Hydrogeology Journal

, Volume 18, Issue 6, pp 1343–1356 | Cite as

Relation of tectonic structure to groundwater flow in the Beypazari region, NW Anatolia, Turkey

Paper

Abstract

The Beypazari region in NW Anatolia (Turkey) is characterized by high water demand and stress on available water resources. Tectonic structures control the groundwater flow, hydraulic head and well yield in the study area, which is located in the central part of the Beypazari Neogen basin. The impact of major tectonic structures on groundwater flow in the Cakiloba-Karadoruk aquifer is described. This aquifer is of sedimentary composition and underwent tectonic deformation, post-Miocene, forming northeast-striking asymmetric synclines, anticlines, monoclines, high-angle reverse faults and N–S striking tensional faults. Some of these structures affect groundwater flow by separating the aquifer system into sub-compartments, each having unique recharge, boundary and flow conditions. The groundwater system is compartmentalized into three sub-systems under the impacts of the Zaviye and Kanliceviz faults: (1) Arisekisi, (2) Elmabeli and (3) Southern sub-systems. The southern part of the Arisekisi sub-system and the Southern sub-system are characterized by a syncline and the aquifer is confined in the central part of the syncline. The Elmabeli sub-system has unconfined conditions. Consequently, the effects of tectonic structures are shown to be important for selecting well locations, evaluating groundwater use, groundwater management, and contaminant control in the study area, and also in other tectonic regions.

Keywords

Beypazari Basin Groundwater flow Tectonics Turkey 

Relation entre la structure tectonique et les flux d’eau souterraine dans la région de Beypazari, NO de l’Anatolie, Turquie

Résumé

La région de Beypazari au Nord-Ouest de l’Anatolie (Turquie) est caractérisée par une forte demande en eau et donc une pression importante sur la ressource disponible. Les structures tectoniques contrôlent les flux d’eau souterraine, les niveaux piézométriques et le rendement des forages dans la zone d’étude localisée dans la partie centrale du bassin néogène de Beypazari. L’impact des structures tectoniques majeures sur les flux d’eau souterraine au sein de l’aquifère de Cakiloba-Karadoruk est décrit. Cet aquifère sédimentaire a subit des déformations tectoniques post-Miocène formant des synclinaux asymétriques d’orientation Nord-Est, des anticlinaux, des monoclinaux, des failles inverses d’angles importants et des failles de tension d’orientation Nord-Sud. Certaines de ces structures affectent le flux d’eau souterraine en séparant le système aquifère en deux sous-compartiments possédant chacun une recharge, des conditions aux limites et des flux propres. Le système aquifère est compartimenté en trois sous-systèmes sous l’influence des failles de Zaviye et Kanliceviz avec comme sous-système (1) Arisekisi, (2) Elmabeli et (3) Sud. La partie Sud du sous-système d’Arisekisi et le sous-système Sud sont caractérisés par un synclinal et l’aquifère est captif dans la partie centrale du synclinal. Le sous-système d’Elmabeli présente des conditions non captives. Ainsi, les effets des structures tectoniques sont importants au niveau de certains forages et pour l’évaluation des usages de l’eau souterraine, de la gestion de la ressource et du contrôle de la contamination dans le secteur d’étude ainsi que dans d’autres régions à tectonique importante.

Relación de la estructura tectónica al flujo de agua subterránea en la región Beypazari, Noroeste de Anatolia, Turquía

Resumen

La región de Beypazari en el noroeste de Anatolia (Turquía) está caracterizada por una alta demanda de agua y una presión sobre los recursos de agua disponibles. Las estructuras tectónicas controlan el flujo subterráneo, la carga hidráulica y el rendimiento de los pozos en el área de estudio, la cual está localizada en la parte central de la cuenca neógena de Beypazari. Se describe el impacto de las principales estructuras tectónicas sobre el flujo de agua subterránea en el acuífero Cakiloba-Karadoruk. Este acuífero es de composición sedimentaria y sobrellevó la deformación tectónica post Miocénica, formando sinclinales asimétricos de rumbo noreste, anticlinales, monoclinales, fallas inversas de alta ángulo y fallas tensionales de rumbo norte-sur. Algunas de estas estructuras afectan el flujo de las aguas subterráneas separando el sistema acuífero en subcompartimientos, cada uno de ellos único en las condiciones de flujo, límites y recarga. El sistema de aguas subterráneas está compartimentada en 3 subsistemas bajo el impacto de las fallas de Zaviye y Kanliceviz: (1) Arisekisi, (2) Elmabeli y (3) Subsistemas del sur. La parte sur del subsistema Arisekisi y el subsistema sur están caracterizada por un sinclinal y el acuífero está confinado en la parte central del sinclinal. El subsistema Elmabeli tiene condiciones no confinadas. Consecuentemente se demuestra que los efectos de las estructuras tectónicas son importantes para seleccionar la ubicación de pozos, evaluar el uso de agua subterránea, manejo de agua subterránea y control de contaminantes en el área de estudio y también en otras regiones tectónicas.

Relação entre a estrutura tectónica e o escoamento subterrâneo na região de Beypazari, NW da Anatólia, Turquia

Resumo

A região de Beypazari, no NW da Anatólia (Turquia), caracteriza-se por uma procura elevada de água e pela pressão dos recursos hídricos disponíveis. As estruturas tectónicas controlam o escoamento subterrâneo, o potencial hidráulico e o caudal na área de estudo, que se localiza na parte central da bacia neogénica de Beypazari. Descreve-se o impacte das estruturas tectónicas principais no escoamento subterrâneo do aquífero de Cakiloba-Karadoruk. Este aquífero é de composição sedimentar e sofreu deformação tectónica, pós-miocénica, formando sinclinais assimétricos de direcção NE, anticlinais, monoclinais, falhas inversas de ângulo elevado e falhas tensionais desligantes N-S. Algumas destas estruturas afectam o escoamento subterrâneo, ao separar o sistema aquífero em subcompartimentos, cada um com condições próprias de recarga, de fronteira e de escoamento. O sistema subterrâneo é compartimentado em três subsistemas, sob os impactes das falhas de Zaviye e Kanliceviz: (1) Arisekisi, (2) Elmabeli e (3) subsistemas do Sul. A parte sul do subsistema Arisekisi e o subsistema do Sul caracterizam-se por um sinclinal e o aquífero é confinado na parte central do sinclinal. O subsistema Elmabeli tem condições de aquífero livre. Consequentemente, os efeitos das estruturas tectónicas mostram-se importantes para seleccionar os locais dos furos, avaliar o uso das águas subterrâneas e a sua gestão, e para controlo de contaminantes na área de estudo e noutras regiões tectónicas.

Notes

Acknowledgements

This paper forms a part of the author’s PhD thesis which has been conducted under the supervision of Dr. Mehmet Ekmekçi (Hacettepe University). Dr. Faruk Ocakoglu (Osmangazi University) and the manuscript reviewers presented valuable comments that ultimately improved the paper. The author wishes to express his sincere appreciation for their advice.

References

  1. Apaydin A (2004) Study of recharge conditions of Cakiloba-Karadoruk aquifer system (western Beypazari-Ankara) (in Turkish). PhD Thesis, Hacettepe University, Turkey, 147 ppGoogle Scholar
  2. Apaydin A (2007) Estimation of groundwater recharge using the curve number method (SCS-CN): a study of the Cakiloba-Karadoruk aquifer system (Beypazarı-Ankara) (in Turkish). Earth Sci J 28(3):159–171Google Scholar
  3. Atilla AO (1996) Evaluation of hydrochemical data by using multi-variate statistical analysis techniques (in Turkish). MSc Thesis, Hacettepe University, Turkey 145 ppGoogle Scholar
  4. Barnicoat AC, Sheldon HA, Ord A (2009) Faulting and fluid flow in porous rocks and sediments: implications for mineralisation and other processes. Miner Deposita 44:705–718CrossRefGoogle Scholar
  5. Ben-Itzhak LL, Gvirtzman H (2005) Groundwater flow along and across structural folding: an example from the Judean Desert, Israel. J Hydrol 312(1–4):51–69Google Scholar
  6. Bense VF, Person MA (2006) Fault zones as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resour Res 42, W05421. doi: 10.1029/2005WR004480 CrossRefGoogle Scholar
  7. Bense VF, Van den Berg EH, Van Balen RT (2003) Deformation mechanisms and hydraulic properties of fault zones in unconsolidated sediments: the Roer Valley Rift System, the Netherlands. Hydrogeol J 11:319–332Google Scholar
  8. Bredehoeft JD (1997) Fault permeability near Yucca mountain. Water Resour Res 33:2459–2463CrossRefGoogle Scholar
  9. Burkut Y, Suner F, Esenli V (1998) Formation conditions of tenardite-trona deposits in Cayirhan-Beypazari region (Ankara) (in Turkish). Yerbilimleri [Geosound] 32:191–198Google Scholar
  10. Caine JS, Forster CB (1999) Fault zone architecture and fluid flow: insights from field data and numerical modelling. In: Haneberg WC, Mozley PS, Moore JC, Goodwin LB (eds) Faults and subsurface fluid flow in the shallow crust. Geophysical Monograph 113, American Geophysical Union, Washington, DC, pp 101–127Google Scholar
  11. Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028CrossRefGoogle Scholar
  12. Curewitz D, Karson JA (1997) Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction. J Volcanol Geotherm Res 79:149–168CrossRefGoogle Scholar
  13. Delinom RM (2009) Structural geology controls on groundwater flow: Lembang Fault case study, West Java, Indonesia. doi: 10.1007/s10040-009-0453-z
  14. Fairley J, Heffner J, Hinds J (2003), Geostatistical evaluation of permeability in an active fault zone. Geophys Res Lett 30(18), 1962. doi: 10.1029/2003gl018064
  15. Fernandes AJ, Rudolph DL (2001) The influence of Cenozoic tectonics on the groundwater-production capacity of fractured zones: a case study in Sao Paulo, Brazil. Hydrogeol J 9:151–167CrossRefGoogle Scholar
  16. Fisher Q, Knipe R (1998) Fault sealing processes in siliciclastic sediment, in faulting, fault sealing and fluid flow in hydrocarbon reservoirs. Geol Soc Lond Spec Publ 147:117–134CrossRefGoogle Scholar
  17. Fulljames JR, Zijerveld JJ, Franssen RCMW (1997) Fault seal processes: systematic analysis of fault seals over geological and production time scales, in Hydrocarbon seals: importance for exploration and production. Norwegian Petrol Soc Spec Publ 9:51–59CrossRefGoogle Scholar
  18. Garven G, Appold MS, Toptygina VI, Hazlet TJ (1999) Hydrogeologic modeling of the genesis of carbonate lead-zinc ores. Hydrogeol J 7:108–126CrossRefGoogle Scholar
  19. Gudmundsson A (2000) Active fault zones and groundwater flow. Geophys Res Lett 27(18):2993–2996Google Scholar
  20. Helvaci C, İnci U, Yilmaz H, Yagmurlu F (1989) Geology and trona deposit of the Beypazari region, Turkey. Turk J Eng Environ 13(2):245–256Google Scholar
  21. Henriksen H, Braathen A (2005) Effects of fracture lineaments and in-situ rock stresses on groundwater flow in hard rocks: a case study from Sunnfjord, western Norway. Hydrogeol J 14:444–461CrossRefGoogle Scholar
  22. Heynekamp MR, Goodwin LB, Mozley PS, Haneberg WC (1999) Controls on fault-zone architecture in poorly lithified sediments, Rio Grande Rift, New Mexico: implications for fault-zone permeability and fluid flow, in faults and subsurface fluid flow in the shallow crust. Geophysical Monograph 113, AGU, Washington, DCGoogle Scholar
  23. İnci U (1990) Miocene alluvial fan-alkaline playa lignite-trona bearing deposits from an inverted basin in Anatolia: sedimentology and tectonic controls on deposition. Sed Geol 71:73–97Google Scholar
  24. İnci U, Helvaci C, Yagmurlu F (1988) Stratigraphy of Beypazari Neogen basin, central Anatolia, Turkey. Newsl Stratigr 18(3):165–182Google Scholar
  25. Knipe RJ (1993) The influence of fault zone process and diagenesis on fluid flow. In: Haneberg WC (1995) Steady state groundwater flow across idealized faults. Water Resour Res 31(7):1815–1820Google Scholar
  26. Korkmaz N (1990) Groundwater budged of Ankara-Beypazari trona field, (in Turkish). Technical report, General Directorate of State Hydraulic Works (DSI), Ankara, 12 ppGoogle Scholar
  27. López DL, Smith L (1995) Fluid flow in fault zones: analysis of the interplay of convective circulation and topographically driven groundwater flow. Water Resour Res 31:1489–1503CrossRefGoogle Scholar
  28. McKenna JR, Blackwell DD (2004) Numerical modeling of transient basin and range extensional geothermal systems. Geothermics 33:457–476CrossRefGoogle Scholar
  29. Mal’kovskii V, Pek A (2001) Evaluation of the influence of a highly permeable fault on transport of pollutants by the local groundwater flow. Geol Ore Deposits 43:216–223Google Scholar
  30. Mailloux BJ, Person M, Kelley S, Dunbar N, Cather S, Strayer L, Hudleston P (1999) Tectonic controls on the hydrogeolgy of the Rio Grande Rift, New Mexico. Water Resour Res 35:2641–2659CrossRefGoogle Scholar
  31. Melchiorre EB, Criss RE (1999) Relationship between seismicity and subsurface fluids, central Coast Ranges, California. J Geophys Res 104(B1):921–939CrossRefGoogle Scholar
  32. Mozley PS, Goodwin LB (1995) Patterns of cementation along a Cenozoic normal fault: a record of paleoflow orientations. Geology 23:539–542CrossRefGoogle Scholar
  33. Nuclear Energy Agency (ed) (1996) Fluid flow through faults and fractures in argillaceous formations: a joint NEA/EC Workshop, Berne, Switzerland, 10–12 June 1996. OECD, Berne, SwitzerlandGoogle Scholar
  34. Ofoegbou GI, Painter S, Chen R, Ferril DA (2001) Geomechanical and thermal effects on moisture flow at the proposed Yucca mountain nuclear waste repository. Nucl Technol 134:241–262Google Scholar
  35. Oner F (1994) Mineralogical zonation of the natural soda (trona) field, Beypazari (Ankara) (in Turkish). Bull Geol Congr Turkey 9:321–338Google Scholar
  36. Ozgur C (1986) Hydrogeological investigation of Ankara-Beypazari trona field (in Turkish). MSc Thesis, Ankara University, Turkey 54 ppGoogle Scholar
  37. Person MA, Garven G (1992) Hydrologic constraints on petroleum generation within continental rift basins: theory and application to the Rhine Graben. AAPG Bull 76:468–488Google Scholar
  38. Rawling GC, Goodwin LB, Wilson JL (2001) Internal architecture, permeability structure, and hydrologic significance of contrasting fault zone types. Geology 27:43–46CrossRefGoogle Scholar
  39. Rojstaczer S, Wolf S, Michel R (1995) Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nature 373:237–239CrossRefGoogle Scholar
  40. Seyhan E, Van De Griend AA, Engelen GB (1985) Multivariate analysis and interpretation of the hydrogeochemistry of a dolomitic reef aquifer, northern Italy. Water Resour Res 21(7)1010–1012Google Scholar
  41. Steinhorst RK, Williams RE (1985) Discrimination of groundwater sources using cluster analysis, MANOVA, canonical analysis and discriminant analysis. Water Resour Res 21(8)1149–1156Google Scholar
  42. Tyler BC, Herczeg AL, Barnes C (2000) Isotope engineering: using stable isotopes of the water molecule to solve practical problems. In: Cook P, Herczeg AL (eds) Environmental tracer in subsurface hydrology. Kluwer, Boston, pp 79–110Google Scholar
  43. Wieck J, Person M, Stayler L (1995) A finite element method for simulating fault block motion and hydrothermal fluid flow within rifting basins.† Water Resour Res 31:3241–3258CrossRefGoogle Scholar
  44. Yagmurlu F, Helvaci C, İnci U, Ona, M (1987) Tectonic characteristics and structural evolution of the Beypazari-Nallihan Neogen basin, central Anatolia. Melih Tokay Geology Symposium-87, Ankara, Abstracts 2–4Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.General Directorate of State Hydraulic Works (DSI)DSI 5. Bolge MudurluguAnkaraTurkey

Personalised recommendations