Advertisement

Hydrogeology Journal

, Volume 18, Issue 7, pp 1611–1623 | Cite as

Groundwater-level response to land-use change and the implications for salinity management in the West Moorabool River catchment, Victoria, Australia

  • Peter G. DahlhausEmail author
  • Timothy J. Evans
  • Erica L. Nathan
  • Jim W. Cox
  • Craig T. Simmons
Paper

Abstract

The connection between the removal of native vegetation, rising water tables and increasing stream salinity has been established for many catchments across Australia. However, the West Moorabool River in south west Victoria is an example of a catchment where there has been little discernable effect on groundwater levels following land clearing. Over the past 150 years, a significant portion of the catchment has been cleared of dense forest for agricultural development. Historic standing water-level records from 1870–1871 and 1881 are compared with contemporary measurements (1970s to 2007) recorded in the government bore databases. The data show that the earliest recorded groundwater levels are well within the seasonal range of values observed today. By integrating geology and hydrogeology with historical observations of groundwater levels, climate data and land use, the contemporary field observations of stream salinity are linked to the changed water use and shift in rainfall. In contrast to the normally accepted axiom, reafforestation as a management strategy to mitigate the rising salinity in the West Moorabool River catchment would seem inappropriate.

Keywords

Salinization Land use Environmental history Australia 

Réponse piézométrique à une nouvelle occupation du sol et incidences sur le contrôle de la salinité, bassin versant Ouest de la rivière Moorabool, Victoria, Australie

Résumé

La relation entre disparition de la végétation primitive, montée des nappes libres et salinité croissante du cours d’eau a été établie sur de nombreux bassins versants australiens. Toutefois, la riviere West Moorabool, Sud-Ouest de l’état de Victoria, est un exemple de bassin où le déboisement n’a eu que très peu d’effet sensible sur les niveaux de nappe. Au cours des 150 dernières années, une partie considérable du bassin versant a été déboisée pour le développement agricole. On a comparé des chroniques piézométriques des années 1870–1871 et 1881 avec des mesures récentes (années 1970 à 2007), enregistrées dans les banques de données gouvernementales. Les données montrent que les niveaux de nappe les plus anciennement enregistrés sont bien dans les limites des valeurs saisonnières observées aujourd’hui. En combinant géologie, hydrogéologie, chroniques piézométries, données climatiques et utilisation du sol, on observe que la salinité actuelle du cours d’eau est liée aux nouveaux usages de l’eau et à la modification du régime des précipitations. Contrairement à l’axiome couramment accepté, la reforestation comme moyen stratégique de gestion pour atténuer la salinité croissante du bassin versant Ouest de la riviere Moorabool semblerait inapproprié.

Respuestas de los niveles de aguas subterráneas al cambio del uso de la tierra y las implicancias para el manejo de la salinidad en la cuenca del Río West Moorabool, Victoria, Australia

Resumen

La conexión entre la eliminación de la vegetación nativa, el ascenso de los niveles freáticos y e incremento en la salinidad de la corriente han sido establecidos para muchas cuencas a través de Australia. Sin embargo, el Río West Moorabool en el sudoeste de Victoria es un ejemplo de una cuenca donde han existido efectos pocos discernibles en los niveles de aguas subterráneas subsecuentes a los desmontes. Durante los últimos 150 años una porción significativa de la cuenca ha sido desmontada de una forestación densa para el desarrollo de la agricultura. Se compararon los registros históricos establecidos niveles de agua desde 1870–1871 y 1881 con mediciones contemporáneas (1970 a 2007) registradas en las bases de datos gubernamentales de pozos. Los datos muestran que los primitivos de niveles de agua subterránea registrados están bien dentro del intervalo estacional de los valores observados en la actualidad. Integrando la geología e hidrogeología con observaciones históricas de niveles de aguas subterráneas, datos climáticos y de uso de la tierra, las observaciones de campo contemporáneas de salinidad de la corriente se vincularon a cambios del uso del agua y a desplazamientos en la precipitación. En contraste con el axioma normalmente aceptado, la reforestación como una estrategia de gestión para mitigar la creciente salinidad en la cuenca del Río West Moorabool parecería ser inapropiado.

地下水位对土地利用变化的响应及其对澳大利亚维多利亚 (Victoria) 西Moorabool河流域盐度控制的启示

摘要

在澳大利亚的许多流域已经找到了清除原生植被、地下水位抬升及河水盐度增加之间的联系。然而, 维多利亚西南部的西Moorabool河是地下水位受植被消除影响辨识度较低的典型流域。在过去的150年, 流域内相当一部分地区, 大片的森林因农业开垦而消失。利用政府钻井数据库的资料, 将1870–1871 和 1881年记录的数据与现代 (1970s到 2007) 的观测数据进行对比。结果表明, 早期记录的地下水位与现代观测的地下水位季节变化相符。结合地下水位历史观测的地质和水文地质资料、将气候和土地利用资料以及现代实地测量的河水盐度数据与水利用和降雨的变化联系了起来。与常规认识不同的是, 在西Moorabool河将重新植树作为一个管理政策以缓和盐度的增加, 看起来并不是一个良策。1

Resposta do nível das águas subterrâneas às alterações do uso do solo e implicações para a gestão de salinidade na bacia ocidental do Rio Moorabool, Vitória, Austrália

Resumo

A ligação entre a supressão da vegetação nativa, a subida dos níveis da água subterrânea e o incremento na salinidade nos cursos de água, tem sido estabelecida para muitas bacias hidrográficas em toda a Austrália. No entanto, o Rio Moorabool, no sudoeste de Vitória é um exemplo de uma bacia hidrográfica onde houve um efeito pouco perceptível sobre os níveis das águas subterrâneas após a desflorestação. Ao longo dos últimos 150 anos, uma parcela considerável da bacia hidrográfica perdeu parte da densa floresta para o desenvolvimento agrícola. Registos históricos do nível de água dos anos de 1870–1871 e 1881 foram comparados com as medições contemporâneas (1970 a 2007), registados em base de dados governamental. Os dados mostram que os primeiros registos dos níveis das águas subterrâneas se encontram dentro do intervalo sazonal dos valores observados na actualidade. Ao integrar a geologia e hidrogeologia com as observações históricas dos níveis das águas subterrâneas e com dados climáticos e usos do solo, as observações de campo contemporâneas da salinidade no curso de água revelam que estas alterações de salinidade estão ligadas às alterações do uso da água e a alterações nos valores de precipitação. Em contraste com o axioma normalmente aceite, a reflorestação como estratégia de gestão para mitigação do aumento da salinidade parece ser inadequada na bacia ocidental do rio Moorabool.

Notes

Acknowledgements

The authors thank Chris Smitt for processing the stream gauging data; June and Roy Huggins, and Ron Trigg for assistance with locating the historical data; Central Highlands Water for the Lal Lal Reservoir EC data, and Southern Rural Water for additional bore monitoring data. The Corangamite Catchment Management Authority provided funding for the research. William Milne-Home and two anonymous reviewers are thanked for their contributions to improving the manuscript.

References

  1. ADWG (2004) Australian Drinking Water Guidelines 6. National Water Quality Management Strategy. National Health and Medical Research Council and Natural Resource Management Ministerial Council, Australian Government, SydneyGoogle Scholar
  2. BoM (2002) Evapotranspiration data: mean monthly and mean annual. Bureau of Meteorology, National Climate Centre, Melbourne, Victoria, Australia, on CDGoogle Scholar
  3. BoM (2009) Historical rainfall records for station 087046 Mount Boninyong (Scotsburn) and station 087045 Moorabool Reservoir. Bureau of Meteorology, Victoria, Australia. http://www.bom.gov.au/climate/data/weather-data.shtml. Cited 19 August 2009
  4. CHW (2007) Annual report 2006/07. Central Highlands Water, Ballarat, AustraliaGoogle Scholar
  5. Clark ID (1990) Aboriginal languages and clans: an historical atlas of western and central Victoria, 1800–1900. Monash Publ. in Geography 37, Monash University, Clayton, 448 ppGoogle Scholar
  6. CoAG (2000) Our vital resources: a national action plan for salinity and water quality. Council of Australian Governments, Commonwealth of Australia, Canberra, 12 ppGoogle Scholar
  7. Cox JW, Dahlhaus PG, Herczeg AL, Crosbie R, Davies P, Dighton J (2007) Defining groundwater flow systems on the volcanic plains to accurately assess the risks of salinity and impacts of changed landuse. Report, CSIRO Land and Water, Adelaide, Australia, 71 ppGoogle Scholar
  8. DSE (2005) Index of stream condition: the second benchmark of Victorian river condition. Department of sustainability and environment, Melbourne, AustraliaGoogle Scholar
  9. DSE (2008) CIP basic level quality assurance report, DEM, 2007–8 South West Region, Corangamite areas 1,2,4 and 5. Department of Sustainability and Environment, Melbourne, AustraliaGoogle Scholar
  10. Dunn EJ (1888) Report on the Ballarat and Ballarat East Water Reserves. Reports of the Mining Registrars, Melbourne, Victoria Quarter ended 30th June, 1888, pp 68–70Google Scholar
  11. Evans TJ (2006) Geology and groundwater flow systems in the West Moorabool River Catchment and their relation to river salinity. MSc Thesis, University of Technology Sydney, Australia, 124 ppGoogle Scholar
  12. Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. University of New South Wales Press, Sydney, 526 ppGoogle Scholar
  13. GSV (2008) 1:250,000 Seamless geology GIS layer for Western Victoria. Victorian Geoscientific Data Package (on DVD), GeoScience Victoria, Department of Primary Industries, Melbourne, AustraliaGoogle Scholar
  14. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, New YorkGoogle Scholar
  15. Hatton TJ (2003) Engineering our way forward through Australia’s salinity challenge. Aust J Water Resour 7(1):13–21Google Scholar
  16. Holdgate GR, Wallace MW, Gallagher SJ, Witten RB, Stats B, Wagstaff BE (2006) Cenozoic fault control on ′deep lead′ palaeoriver systems, Central Highlands, Victoria. Aust J Earth Sci 53(3):445–468CrossRefGoogle Scholar
  17. Jolly ID, Williamson DR, Gilfedder M, Walker GR, Morton R, Robinson G, Jones H, Zhang L, Dowling TI, Dyce P, Nathan RJ, Nandakumar N, Clarke R, McNeill V (2001) Historical stream salinity trends and catchment salt balances in the Murray-Darling Basin, Australia. Mar Freshw Res 52:53–63CrossRefGoogle Scholar
  18. Krause FM (1870a) Geological survey of country in the Parishes of Bungaree and Warrenheip. Sheet No. 1 SW Ballarat and Ballarat East Water Supply, Water Supply Committee, Ballarat, AustraliaGoogle Scholar
  19. Krause FM (1870b) Geological survey of country in the parishes of Bungaree and Warrenheip. Sheet No. 3 SE Ballarat and Ballarat East Water Supply, Water Supply Committee, Ballarat, AustraliaGoogle Scholar
  20. Krause FM (1871a) Geological survey of country in the Parishes of Bungaree and Dean. Sheet No. 5 SE Ballarat and Ballarat East Water Supply, Water Supply Committee, Ballarat, AustraliaGoogle Scholar
  21. Krause FM (1871b) Geological survey of country in the Parishes of Bungaree and Warrenheip. Sheet No. 4 NE Ballarat and Ballarat East Water Supply, Water Supply Committee, Ballarat, AustraliaGoogle Scholar
  22. Learmonth T (1853) Letter to Lieutenant-Governor Charles LaTrobe from Thomas Learmonth, Buninyong, 11th August 1853. In: Bride TF (ed) Letters from Victorian pioneers. Heinemann, Melbourne, AustraliaGoogle Scholar
  23. McNiven IJ, David B, Lourandos H (1999) Long-term aboriginal use of western Victoria: reconsidering the significance of recent Pleistocene dates for the Grampians-Gariwerd region. Archaeol Oceania 34:83–85Google Scholar
  24. Morton R (1997) Semi-parametric models for trends in stream salinity. Report Number CMIS 97/71, CSIRO Mathematical and Information Sciences, Canberra, AustraliaGoogle Scholar
  25. Nathan E (2004) Lost waters of West Moorabool: a history of a community and its catchment. PhD Thesis, The University of Melbourne, Australia, 361 ppGoogle Scholar
  26. Nathan E (2007) Lost waters: a history of a troubled catchment. Academic Monograph Series, Melbourne University Press, Melbourne, AustraliaGoogle Scholar
  27. Nicholson C, Dahlhaus PG, Anderson G, Kelliher CK, Stephens M (2006) Corangamite salinity action plan: 2005–2008. Corangamite Catchment Management Authority, Colac, AustraliaGoogle Scholar
  28. Peck AJ, Williamson DR (1987) Effects of forest clearing on groundwater. J Hydrol 94(1/2):47–65CrossRefGoogle Scholar
  29. Rancic A, Acworth I (2008) The relationship between the 1947 shift in climate and the expansion of dryland salinity on the western slopes of the Great Dividing Range in NSW. Salinity, water and society—global issues, local action. 2nd International Salinity Forum, Adelaide, South Australia, 31 March–3 April 2008Google Scholar
  30. Schofield NJ, Ruprecht JK (1989) Regional analysis of stream salinisation in south-west Western Australia. J Hydrol 112:19–39CrossRefGoogle Scholar
  31. Schofield NJ, Bari MA, Bell DT, Boddington WJ, George RJ, Pettit NE (1991) The role of trees in land and stream salinity control in Western Australia. The role of trees in sustainable agriculture, a national conference, Albury, NSW, 30 Sept 30–3 Oct 1991. 21–43 ppGoogle Scholar
  32. SKM (2004) Moorabool River Water Resource Assessment. Report prepared for the Corangamite Catchment Management Authority. Sinclair Knight Merz, Armadale, AustraliaGoogle Scholar
  33. Smitt CM, Cox JW, Dahlhaus PG (2005) Defining a framework for managing saline dependent and affected ecosystems: Glenelg Hopkins CMA case study. Where waters meet, NZHS-IAH-NZSSS Auckland 2005 Conference, Auckland, New Zealand, 28 November–2 December 2005Google Scholar
  34. Taylor DH, Gentle LV (2002) Evolution of deep-lead palaeodrainages and gold exploration at Ballarat, Australia. Aust J Earth Sci 49(5):869–878CrossRefGoogle Scholar
  35. Taylor DH, Whitehead ML, Olshina A, Leonard JG (1996) Ballarat 1:100 000 map geological report. Geological Survey of Victoria Report 101, Energy and Minerals Victoria, Melbourne, Australia, 99 ppGoogle Scholar
  36. Walker G, Zhang L, Dawes W, Gilfedder M, Brown A, Hickel K, Evans R (2007) Flow and salinity impacts of afforestation in upland dryland catchments: perspectives from the “Catchment Characterisation” project 2000–2004. CSIRO Land and Water Science Report 13/07. CSIRO, Adelaide, AustraliaGoogle Scholar
  37. Williamson DR, Stokes RA, Rupprecht JK (1987) Response of input and output of water and chloride to clearing for agriculture. J Hydrol 94:1–28CrossRefGoogle Scholar
  38. Withers WB (1887) The history of Ballarat from the first pastoral settlement to the present time. Facsimilie edn., 1980, 2nd edn. Queensberry Hill, Carlton, AustraliaGoogle Scholar
  39. Wood WE (1924) Increase of salt in soil and streams following the destruction of native vegetation. J R Soc West Aust 10(7):35–47Google Scholar
  40. Yates H (1954) The basalt and granite rocks of the Ballarat district. Proc R Soc Vic 66:63–102Google Scholar
  41. Zhang L, Vertessy R, Walker G, Gilfedder M, Hairsine P (2007) Afforestation in a catchment context: understanding the impacts on water yield and salinity. Industry report 1/07. eWater CRC, Melbourne, AustraliaGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Peter G. Dahlhaus
    • 1
    Email author
  • Timothy J. Evans
    • 2
  • Erica L. Nathan
    • 3
  • Jim W. Cox
    • 4
  • Craig T. Simmons
    • 5
  1. 1.School of Science and EngineeringUniversity of BallaratBallaratAustralia
  2. 2.Terra GeoScience Pty LtdRingwoodAustralia
  3. 3.Faculty of EducationUniversity of TasmaniaHobartAustralia
  4. 4.Water Resources and Irrigated CropsSouth Australian Research and Development InstituteAdelaideAustralia
  5. 5.School of the Environment and National Centre for Groundwater Research and TrainingFlinders UniversityAdelaideAustralia

Personalised recommendations