Hydrogeology Journal

, Volume 18, Issue 5, pp 1253–1264 | Cite as

Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling: application to Mihocheon watershed, South Korea

  • Il-Moon Chung
  • Nam-Won Kim
  • Jeongwoo Lee
  • Marios Sophocleous
Report

Abstract

A method of estimating groundwater recharge, based on water-balance components using the SWAT-MODFLOW model (an integrated surface water-groundwater model), is described. A multi-reservoir storage routing module is suggested instead of a single storage routing module in SWAT; this represents a more realistic delay in the travel of water through the vadose zone. By using this module, the parameter related to the delay time can be optimized by checking the correlation between simulated recharge and observed groundwater levels. The final step of this procedure is to compare simulated groundwater levels as well as the simulated watershed stream flow with the observed groundwater levels and watershed stream flow. This method is applied to the Mihocheon watershed in South Korea to estimate spatio-temporal groundwater recharge distribution. The computed annual recharge rate is compared with the independently estimated recharge rate using BFLOW. The hydrologic modelling results show that the annual average recharge rate should be estimated by a long-term continuous simulation with a distributed hydrologic modelling technique.

Keywords

South Korea SWAT-MODFLOW Recharge Groundwater/surface-water relations Geographic information systems 

Etude de la répartition des taux de réalimentation des eaux souterraines par modélisation intégrée eaux de surface–eaux souterraines: application au bassin versant de Mihocheon, en Corée du Sud

Résumé

Une méthode d’évaluation de la réalimentation des eaux souterraines est décrite, elle se base sur les composantes du bilan en eau et utilisant le modèle SWAT-MODFLOW (modèle intégré eaux de surface–eaux souterraines). Il est proposé d’utiliser un module de répartition multi-réservoirs au lieu du module à stockage unique de SWAT, pour aboutir à un temps de transit plus représentatif du trajet dans la zone vadose. En utilisant ce module, le paramètre relatif à ce temps de transit peut être optimisé en vérifiant la corrélation entre la réalimentation simulée et les niveaux observés. L’étape finale de cette procédure consiste à comparer les niveaux et débits simulés à l’exutoire avec les données observées. Cette méthode a été appliquée au bassin versant du Mihocheon en Corée du Sud, afin d’estimer la répartition spatio-temporelle de la réalimentation des eaux souterraines. Le taux de recharge annuelle calculé a été comparé à l’estimation utilisant BFLOW. Les résultats de la modélisation hydrologique montrent que la réalimentation annuelle moyenne doit être estimée par une simulation continue à long terme, avec un modèle hydrologique réparti.

Evaluación del ritmo de recarga distribuida de aguas subterráneas usando un modelo integrado de aguas superficiales–aguas subterráneas: aplicación de la cuenca de Mihocheon, Corea del Sur

Resumen

Se describe un método de estimación de la recarga de aguas subterráneas, basados en las componentes del balance de agua usando el modelo SWAT-MODFLOW (un modelo integrado aguas superficiales–aguas subterráneas). Se sugiere un módulo predeterminado de almacenamiento multi-reservorio, en lugar de un módulo de almacenamiento simple en el SWAT, este representa un retardo más realista en el tránsito del agua a través de la zona vadosa. Usando este módulo, el parámetro relacionado con el retardo en el tiempo puede ser optimizado controlando la correlación entre la recarga simulada y los niveles observados de aguas subterráneas. El paso final de este procedimiento es comparar los niveles simulados de aguas subterráneas así como también el flujo superficial simulado de la cuenca con los niveles de aguas subterráneas y el flujo superficial observados. Este método fue aplicado a la cuenca de drenaje Mihocheon en Corea del Sur para estimar la distribución espacio temporal en la recarga de aguas subterráneas. El ritmo calculado de la recarga anual se compara con el ritmo de recarga estimada independientemente usando BFLOW. Los resultados del modelado hidrológico muestran que el ritmo de recarga anual promedio debe ser estimada por una simulación continua a largo plazo con una técnica de modelado hidrológico distribuido.

地表水地下水耦合模拟评价分布式地下水补给速率: 在韩国Mihocheon流域的应用

摘要

本文介绍了-种采用基于水均衡要素的SWAT-MODFLOW模型 (地表水地下水耦合模型) 计算地下水补给速率的方法. 建议采用多库调洪模块来代替SWAT模型中的多库调洪模块; 这样更加符合地下水在包气带中运移延迟的实际情形. 通过使用此模块, 分析模拟的补给量和观测水位之间的关系, 便可优化与延迟时间相关的参数. 程序的最后-步是将模拟得到的地下水位, 流域径流与相对应的实际观测值进行比较. 将这-方法应用于韩国Mihocheon流域, 计算地下水补给速率的时空分布. 得到的年补给量与单独采用BFLOW算得的年补给量进行了对比. 水文模拟结果表明, 年平均补给量应采用分布式水文模拟方法基于长期的持续性模拟来估算.

통합 지표수-지하수 모델링을 이용한 분포형 지하수 함양량 산정 : 대한민국 미호천 유역에의 적용

초록

통합 지표수-지하수 모형인 SWAT-MODFLOW 모형을 이용한 물수지 성분해석 기반의 지하수 함양량 추정방법이 소개되었다. SWAT의 지하수 성분을 구성하는 단일저류추적모듈을 다중저류추적모듈로 개선한 기법이 제시되어 비포화대를 통과하는 지하수분의 시간적 지체를 보다 현실적으로 표현할 수 있게 되었다. 이 모듈을 이용할 경우, 계산된 함양량과 관측 지하수위간의 상관성을 고려하여 지체시간을 결정하는 매개변수를 최적화 할 수 있다. 이 절차의 마지막 단계는 계산된 지하수위와 관측수위를 비교하는 동시에 유역 하천유출량의 관측치와 계산치를 비교하는 것이다. 이 방법은 대한민국의 미호천 유역에 대한 지하수 함양의 시공간적 분포를 추정하는데 적용되었다. 연간함양률 계산시 기저유출분리법인 BFLOW를 이용하여 추정된 함양률과 비교검토를 수행하였다. 수문학적 모델링 결과 연평균 함양률 산정시 분포형 수문모형기법에 의한 장기 연속 모의결과를 활용하는 것이 적절할 것으로 판단된다.

Avaliando a taxa de recarga distribuída de águas subterrâneas com modelação integrada águas de superfície-águas subterrâneas: aplicação à bacia hidrográfica de Mihocheon, Coreia do Sul

Resumo

Descreve-se um método de avaliação da recarga de aquíferos baseado na análise do balanço hídrico do modelo SWAT-MODFLOW (um modelo integrado de águas de superfície-águas subterrâneas). Sugere-se um módulo multi-reservatórios para o armazenamento subterrâneo em vez do módulo clássico do reservatório único do SWAT; esta sugestão permite representar de forma mais realista o atraso do percurso da água na zona vadosa. Usando este módulo, o parâmetro relativo ao atraso pode ser optimizado por análise da correlação entre a recarga simulada e os níveis de água observados. O passo final deste processo é comparar os níveis simulados da água subterrânea e os valores dos escoamentos superficiais simulados com os correspondentes valores observados dos níveis de água subterrânea e valores de fluxo medido nas bacias hidrográficas. Este método foi aplicado à bacia hidrográfica de Mihocheon, na Coreia do Sul, para estimar a distribuição no espaço e no tempo da recarga da água subterrânea. A taxa de recarga anual calculada é comparada com a taxa de recarga estimada de forma independente, usando o modelo BFLOW. O resultado hidrológico da modelação mostra que a taxa anual da recarga média deve ser estimada por uma simulação continua a longo termo usando uma técnica de modelação hidrológica distribuída.

Notes

Acknowledgements

This research was supported by a grant (code No. 2-2-3) from the Sustainable Water Resources Research Center of the 21st Century Frontier Research Program.

References

  1. Arnold JG, Allen PM, Bernhardt G (1993) A comprehensive surface–groundwater flow model. J Hydrol 142:47–69CrossRefGoogle Scholar
  2. Arnold JG, Allen PM, Muttiah R, Bernhardt G (1995) Automated base flow separation and recession analysis techniques. Ground Water 33:1010–1018CrossRefGoogle Scholar
  3. Arnold JG, Muttiah RS, Srinivasan R, Allen PM (2000) Regional estimation of base flow and groundwater recharge in the Upper Mississippi River basin. J Hydrol 227:21–40CrossRefGoogle Scholar
  4. Beven KJ (1985) Distributed models. In: Anderson MG, Burt TP (ed) Hydrological forecasting. Wiley, New York, pp 405–435Google Scholar
  5. Beven KJ (1989) Changing ideas in hydrology: the case of physically based models. J Hydrol 105:157–172CrossRefGoogle Scholar
  6. Burke S (1995) Land surface parameterisation: regionalised versus distributed approach to groundwater recharge. Phys Chem Earth 20(3):331–337CrossRefGoogle Scholar
  7. Chung IM, Kim NW, Lee J (2007) Estimation of groundwater recharge by considering runoff process and groundwater level variation in watershed. J KoSSGE 12(5):19–32Google Scholar
  8. Conan C, Bouraoui F, Turpin N, de Marsily G, Bidoglio G (2003) Modeling flow and nitrate fate at catchment scale in Brittany (France). J Environ Qual 32(6):2026–2032CrossRefGoogle Scholar
  9. de Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10:5–17CrossRefGoogle Scholar
  10. Di Luzio M, Srinivasan R, Arnold J (2001) ArcView Interface for SWAT2000: user’s guide, Blackland Research Center, Texas Agricultural Experiment Station, Temple, TXGoogle Scholar
  11. Di Luzio M, Srinivasan R, Arnold JG (2004a) A GIS-coupled hydrological model system for the watershed assessment of agricultural nonpoint and point sources of pollution. Trans GIS 8(1):113–136CrossRefGoogle Scholar
  12. Di Luzio M, Aronld JG, Srinivasan R (2004b) Integration of SSURGO maps and soil parameters within a geographic information system and nonpoint-source pollution model system. J Soil Water Conserv 59(4):123–133Google Scholar
  13. Galbiati L, Bouraoui F, Elorza FJ, Bidoglio G (2006) Modeling diffuse pollution loading into a Mediterranean lagoon: development and application of an integrated surface-subsurface model tool. Ecol Model 193(1–2):4–18CrossRefGoogle Scholar
  14. Gerhart JM (1986) Ground-water recharge and its effect on nitrate concentrations beneath a manured field site in Pennsylvania. Ground Water 24:483–389CrossRefGoogle Scholar
  15. Hall DW, Risser DW (1993) Effects of agricultural nutrient management on nitrogen fate and transport in Lancaster county, Pennsylvania, Water Resour Bull 29:55–76Google Scholar
  16. Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109CrossRefGoogle Scholar
  17. Kim YJ, Hamm S (1999) Assessment of the potential for ground water contamination using the DRASTIC/ EGIS technique, Cheongju area, South Korea. Hydrogeol J 7(2):227–235CrossRefGoogle Scholar
  18. Kim NW, Chung IM, Won YS (2004a) The development of fully coupled SWAT-MODFLOW model (I) model development (in Korean). J Korea Water Resour Assoc 37(6):503–512Google Scholar
  19. Kim NW, Chung IM, Won YS (2004b) The development of fully coupled SWAT-MODFLOW model (II) evaluation of model (in Korean). J Korea Water Resour Assoc 37(6):513–521Google Scholar
  20. Kim NW, Chung IM, Won YS, Arnold JG (2008) Development and application of the integrated SWAT-MODFLOW model. J Hydrol 356:1–16CrossRefGoogle Scholar
  21. Kite GW (1995) The SLURP model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, CO, pp 521–562Google Scholar
  22. Knisel WG (1980) CREAMS, A field scale model for chemicals, runoff, and erosion from agricultural management systems, Conserv. Resour. Rep. No. 26, USDA, Washington, DCGoogle Scholar
  23. Lerner DN, Issar AS, Simmers I (1990) Groundwater recharge: a guide to understanding and estimating natural recharge. IAH Int Contrib Hydrogeol, vol 8, Heise, Hanover, Germany, 345 ppGoogle Scholar
  24. McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model, US Geol Surv Water Resour Invest Rep, Chap. A1, Book 6, 528 ppGoogle Scholar
  25. Menking KM, Syed KH, Anderson RY, Shafike NG, Arnold JG (2003) Model estimates of runoff in the closed, semiarid Estancia basin, central New Mexico, USA. Hydrol Sci J 48(6):953–970CrossRefGoogle Scholar
  26. Meyboom P (1961) Estimating groundwater recharge from stream hydrographs. J Geophys Res 66:1203–1214CrossRefGoogle Scholar
  27. Ministry of Land, Transport and Maritime Affairs (2007) Report on the groundwater investigation in Cheongwon area, Ministry of Land, Transport and Maritime Affairs, Seoul, KoreaGoogle Scholar
  28. Nathan RJ, McMahon TA (1990) Evaluation of automated techniques for base flow and recession analyses. Water Resour Res 26:1465–1473CrossRefGoogle Scholar
  29. NIAST (2005) The Agricultural Soil Information System. Available via http://asis.rda.go.kr. Cited 15 June 2009
  30. Perkins SP, Sophocleous M (1999) Development of a comprehensive watershed model applied to study stream yield under drought conditions. Ground Water 37(3):418–426CrossRefGoogle Scholar
  31. Rasmussen WC, Andreasen GE (1959) Hydrologic budget of the Beaverdam Creek Basin, Maryland. US Geol Surv Water Suppl Pap 1472, 106 ppGoogle Scholar
  32. Rorabaugh MI (1964) Estimating changes in bank storage and groundwater contribution to streamflow. IAHS Publ. No. 63, IAHS, Wallingford, UK, pp 432–441Google Scholar
  33. Rutledge AT (1997) Model-estimated ground-water recharge and hydrograph of ground-water discharge to a stream. US Geol Surv Water Resour Invest Rep 97–4253, 29 ppGoogle Scholar
  34. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39CrossRefGoogle Scholar
  35. Shafike NG, Flanigan KG (1999) Hydrologic modeling of the Estancia basin, New Mexico. In: New Mexico Geological Soc. Guidebook, 50th Field Conference, Albuquerque Geology, 409418. New Mexico Geological Society, Socorro, NMGoogle Scholar
  36. Sharma ML (ed) (1989) Groundwater recharge. Balkema, Rotterdam, The Netherlands, 323 ppGoogle Scholar
  37. Simmers I (1988) Estimation of natural groundwater recharge. NATO ASI Series C 222. Reidel, Dordrecht, The Netherlands, 510 ppGoogle Scholar
  38. Simmers I (ed) (1997) Recharge of phreatic aquifers in (semi-) arid areas. Balkema, Rotterdam, The Netherlands, 277 ppGoogle Scholar
  39. Sophocleous MA (1991) Stream-floodwave propagation through the Great Bend alluvial aquifer, Kansas: field measurements and numerical simulations. J Hydrol 124:207–228CrossRefGoogle Scholar
  40. Sophocleous MA (2004) Groundwater recharge, In: Groundwater, In: Encyclopedia of life support systems (EOLSS), UNESCO, EOLSS, Oxford, 41 pp. Available via http://www.eolss.net/ebooks/Sample%20Chapters/C07/E2-09-01-05.pdf. Cited 31 July 2009
  41. Sophocleous MA (2005) Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA. Hydrogeol J 13(2):351–365CrossRefGoogle Scholar
  42. Sophocleous M, Perkins SP (2000) Methodology and application of combined watershed and ground-water models in Kansas. J Hydrol 236(3–4):185–201CrossRefGoogle Scholar
  43. Sophocleous MS, Perkins SP, Stadnyk NG, Kaushal RS (1997) Lower Republican Stream-Aquifer Project, final report, Open File Report 97-8, Kansas Geological Survey, Lawrence, KSGoogle Scholar
  44. Sophocleous MA, Koelliker JK, Govindaraju RS, Birdie T, Ramireddygari SR, Perkins SP (1999) Integrated numerical modeling for basin-wide water management: the case of the Rattlesnake Creek basin in south-central Kansas. J Hydrol 214(1–4):179–196CrossRefGoogle Scholar
  45. USEPA (2006) Better assessment science integrating point and nonpoint sources. US Environmental Protection Agency, Washington, DC. Available at: www.epa.gov/waterscience/BASINS/. Cited 23 February 2010
  46. Williams JR, Nicks AD, Arnold JG (1985) SWRRB, Simulator for water resources in rural basins. J Hydraul Eng ASCE 111(6):970–986CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Il-Moon Chung
    • 1
  • Nam-Won Kim
    • 1
  • Jeongwoo Lee
    • 1
  • Marios Sophocleous
    • 2
  1. 1.Korea Institute of Construction TechnologyGoyang-siRepublic of Korea
  2. 2.Kansas Geological SurveyThe University of KansasLawrenceUSA

Personalised recommendations