Hydrogeology Journal

, Volume 19, Issue 1, pp 101–115 | Cite as

Geochemical heterogeneity in a small, stratigraphically complex moraine aquifer system (Ontario, Canada): interpretation of flow and recharge using multiple geochemical parameters

  • Randy L. Stotler
  • Shaun K. Frape
  • Humam Taha El Mugammar
  • Craig Johnston
  • Ian Judd-Henrey
  • F. Edwin Harvey
  • Robert Drimmie
  • Jon Paul Jones
Report

Abstract

The Waterloo Moraine is a stratigraphically complex system and is the major water supply to the cities of Kitchener and Waterloo in Ontario, Canada. Despite over 30 years of investigation, no attempt has been made to unify existing geochemical data into a single database. A composite view of the moraine geochemistry has been created using the available geochemical information, and a framework created for geochemical data synthesis of other similar flow systems. Regionally, fluid chemistry is highly heterogeneous, with large variations in both water type and total dissolved solids content. Locally, upper aquifer units are affected by nitrate and chloride from fertilizer and road salt. Typical upper-aquifer fluid chemistry is dominated by calcium, magnesium, and bicarbonate, a result of calcite and dolomite dissolution. Evidence also suggests that ion exchange and diffusion from tills and bedrock units accounts for some elevated sodium concentrations. Locally, hydraulic “windows” cross connect upper and lower aquifer units, which are typically separated by a clay till. Lower aquifer units are also affected by dedolomitization, mixing with bedrock water, and locally, upward diffusion of solutes from the bedrock aquifers. A map of areas where aquifer units are geochemically similar was constructed to highlight areas with potential hydraulic windows.

Keywords

Heterogeneity Hydrochemistry Moraine Regional groundwater Canada 

Hétérogénéité géochimique dans un petit système aquifère de moraine stratigraphiquement complexe (Ontario, Canada) : interprétation des écoulements et de la recharge au moyen de paramètres géochimiques multiples

Résumé

La Moraine de Waterloo est un système stratigraphiquement complexe et fournit la principale alimentation en eau des villes de Kitchener et de Waterloo en Ontario, au Canada. Malgré plus de 30 ans d’investigation, il n’a pas été tenté d’unifier les données géochimiques existantes dans une base de données unique. On a créé une vue composite de la géochimie de la moraine en utilisant l’information géochimique disponible, et une structure pour la synthèse des données géochimiques de systèmes d’écoulement similaires. La chimie des fluides présente une forte hétérogénéité régionale, avec des variations importantes à la fois sur le type d’eau et le contenu en solides dissous totaux. Localement, les unités aquifères supérieures sont marquées par les nitrates et les chlorures des fertilisants et des sels pour les routes. La chimie des fluides de l’aquifère supérieure est classiquement dominée par le calcium, le magnésium, et les bicarbonates, ce qui résulte de la dissolution de la calcite et de la dolomie. Des indices suggèrent également que les échanges d’ions et la diffusion depuis les unités des tills ou du socle expliquent les concentrations élevées en sodium. Localement, des « fenêtres » hydrauliques raccordent les unités aquifères supérieures et inférieures, qui sont habituellement séparées par un till argileux. Les unités aquifères inférieures sont également affectées par la dédolomitisation, le mélange avec l’eau du socle, et localement, la diffusion ascendante des solutés depuis les aquifères de socle. Une carte des zones où les unités aquifères sont géochimiquement similaires a été construite pour mettre en évidence des secteurs à possibles fenêtres hydrauliques.

Heterogeneidad geoquímica en un sistema acuífero de una morena pequeña y estratigráficamente compleja (Ontario, Canadá): Interpretación de la recarga y flujo usando múltiples parámetros geoquímicos

Resumen

La morena de Waterloo es un sistema estratigráficamente complejo y es el principal proveedor de agua a las ciudades de Kitchener y Waterloo en Ontario, Canadá. A pesar de más de 30 años de investigación, no se ha hecho ningún intento para unificar los datos geoquímicos existentes en una base de datos única. Se ha desarrollado una visión abarcativa de la geoquímica de la morena usando la información geoquímica disponible, y se creó un marco de referencia para la síntesis de datos geoquímicos de otros sistemas de flujo similares. Regionalmente, la química de un fluido es altamente heterogénea, con grandes variaciones tanto en el tipo de agua como en el contenido total de sólidos disueltos. Localmente, las unidades acuíferas superiores están afectadas por nitratos y cloruros provenientes de fertilizantes y de cloruro de sodio. Típicamente la química del fluido del acuífero superior está dominado por el calcio, el magnesio, y el bicarbonato como resultado de la disolución de calcita y dolomita. La evidencia también sugiere que el intercambio iónico y la difusión a partir del till y de las unidades de la roca de base explican algunas concentraciones elevadas de sodio. Localmente, las “ventanas” hidráulicas entrecruzan las unidades superior e inferior de acuífero, las cuales están típicamente separadas por un till arcilloso. Las unidades acuíferas inferiores están también afectadas por la desdolomitización, la mezcla con aguas de la roca de base, y localmente, la difusión ascendente de solutos a partir de los acuíferos de la roca de base. Se construyó un mapa de áreas donde las unidades acuíferas son geoquímicamente similares para resaltar las áreas con ventanas hidráulicas potenciales.

一个复杂的小型冰碛含水层系统 (加拿大安大略) 的地球化学非均质性 : 用多种地球化学参数解译其径流与补给

摘要

滑铁卢冰碛含水层是一个复杂的含水层系统, 并且是加拿大安大略地区Kitchener 和滑铁卢市主要的供水源。尽管开展了30多年的调查, 却并没有将现存的地球化学数据统一于一个数据库中。本文利用已有的地球化学资料, 构建了可用于其它类似含水系统的冰碛地球化学数据分析框架。从区域上讲, 流体化学呈现高度非均质性, 水化学类型和矿化度均有很大的变化。从局部来讲, 上层含水层单元受到来自肥料和路盐带来的硝酸盐和氯化物的影响。作为钙和白云石溶解的结果, 典型的上层含水层流体化学离子主要以钙、镁、重碳酸根为主。证据还表明, 冰碛物与基岩的离子交换及扩散作用也是钠离子组分增加的原因。局部上, 上下含水层单元之间透过天窗发生水力联系, 中间通常被粘土冰碛物所隔开。下层含水层单元同时受到脱白云石化作用的影响, 混合了基岩水, 并受到了基岩含水层的溶质扩散作用的影响。绘制了一个地球化学特征相似的含水层区域分布图, 以突出经由天窗存在潜在水力联系的区域。

Heterogeneidade geoquímica num pequeno sistema aquífero estratigraficamente complexo, em moreias (Ontário, Canadá): Interpretação do fluxo e da recarga utilizando múltiplos parâmetros geoquímicos

Resumo

A Moreia de Waterloo é um sistema estratigraficamente complexo e é a principal origem de abastecimento de água para as cidades de Kitchener e Waterloo, em Ontário, no Canadá. Apesar de mais de 30 anos de investigação, nenhuma tentativa foi feita para juntar os dados geoquímicos existentes numa única base de dados. Foi criada uma visão global da geoquímica das moreias utilizando a informação geoquímica disponível, e foi criado um quadro-síntese de dados geoquímicos para outros sistemas de fluxo similares. Em termos regionais, a hidroquímica é altamente heterogénea, com grandes variações nos tipos de água, assim como no teor de sólidos dissolvidos totais. Localmente, as unidades aquíferas superiores são afectadas por nitratos e cloretos de fertilizantes e sal das estradas. A hidroquímica dos aquíferos superiores é tipicamente dominada por cálcio, magnésio e bicarbonato, provenientes da dissolução de calcite e dolomite. Os dados também sugerem que a troca iónica e a difusão nos sedimentos glaciares e na rocha mãe contribuem para algumas ocorrências de concentrações elevadas de sódio. Localmente, "janelas" hidráulicas fazem a ligação entre as unidades aquíferas superiores e inferiores, que tipicamente são separadas por um material glaciar argiloso. As unidades aquíferas inferiores são também afectadas por desdolomitização, mistura com água da rocha mãe, e, localmente, por difusão ascendente de solutos dos aquíferos formados na rocha mãe. Foi realizado um mapa das áreas com unidades aquíferas geoquimicamente similares, para identificar as áreas com potenciais janelas hidráulicas.

Supplementary material

10040_2010_628_MOESM1_ESM.pdf (81 kb)
ESMGeochemical heterogeneity in small stratigraphically complex moraine aquifer system (Ontario, Canada): Interpretation of flow and recharge using multiple goechemical parameters; Stotler, Frape, el Mugammar, Johnston, Judd-Henrey, Harvey, Drimmie, Jones (PDF 80 kb)

References

  1. American Public Health Association (1990) In: Clesceri LS, Greenberg AE, Trussell RR (eds) Selected physical and chemical standard methods for students: based on standard methods for the examination of water and wastewater, 17th edn. Port City, Baltimore, MDGoogle Scholar
  2. Andrews JN, Lee DJ (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and paleoclimate trends. J Hydrol 41:233–252CrossRefGoogle Scholar
  3. Appel CAJ, Postma D (1996) Geochemistry, groundwater, and pollution. Balkema, Rotterdam, The NetherlandsGoogle Scholar
  4. Back W (1960) Origin of hydrochemical facies of ground water in the Atlantic Coastal Plain. Report, part 1, 21st International Geological Congress, Copenhagen, 1960, pp 87–95Google Scholar
  5. Back W, Hanshaw BB, Plummer LN, Rahn PH, Rightmire CT, Rubin M (1983) Process and rate of dedolomitization: mass transfer and 14C dating in a regional carbonate aquifer. Geol Soc Am Bull 94:1415–1429CrossRefGoogle Scholar
  6. Back W, Baedecker MJ, Wood WW (1993) Scales in chemical hydrogeology: a historical perspective. In: Alley WM (ed) Regional ground water quality. Wiley, New York, pp 111–129Google Scholar
  7. Bester M (2002) Numerical simulation of road salt impact at the Greenbrook Well Field, Kitchener, Ontario. MSc Thesis, University of Waterloo, CanadaGoogle Scholar
  8. Bester MJ, Frind EO, Molson JW, Rudolph DL (2006) Numerical investigation of road salt impact on an urban wellfield. Ground Water 44(2):166–175CrossRefGoogle Scholar
  9. Bethke CM, Johnson TM (2002a) Paradox of groundwater age. Geology 30:107–110CrossRefGoogle Scholar
  10. Bethke CM, Johnson TM (2002b) Ground water age (technical commentary). Ground Water 40:337–339CrossRefGoogle Scholar
  11. Blicher-Mathiesen G, McCarty GW, Nielsen LP (1998) Denitrification and degassing in groundwater estimated from dissolved di-nitrogen and argon. J Hydrol 208:16–24CrossRefGoogle Scholar
  12. Bredehoeft JD, Neuzil CE, Milly PCD (1983) Regional flow in the Dakota aquifer: a study of the role of confining layers. US Geol Surv Water Suppl Pap 2237Google Scholar
  13. Busby JF, Plummer LN, Lee RW, Hanshaw BB (1990) Geochemical evolution of water in the Madison aquifer in parts of Montana, South Dakota, and Wyoming. US Geol Surv Water Suppl Pap 83-4093Google Scholar
  14. Butler JJ Jr (1998) The design, performance, and analysis of slug tests. Lewis, Boca Raton, FL, 252 ppGoogle Scholar
  15. Chapman LJ, Putnam DF (1984) The physiography of southern Ontario, 3rd edn. OGS Spec. vol 2, Ontario Geological Survey, Ottawa, ONGoogle Scholar
  16. Coleman ML, Shepherd TJ, Durham JJ, Rouse J, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995CrossRefGoogle Scholar
  17. Craig H, Lupton JE (1981) Helium-3 and mantle volatiles in the ocean and the oceanic crust. In: Emiliani C (ed) The sea: ideas and observations on progress in the study of the seas, vol 7. Wiley, New York, pp 391–428Google Scholar
  18. Dixon VR (1973) Kitchener-Waterloo groundwater evaluation. International Water Supply, Kitchener, ONGoogle Scholar
  19. Dollar PS, Frape SK, McNutt RH (1991) Geochemistry of formation waters, southwestern Ontario, Canada and southern Michigan, U.S.A.: implications for origin and evolution. Ontario Geol Surv Open File Rep 5743Google Scholar
  20. Eggenkamp HGM (1994) The geochemistry of chlorine isotopes. PhD Thesis, Utrecht University, The NetherlandsGoogle Scholar
  21. Epstein S, Mayeda TK (1953) Variations of the 18O/16O ratio in natural waters. Geochim Cosmochim Acta 50:1561–1563Google Scholar
  22. Fritz P, Lapcevic PA, Miles M, Frape SK, Lawson DE, O’Shea KJ (1988) Stable isotopes in sulphate minerals from the Salina Formation in southwestern Ontario. Can J Earth Sci 25:195–205Google Scholar
  23. Fritz SJ, Drimmie RJ, Fritz P (1991) Characterizing shallow aquifers using tritium and 14C: periodic sampling based on tritium half-life. Appl Geochem 6:17–33CrossRefGoogle Scholar
  24. Gautrey SJ (1996) The hydrostratigraphy of the Waterloo Moraine. MSc Project Report, University of Waterloo, Canada, 308 ppGoogle Scholar
  25. Gerber RE, Howard KWF (1996) Evidence for recent groundwater flow through Late Wisconsinan till near Toronto, Ontario. Can Geotech J 33:538–555CrossRefGoogle Scholar
  26. Gerber RE, Howard K (2000) Recharge through a regional till aquitard: three-dimensional flow model water balance approach. Ground Water 38(3):410–422CrossRefGoogle Scholar
  27. Gerber RE, Howard K (2002) Hydrogeology of the Oak Ridges Moraine aquifer system: implications for protection and management from the Duffins Creek watershed. Can J Earth Sci 39:1333–1348CrossRefGoogle Scholar
  28. Gerber RE, Boyce JI, Howard KWF (2001) Evaluation of heterogeneity and field-scale groundwater flow regime in a leaky till aquitard. Hydrogeol J 9:60–78CrossRefGoogle Scholar
  29. Hancox J, Gárfias J, Aravena R, Rudolph D (2010) Assessing the vulnerability of over-exploited volcanic aquifer systems using multi-parameter analysis, Toluca Basin, Mexico. Environ Earth Sci 59(8):1643–1660CrossRefGoogle Scholar
  30. Hart DJ, Bradbury KR, Feinstein DT (2006) The vertical hydraulic conductivity of an aquitard at two spatial scales. Ground Water 44(2):201–211CrossRefGoogle Scholar
  31. Heaton THE, Talma AS, Bogel JC (1983) Origin and history of nitrate in confined ground water in the western Kalahari. J Hydrol 62:243–262CrossRefGoogle Scholar
  32. Hendry MJ, Wassenaar LI (2009) Inferring heterogeneity in aquitards using high-resolution δD and δ18O profiles. Ground Water 47(5):639–645CrossRefGoogle Scholar
  33. Hendry MJ, Wassenaar LI, Kotzer T (2000) Chloride and chlorine isotopes (36Cl and δ37Cl) as tracers of solute migration in a thick, clay-rich aquitard system. Water Resour Res 36(1):285–296CrossRefGoogle Scholar
  34. Hendry MJ, Kotzer TG, Solomon DK (2005) Sources of radiogenic helium in a clay till aquitard and its use to evaluate the timing of geologic events. Geochim Cosmochim Acta 69(2):475–483CrossRefGoogle Scholar
  35. Johnston CT, Cook PG, Frape SK, Plummer LN, Busenberg E, Blackport RJ (1998) Ground water age and nitrate distribution within a glacial aquifer beneath a thick unsaturated zone. Ground Water 36:171–180CrossRefGoogle Scholar
  36. Karrow PF (1968) Pleistocene geology of the Guelph area, southern Ontario. Geological report 61, Ontario Department of Mines, TorontoGoogle Scholar
  37. Karrow PF (1993) Quaternary geology, Stratford-Conestogo area. Report 283, Ontario Geological Survey, Ottawa, ON Google Scholar
  38. Karrow PF, Cowan WR, Dreimanis A, Singer SN (1978). Middle Wisconsinan stratigraphy in southern Ontario. In: Toronto ’78, field trips guidebook. Geological Association of Canada-Geological Society of America -Mineralogical Association of Canada: GAC, Ottawa, ON; GSA, Boulder, CO; MAC, Quebec, QC, pp 17–27Google Scholar
  39. Kennedy CD, Genereux DP (2007) 14C groundwater age and the importance of chemical fluxes across aquifer boundaries in confined Cretaceous aquifers of North Carolina, USA. Radiocarbon 49(3):1181–1203Google Scholar
  40. Kruseman GP, de Ridder NA (1990) Analysis and evaluation of pumping test data, ILRI Pub. 47, The Netherlands, Inst. for Land Reclamation and Improvement, Wageningen, The Netherlands Google Scholar
  41. Lacombe S, Sudicky EA, Frape SK, Unger AJA (1995) Influence of leaky boreholes on cross-formational groundwater-flow and contaminant transport. Water Resour Res 31(8):1871–1882CrossRefGoogle Scholar
  42. Lebbe L, Van Meir N (2000) Hydraulic conductivities of low permeability sediments inferred from a triple pumping test and observed vertical gradients. Ground Water 38:76–88CrossRefGoogle Scholar
  43. Lotimer AR (1985) Groundwater flow in a multiple aquifer system at Kitchener, Ontario. MSc, University of Waterloo, CanadaGoogle Scholar
  44. Martin PJ, Frind EO (1998) Modeling a complex multi-aquifer system: the Waterloo Moraine. Ground Water 36:679–690CrossRefGoogle Scholar
  45. Meriano M, Eyles N (2003) Groundwater flow through Pleistocene glacial deposits in the rapidly urbanizing Rouge River-Highland Creek watershed, City of Scarborough, southern Ontario, Canada. Hydrogeol J 11:288–303CrossRefGoogle Scholar
  46. Meyer JR, Parker BL, Cherry JA (2008) Detailed hydraulic head profiles as essential data for defining hydrogeologic units in layered fractured sedimentary rock. Environ Geol 56:27–44CrossRefGoogle Scholar
  47. O’Shea KJ, Miles MC, Fritz P, Frape SK, Lawson DE (1988) Oxygen-18 and carbon-13 in the carbonates of the Salina formation of southwestern Ontario. Can J Earth Sci 25:182–194Google Scholar
  48. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99-4259Google Scholar
  49. Plummer LN, Busby JF, Lee RW, Hanshaw BB (1990) Geochemical modeling of the Madison Aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour Res 26:1981–2014CrossRefGoogle Scholar
  50. Poreda RJ, Cerling TE, Solomon DK (1988) Tritium and helium isotopes as hydrologic tracers in a shallow unconfined aquifer. J Hydrol 103:1–9Google Scholar
  51. Postma D, Boesen C, Kristiansen H, Larsen F (1991) Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling. Water Resour Res 27:2027–2045CrossRefGoogle Scholar
  52. Revesz K, Woods PH (1990) A method to extract soil water for stable isotope analysis. J Hydrol 115:397–406CrossRefGoogle Scholar
  53. Rison W, Craig H (1983) Helium isotopes and mantle volatiles in Loihi Seamount and Hawaiian Island basalts and xenoliths. Earth Planet Sci Lett 66:407–426Google Scholar
  54. RMOW (2007) Water supply strategy update, technical memo #2: present and short-term future water supply. Regional Municipality of Waterloo, Waterloo, ONGoogle Scholar
  55. RMOW (2009) Planning information bulletin, 2008 Year-end population and household estimates. Regional Municipality of Waterloo, Waterloo, ONGoogle Scholar
  56. Rodvang JS (1987) Geochemistry of the weathered zone of a fractured clayey deposit in southwestern Ontario. MSc Project, University of Waterloo, CanadaGoogle Scholar
  57. Rudolph DL (1985) A quasi three-dimensional finite element model for steady-state analysis of multi-aquifer systems. MSc Thesis, University of Waterloo, CanadaGoogle Scholar
  58. Rudolph DL, Cherry JA, Farvolden RN (1991) Groundwater flow and solute transport in fractured lacustrine clay near Mexico City. Water Resour Res 27:2187–2201CrossRefGoogle Scholar
  59. Shakur MA (1982) δ34S and δ18O variations in terrestrial sulfates. PhD Thesis, Univ. Calgary, CanadaGoogle Scholar
  60. Sheldon AL, Solomon DK, Poreda RJ, Hunt A (2003) Radiogenic helium in shallow groundwater within a clay till, southwestern Ontario. Water Resour Res 39, 1331. doi:10.1029/2002WR001797
  61. Solomon DK (2000) 4He in Groundwater. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 425–438Google Scholar
  62. Stotler RL, Jones JP, Frape SK, Drimmie RJ, Johnston CT, Judd-Henery I (2005) Urbanization of rural watersheds in the Region of Waterloo: implications for water quality. In: Thompson NR (ed) Bringing groundwater quality to the watershed scale. IAHS Publ. 297, IAHS, Wallingford, UK, pp 29–35Google Scholar
  63. Taylor CB (1977) Tritium enrichment of environmental waters by electrolysis: development of cathodes exhibiting high isotopic separation and precise measurement of tritium enrichment factors. In: Proc. of the Int. Conf. of Low-Radioactivity Measurements and Applications, Slovenski Pedagogicke Nakladatelstvo, Bratislava, Slovakia, 1977, pp 131–140Google Scholar
  64. Van Beek CGEM, Van Der Kooij D (1982) Sulfate-reducing bacteria in groundwater from clogging and nonclogging shallow wells in the Netherlands river region. Ground Water 20:298–302CrossRefGoogle Scholar
  65. Van Beek CGEM, Boukes H, van Rijsbergen D, Straatman R (1988) The threat to the Netherlands waterworks by nitrate in the abstracted groundwater, as demonstrated on the well field Vierlingsbeek. Water Supply 6:313–318Google Scholar
  66. Van der Kamp G (2001) Methods for determining the in situ hydraulic conductivity of shallow aquitards: an overview. Hydrogeol J 9:5–16CrossRefGoogle Scholar
  67. Vengosh A, Hendry MJ (2001) Chloride-bromide-δ11B systematics of a thick clay-rich aquitard system. Water Resour Res 37(5):1437–1444CrossRefGoogle Scholar
  68. Vogel JC, Talma AS, Heaton THE (1981) Gaseous nitrogen as evidence for denitrification in groundwater. J Hydrol 50:191–200CrossRefGoogle Scholar
  69. Wassenaar LI, Hendry MJ (2000) Mechanisms controlling the distribution and transport of 14C in a clay-rich till aquitard. Ground Water 38(3):343–349CrossRefGoogle Scholar
  70. Wilson GB, Andrews JN, Bath AH (1990) Dissolved gas evidence for denitrification in the Lincolnshire Limestone groundwaters, eastern England. J Hydrol 113:51–60CrossRefGoogle Scholar
  71. Woeller RM (1983) Greenbrook wellfield management study 1981–1982. MSc Thesis, University of Waterloo, CanadaGoogle Scholar
  72. Yanagisawa F, Sakai H (1983) Thermal decomposition of barium sulfate vanadium pentaoxide silica glass mixtures for preparation of sulfur-dioxide in sulfur isotope ratio measurements. Anal Chem 55:985–987CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Randy L. Stotler
    • 1
    • 5
  • Shaun K. Frape
    • 1
  • Humam Taha El Mugammar
    • 1
  • Craig Johnston
    • 2
  • Ian Judd-Henrey
    • 3
  • F. Edwin Harvey
    • 4
  • Robert Drimmie
    • 1
  • Jon Paul Jones
    • 1
  1. 1.Department of Earth and Environmental SciencesUniversity of WaterlooOntarioCanada
  2. 2.Stantec Consulting Ltd.KitchenerCanada
  3. 3.Saskatchewan Research CouncilSaskatoonCanada
  4. 4.School of Natural ResourcesUniversity of Nebraska LincolnLincolnUSA
  5. 5.Kansas Geological SurveyUniversity of KansasLawrenceUSA

Personalised recommendations