (2008) Variations in sediment thickness and type along the northern Philippine Sea Plate at the Nankai Trough. Isl Arc 17:324–357. doi:10.1111/j.1440-1738.2008.00624.x Google Scholar
  81. Ingebritsen SE, Sanford WE, Neuzil CE (2006) Groundwater in geologic processes, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  82. Ingebritsen SE, Geiger ES, Hurwitz S, Driesner T (2010) Numerical simulation of magmatic hydrothermal systems. Rev Geophys 48 doi:10.1029/2009RG000287
  83. Jarrard RD (2003) Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem Geophys Geosyst 4:8905. doi:10.1029/2002GC000392 CrossRefGoogle Scholar
  84. Jarrard RD, Niessen F, Brink JD, Bücker C (2000) Effects of cementation on velocities of siliciclastic sediments. Geophys Res Lett 27:593–596CrossRefGoogle Scholar
  85. Johnson HP, Hutnak M, Dziak RP et al (2000) Earthquake-induced changes in a hydrothermal system on the Juan de Fuca mid-ocean ridge. Nature 407:174–176CrossRefGoogle Scholar
  86. Kahn LM, Silver EA, Orange D et al (1996) Surficial evidence of fluid expulsion from the Costa Rica accretionary prism. Geophys Res Lett 23:887–890CrossRefGoogle Scholar
  87. Kastner M, Elderfield H, Jenkins WJ et al (1993) Geochemical and isotopic evidence for fluid flow in the western Nankai subduction zone, Japan. Proc ODP Sci Results 131:397–413. doi:10.2973/odp.proc.sr.131.143.1993 Google Scholar
  88. Kummer TD, Spinelli GA (2009) Thermal effects of fluid circulation in the basement aquifer of subducting ocean crust. J Geophys Res 114:B03104. doi:10.1029/2008JB006197 CrossRefGoogle Scholar
  89. Kvalstad TJ, Andresen L, Forsberg CF et al (2005) The Storegga Slide: evaluation of triggering sources and slide mechanics. Mar Petrol Geol 22:245–25CrossRefGoogle Scholar
  90. LaBonte AL, Brown KM, Fialko Y (2009) Hydrologic detection and finite element modeling of a slow slip event in the Costa Rica prism toe. J Geophys Res 114, B00A02. doi:10.1029/2008JB005806
  91. Lambe TW, Whitman RV (1969) Soil mechanics. Wiley, New YorkGoogle Scholar
  92. Lee DR (1977) A device for measuring seepage flux in lakes and estuaries. Limnol Oceanogr 22:140–147CrossRefGoogle Scholar
  93. Lewis KC, Lowell RP (2009) Numerical modeling of two-phase flow in the NaCl-H2O system: 2. examples. J Geophys Res 114, B08204. doi:10.1029/2008JB006030 CrossRefGoogle Scholar
  94. Leynaud D, Mienert J, Nadim F (2004) Slope stability assessment of the Helland Hansen area offshore the mid-Norwegian margin. Mar Geol 213(1–4):457–480CrossRefGoogle Scholar
  95. Leynaud D, Sultan N, Minert J (2007) The role of sedimentation rate and permeability in the slope stability of the formerly glaciated Norwegian continental margin: the Storegga Slide model. Landslides 4:297–309CrossRefGoogle Scholar
  96. Leynaud D, Mienert J, Vanneste M (2009) Submarine mass movements on glaciated and non-glaciated European continental margins: a review of triggering mechanisms and predictions to failure. Mar Petrol Geol 26:618–632CrossRefGoogle Scholar
  97. Long H, Flemings PB, Germaine JT (2007) Interpreting in situ pressure and hydraulic properties with borehole penetrometers in ocean drilling: DVTPP and Piezoprobe deployments at southern Hydrate Ridge, offshore Oregon. J Geophys Res 112:B04101. doi:10.1029/2005JB004165 CrossRefGoogle Scholar
  98. Long H, Flemings PB, Dugan B et al (2008) Data report: penetrometer measurements of in situ temperature and pressure on IODP Expedition 308. Proc IODP 308, IODP, College Station, TX. doi:10.2204/iodp.proc.308.203.2008
  99. Lowell RP, Gosnell S, Yang Y (2007) Numerical simulations of single-pass hydrothermal convection at mid-ocean ridges: effects of the extrusive layer and temperature-dependent permeability. Geochem Geophys Geosyst 8, Q10011. doi:10.1029/2007GC001653 CrossRefGoogle Scholar
  100. Luo X, Vasseur G (1992) Contributions of compaction and aquathermal pressuring to geopressure and the influence of environmental conditions. AAPG Bull 76(10):1550–1559Google Scholar
  101. Masterlark T (2003) Finite element model predictions of static deformation from dislocation sources in a subduction zone: sensitivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions. J Geophys Res 108:2540. doi:10.1029/2002JB002296 CrossRefGoogle Scholar
  102. Masterlark T, Wang HF (2002) Transient stress-coupling between the 1992 Landers and 1999 Hector Mine, California, earthquakes. Bull Seis Soc Am 92:1470–1486CrossRefGoogle Scholar
  103. Masterlark T, DeMets C, Wang HF et al (2001) Homogeneous vs. heterogeneous subduction zone models: coseismic and postseismic deformation. Geophys Res Lett 28:4047–4050CrossRefGoogle Scholar
  104. Matmon D, Bekins BA (2006) Hydromechanics of a high taper angle, low-permeability prism: a case study from Peru. J Geophys Res 111, B07101. doi:10.1029/2005JB003697 CrossRefGoogle Scholar
  105. McKiernan AW, Saffer DM (2006) Data report: permeability and consolidation properties of subducting sediments off Costa Rica, ODP Leg 205. Proc ODP Sci Results 205:1–24. doi:10.2973/odp.proc.sr.205.203.2006 Google Scholar
  106. Mello UT, Karner GD, Anderson RN (1994) A physical explanation for the positioning of the depth to the top overpressure in shale-dominated sequences in the Gulf Coast basin, United States. J Geophys Res 99:2775–2789CrossRefGoogle Scholar
  107. Moore JC, Saffer DM (2001) Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: an effect of diagenetic to low-grade metamorphic processes and increasing effective stress. Geology 29:183–196CrossRefGoogle Scholar
  108. Moore GF, Taira A, Klaus A et al (2001) New insights into deformation and fluid flow processes in the Nankai Trough accretionary prism: results of Ocean Drilling Program Leg 190. Geochem Geophys Geosyst 2(10):1058. doi:10.129/2001GC000166 Google Scholar
  109. Moore GF, Bangs NL, Taira A (2007) Three dimensional splay fault geometry and implications for tsunami generation. Science 318:1128–1131CrossRefGoogle Scholar
  110. Moore TC (2008) Biogenic silica and chert in the Pacific Ocean. Geology 36:975–978CrossRefGoogle Scholar
  111. Moore TC, Mitchell NC, Lyle M (2007) Hydrothermal pits in the biogenic sediments of the equatorial Pacific Ocean. Geochem Geophys Geosyst 8, Q03015. doi:10.1029/2006GC001501 CrossRefGoogle Scholar
  112. Morency C, Huismans RS, Beaumont C, Fullsack P (2007) A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability. J Geophys Res 112, B10407. doi:10.1029/2006JB004701 CrossRefGoogle Scholar
  113. Morgan JK, Ask MVS (2004) Consolidation state and strength of underthrust sediments and evolution of the decollement at the Nankai accretionary margin: results of uniaxial reconsolidation experiments. J Geophys Res 109, B03102. doi:10.1029/2002JB002335 CrossRefGoogle Scholar
  114. Morris JD, Villinger HW, Klaus A et al (2003) Proc. of the ODP, initial reports, 205. doi:10.2973/odp.proc.ir.205.2003
  115. Neuzil CE (1986) Groundwater flow in low-permeability environments. Water Resour Res 22:1163–1195CrossRefGoogle Scholar
  116. Neuzil CE (1994) How permeable are clays and shales? Water Resour Res 30:145–150CrossRefGoogle Scholar
  117. Newman AV, Schwartz SY, Gonzalez V et al (2002) Along-strike variability in the seismogenic zone below Nicoya Peninsula, Costa Rica. Geophys Res Lett 29, 1977. doi:10.1029/2002GL015409 CrossRefGoogle Scholar
  118. Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82:1018–1040Google Scholar
  119. Okino K, Ohara Y, Kasuga S, Kato Y (1999) The Philippine Sea: new survey results reveal the structure and the history of the marginal basins. Geophys Res Lett 26:2287–2290CrossRefGoogle Scholar
  120. Osborne MJ, Swarbrick RE (1997) Mechanisms for generating overpressure in sedimentary basins: a reevaluation. AAPG Bull 81(6):1023–1041Google Scholar
  121. Perry E, Hower J (1970) Burial diagenesis in Gulf Coast pelitic sediments. Clays Clay Miner 18:165–177CrossRefGoogle Scholar
  122. Protti M, Gonzalez T, Kato T et al (2004) A creep event on the shallow interface of the Nicoya Peninsula, Costa Rica seismogenic zone. EOS Trans Am Geophys Union, Fall Meet Suppl 85, F1378Google Scholar
  123. Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America Trench. Nature 45:367–373CrossRefGoogle Scholar
  124. Ranero CR, Grevemeyer I, Sahling H et al (2008) Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem Geophys Geosyst 9, Q03S04. doi:10.1029/2007GC00167 CrossRefGoogle Scholar
  125. Roeloffs EA (1996) Poroelastic techniques in the study of earthquake-related hydrologic phenomena. Adv Geophys 37:135–195CrossRefGoogle Scholar
  126. Saffer DM (2003) Pore pressure development and progressive dewatering in underthrust sediments at the Costa Rican subduction margin: comparison with northern Barbados and Nankai. J Geophys Res 108, 2261. doi:10.1029/2002JB001787 CrossRefGoogle Scholar
  127. Saffer DM (2007) Pore pressure within underthrust sediments in subduction zones. In: Dixon T et al (eds) The seismogenic zone of subduction thrust faults. Columbia University Press, New York, pp 171-209Google Scholar
  128. Saffer DM, Bekins BA (1998) Episodic fluid flow in the Nankai accretionary complex: timescale, geochemistry, flow rates, and fluid budget. J Geophys Res 103:30351–30370CrossRefGoogle Scholar
  129. Saffer DM, McKiernan AW (2005) Permeability of underthrust sediments at the Costa Rican margin: scale dependence and implications for dewatering. Geophys Res Lett 32, L02302. doi:10.1029/2004GL021388 CrossRefGoogle Scholar
  130. Saffer DM, McKiernan AW (2009) Evaluation of in situ smectite dehydration as a pore water freshening mechanism in the Nankai Trough, offshore southwest Japan. Geochem Geophys Geosyst 10, Q02010. doi:10.1029/2008GC002226 CrossRefGoogle Scholar
  131. Saffer DM, Screaton EJ (2003) Fluid flow pathways at the toe of convergent margins: interpretation of sharp geochemical gradients. Earth Planet Sci Lett 213:261–270CrossRefGoogle Scholar
  132. Saffer DM, Silver EA, Fisher AT et al (2000) Inferred pore pressures at the Costa Rica subduction zone: implications for dewatering processes. Earth Planet Sci Lett 177:193–207CrossRefGoogle Scholar
  133. Saffer DM, Underwood MB, McKiernan AW (2008) Evaluation of factors controlling smectite transformation and fluid production in subduction zones: application to the Nankai Trough. Isl Arc 17:208–230. doi:10.1111/j.1440-1738.2008.00614.x CrossRefGoogle Scholar
  134. Sahling H, Masson DG, Ranero CR et al (2008) Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. Geochem Geophys Geosyst 9, Q05S05. doi:10.1029/2008GC00197 CrossRefGoogle Scholar
  135. Saito S, Goldberg D (2001) Compaction and dewatering processes of the oceanic sediments in the Costa Rica and Barbados subduction zones: estimates from in situ physical properties measurements. Earth Planet Sci Lett 191:283–293CrossRefGoogle Scholar
  136. Sawyer AH, Flemings P, Elsworth D, Kinoshita M (2008) Response of submarine hydrologic monitoring instruments to formation pressure changes: theory and application to Nankai advanced CORKs. J Geophys Res 113, B01102. doi:10.1029/2007JB005132 CrossRefGoogle Scholar
  137. Sawyer DE, Flemings PB, Dugan B, Germaine JT (2009) Retrogressive failures recorded in mass transport deposits in the Ursa Basin, Northern Gulf of Mexico. J Geophys Res 114, B10102. doi:10.1029/2008JB006159 CrossRefGoogle Scholar
  138. Schneider J, Flemings PB, Dugan B et al (2009) Overpressure and consolidation near the seafloor of Brazos-Trinity Basin IV, Northwest Deepwater Gulf of Mexico. J Geophys Res 114, B05102. doi:10.1029/2008JB005922 CrossRefGoogle Scholar
  139. Screaton EJ, Ge S (2007) Modeling of the effects of propagating thrust slip on pore pressures and implications for monitoring. Earth Planet Sci Lett 258:454–464. doi:10.1016/j.epsl.2007.04.004 CrossRefGoogle Scholar
  140. Screaton EJ, Saffer DM (2005) Fluid expulsion and overpressure development during initial subduction at the Costa Rica convergent margin. Earth Planet Sci Lett 233:361–374. doi:10.1016/j.epsl.2005.02.017 CrossRefGoogle Scholar
  141. Screaton EJ, Wuthrich DR, Dreiss S (1990) Permeability, fluid pressures, and flow rates in the Barbados ridge complex. J Geophys Res 95:8997–9007CrossRefGoogle Scholar
  142. Screaton EJ, Carson B, Lennon GP (1995) Hydrogeologic properties of a thrust fault within the Oregon Accretionary Prism. J Geophys Res 100:20025–20035CrossRefGoogle Scholar
  143. Screaton E, Fisher A, Carson B, Becker K (1997) Barbados ridge hydrogeologic tests: implications for fluid migration along an active decollement. Geology 25:239–242CrossRefGoogle Scholar
  144. Screaton E, Carson B, Davis E, Becker K (2000) Permeability of a decollement zone: results from a two-well experiment in the Barbados accretionary complex. J Geophys Res 105:21403–21410CrossRefGoogle Scholar
  145. Screaton E, Saffer DM, Henry P et al (2002) Porosity loss within the underthrust sediments of the Nankai accretionary complex: implications for overpressures. Geology 30:19–22CrossRefGoogle Scholar
  146. Screaton E, Hays T, Gamage K, Martin JM (2006) Data report: permeabilities of Costa Rica subduction zone sediments. Proc ODP Sci Results 205. doi:10.2973/odp.proc.sr.205.204.2006
  147. Screaton E, Kimura G, Curewitz D et al (2009) Interactions between deformation and fluids in the frontal thrust region of the NanTroSEIZE transect offshore the Kii Peninsula, Japan: results from IODP Expedition 316 Sites C0006 and C0007. Geochem Geophys Geosyst 10, Q0AD01. doi:10.1029/2009GC002713
  148. Shi Y, Wang CY (1988) Generation of high pore pressures in accretionary prisms: inferences from the Barbados subduction complex. J Geophys Res 93:8893–8910CrossRefGoogle Scholar
  149. Skarbek RM, Saffer DM (2009) Pore pressure development beneath the decollement at the Nankai subduction zone: implications for plate boundary fault strength and sediment dewatering. J Geophys Res 114, B07401. doi:10.1029/2008JB006205 CrossRefGoogle Scholar
  150. Solheim A, Berg K, Forsberg CF, Bryn P (2005) The Storegga Slide complex: repetitive large scale sliding with similar cause and development. Mar Petrol Geol 22:97–107CrossRefGoogle Scholar
  151. Solomon EA, Kastner M, Jannasch H et al (2008) Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope. Earth Planet Sci Lett 270:95–105CrossRefGoogle Scholar
  152. Solomon EA, Kastner M, Wheat G et al (2009) Long-term hydrogeochemical records in the oceanic basement and forearc prism at the Costa Rica subduction zone. Earth Planet Sci Lett 282:240–251CrossRefGoogle Scholar
  153. Spinelli G, Saffer DM (2004) Along-strike variations in underthrust sediment dewatering on the Nicoya margin, Costa Rica, related to the updip limit of seismicity. Geophys Res Lett 31, L04613. doi:10.1029/2003GL018863 CrossRefGoogle Scholar
  154. Spinelli GA, Wang K (2008) Effects of fluid circulation in subducting crust on Nankai margin seismogenic zone temperatures. Geology 36:887–890CrossRefGoogle Scholar
  155. Spinelli GA, Wang K (2009) Links between fluid circulation, temperature, and metamorphism in subducting slabs. Geophys Res Lett 36, L13302. doi:10.1029/2009GL038706 CrossRefGoogle Scholar
  156. Spinelli GA, Giambalvo ER, Fisher AT (2004) Sediment permeability, distribution, and influence on fluxes in oceanic basement. In: Davis EE, Elderfield H (eds) Hydrogeology of the oceanic lithosphere. Columbia Univ Press, New York, pp 151–188Google Scholar
  157. Spinelli G, Saffer DM, Underwood MB (2006) Hydrogeologic responses to three-dimensional temperature variability, Costa Rica subduction margin. J Geophys Res 111, B04403. doi:10.1029/2004JB003436 CrossRefGoogle Scholar
  158. Spivack AJ, Kastner M, Ransom B (2002) Elemental and isotopic chloride geochemistry and fluid flow in the Nankai Trough. Geophys Res Lett 29:1661. doi:10.1029/2001GL014122 CrossRefGoogle Scholar
  159. Stauffer P, Bekins BA (2001) Modeling consolidation and dewatering near the toe of the northern Barbados accretionary complex. J Geophys Res 106:6369–6383CrossRefGoogle Scholar
  160. Stein CA, Stein S (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J Geophys Res 99:3081–3095CrossRefGoogle Scholar
  161. Stigall J, Dugan B (2010) Overpressure and earthquake initiated slope failure in the Ursa Region, Northern Gulf of Mexico. J Geophys Res 115, B04101. doi:10.1029/2009JB006848
  162. Strout JM, Tjelta TI (2005) In situ pore pressures: What is their significance and how can they reliably measured? Mar Petrol Geol 22:275–285CrossRefGoogle Scholar
  163. Tobin HJ, Saffer DM (2009) Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough subduction zone. Geology 37:679–682. doi:10.1130/G25752A.1 CrossRefGoogle Scholar
  164. Tryon MD (2009) Monitoring aseismic tectonic processes via hydrologic responses: an analysis of log-periodic fluid flow events at the Costa Rica outer rise. Geology 37:163–166CrossRefGoogle Scholar
  165. Tryon M, Brown K, Dorman LR, Sauter A (2001) A new benthic aqueous flux meter for very low to moderate discharge rates. Deep Sea Res I 48:2121–2146. doi:10.1016/S0967-0637(01)00002-4 CrossRefGoogle Scholar
  166. Tsuji T, Tokuyama H, Costa Pisani P et al (2008) Effective stress and pore pressure in the Nankai accretionary prism off the Muroto Peninsula, southwestern Japan. J Geophys Res 113, B11401. doi:10.1029/2007JB005002 CrossRefGoogle Scholar
  167. Underwood MB (2007) Sediment inputs to subduction zones: why lithostratigraphy and clay mineralogy matter. In: Dixon TH, Moore JC (eds) The seismogenic zone of subduction thrusts. Columbia Univ. Press, New York, pp 42–85Google Scholar
  168. Underwood MB, Pickering K, Gieskes JM et al (1993) Sediment geochemistry, clay mineralogy, and diagenesis: a synthesis of data from Leg 131, Nankai Trough. Proc ODP Sci Results 131:343–363. doi:10.2973/odp.proc.sr.131.137.1993 Google Scholar
  169. Underwood MB, Saito S, Kubo Y et al (2009) NanTroSEIZE stage 2: subduction inputs. IODP Prel Rept 322, IODP, College, Station, TX. doi:10.2204/iodp.pr.322.2009
  170. Wang HF (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press, Princeton, NJ, 276 ppGoogle Scholar
  171. Wheat CG, Fisher AT (2008) Massive, low-temperature hydrothermal flow from a basaltic outcrop on 23 Ma seafloor of the Cocos Plate: chemical constraints and implications. Geochem Geophys Geosyst 9, Q12O14. doi:10.1029/2008GC002136 Google Scholar
  172. Wu YS, Lee CH, Yu JL (2008) Effects of hydraulic variables and well construction on horizontal borehole flowmeter measurements. Ground Water Monit Rem 1(28):65–74CrossRefGoogle Scholar
  173. Yamano M, Foucher JP, Kinoshita M et al (1992) Heat flow and fluid flow regime in the western Nankai accretionary prism. Earth Planet Sci Lett 109:451–462Google Scholar
  174. Yamano M, Kinoshita M, Goto S (2003) Extremely high heat flow anomaly in the middle part of the Nankai Trough. Phys Chem Earth 28:487–497Google Scholar
  175. Zwart G, Bruckmann W, Moran K et al (1997) Evaluation of hydrogeologic properties of the Barbados accretionary prism: a synthesis of Leg 156 results. Proc ODP Sci Results 156:303–310. doi:10.2973/odp.proc.sr.156.036.1997 Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Geological SciencesUniversity of FloridaGainesvilleUSA

Personalised recommendations