Advertisement

Hydrogeology Journal

, Volume 18, Issue 2, pp 441–454 | Cite as

Hydrological and nitrogen distributed catchment modeling to assess the impact of future climate change at Trichonis Lake, western Greece

  • Elias DimitriouEmail author
  • Elias Moussoulis
Report

Abstract

According to regional climatic models, climate change may affect Mediterranean lakes significantly in terms of water availability and quality. Trichonis Lake catchment covers a semi-mountainous area of 403 km2 including the largest Greek lake by volume (2.6 × 109 m3), located in western Greece. The impact of climate change on the hydrology and water quality of the lake, in terms of lake water level and nutrient concentrations, has been assessed. Water balance estimates and geographical information system tools were then used to set up a physically based, spatially distributed model. The calibrated model was simulated for two future scenarios specified by the Intergovernmental Panel on Climate Change: A2 (pessimistic) and B2 (more optimistic), which involved temperature/evaporation/evapotranspiration increase and small precipitation decrease. The model was calibrated efficiently for the 1990–1992 period. The two basic climatic scenarios illustrated that the responses of the lake water levels will show a decrease of 24.2 and 12 cm, respectively, and an increase of total nitrogen concentrations by 3.4 and 10%, in relation to the early 1990s values. These important findings suggest that mitigation and optimum management plans should be developed to eliminate the aforementioned climate change impacts and further research should follow.

Keywords

Greece Hydrochemistry Nitrate Catchment model Climate change 

Modélisation distribuée hydrologique et de l’azote afin d’évaluer l’impact du future changement climatique sur le lac Trichonis, Grèce occidentale

Résumé

Le changement climatique peut avoir des conséquences importantes en termes de disponibilité et de qualité de l’eau sur les lacs méditerranéens, selon les résultats des modèles climatiques régionaux. Le bassin versant du lac Trichonis d’une superficie de 403 km² occupe une zone semi montagneuses à l’Ouest de la Grèce et comprend le plus grand lac de Grèce en termes de volume (2.6 × 109 m3). L’impact du changement climatique sur l’hydrologie et la qualité de l’eau du lac a été évalué considérant le niveau d’eau du lac et les concentrations en éléments nutritifs. L’évaluation du bilan hydrologique ainsi qu’un système d’information géographique sont deux outils qui ont été utilisés afin d’établir un modèle physique distribué spatialement. Le modèle calibré a permis de simuler deux scénarios futurs de changement climatique issus des travaux du Groupe Intergouvernemental sur le changement climatique: A2 (pessimiste) et B2 (plus optimiste), comprenant une augmentation de la température/évaporation/évapotranspiration et une faible diminution des précipitations. Le modèle a été calibré de manière satisfaisante sur la période 1990–1992. La simulation des deux scénarios climatiques donne une diminution du niveau du lac de 24.2 cm et de 12 cm respectivement et une augmentation des concentrations d’azote total de 3.4% et 10% en comparaison avec les valeurs de 1990. Ces résultats importants suggèrent que des plans d’atténuation et de gestion doivent être mis en place afin d’éviter d’être confronté aux impacts du changement climatique mentionné précédemment; de plus les recherches doivent se poursuivre.

Modelación distribuida de la hidrología y del nitrógeno de una cuenca para evaluar el impacto de futuros cambios climáticos en el lago Trichonis, oeste de Grecia

Resumen

Los cambios climáticos pueden afectar significativamente a los lagos Mediterráneos en términos de la disponibilidad y la calidad de agua, de acuerdo a los modelos climáticos regionales. La cuenca del lago Trichonis cubre un área semimontañosa de 403 km2 incluyendo el lago griego más grande por su volumen (2.6 × 109 m3), localizado en el oeste de Grecia. Se evaluó el impacto del cambio climático en la hidrología y la calidad de agua del lago, en términos de nivel de agua del lago y concentración de nutrientes. Se utilizaron entonces estimaciones de balances de agua y herramientas de sistemas de información geográfica para establecer un modelo físico espacialmente distribuido. El modelo calibrado fue simulado para dos escenarios futuros especificados por el Panel Intergubernamental de Cambio Climático: A2 (pesimista) y B2 (más optimista) lo cuales involucran incrementos de temperatura/ evaporación / evapotranspiración y una pequeña disminución de la precipitación. El modelo fue calibrado eficientemente para el período 1990–1992. Los dos escenarios climáticos básicos mostraron que la respuesta del nivel de agua del lago muenstran una disminución de 24.2 cm y 12 cm, respectivamente, y un incremento de la concentración total de nitrógeno de 3.4% y 10%, en relación a los valores primitivos de 1990. Estos importantes hallazgos sugieren que se debe desarrollar la mitigación y los planes óptimos de manejo para eliminar los impactos de los cambios climáticos arriba mencionados y las futuras investigaciones que se deben seguir.

利用水文和氮分布流域模型评价未来气候变化对希腊西部Trichonis湖的影响

摘要

根据区域气候模型, 气候变化可能会影响到地中海地区湖水的可获性和质量。Trichonis湖流域是面积为403 km2的半山区, 它包括了位于希腊西部体积为2.6 e9 m3的希腊最大的湖。本文通过湖水水位和营养物浓度评价了气候变化对湖水的水文和水质方面的影响。利用水量平衡估算和地理信息系统工具建立基于物理机制的空间分布模型。标定的模型被用来模拟由政府间气候变化组织设定的包括温度/蒸发量/蒸腾量增加和降雨量轻微减小的两个未来情景: A2 (悲观的) 和B2 (较乐观的)。模型据1990–1992年时段进行了有效的标定。这两个基本的气候情景显示, 与1990年代早期的值相比, 湖水位会分别下降24.2 cm 和12 cm, 而氮的浓度则会分别有3.4% 和10%的增加。这些重要的发现表明, 需要制定减缓和优化管理方案以减少前述气候变化的影响, 还应尽行进一步的研究。

Modelo de bacia hidrológica e de distribuição de azoto para avaliação do impacte das futuras alterações climáticas no Lago Trichonis, Grécia ocidental

Resumo

As alterações climáticas podem afectar os lagos mediterrânicos de modo significativo em termos de disponibilidade de água e da sua qualidade, de acordo com os modelos climáticos regionais. A bacia hidrográfica do Lago Trichonis cobre uma área semi-montanhosa de 403 km2, incluindo o lago Greek, de maiores dimensões em termos de volume (2.6 × 109 m3), localizado na Grécia ocidental. Foi avaliado o impacte das alterações climáticas na hidrologia e qualidade da água do lago, em termos do nível da água no mesmo e das concentrações dos nutrientes. As estimativas de balanço de água e os instrumentos do sistema de informação geográfica foram então usados para criar um modelo físico de distribuição espacial. O modelo calibrado foi simulado para dois cenários futuros especificados pelo Painel Intergovernamental para as Mudanças Climáticas: A2 (pessimista) e B2 (mais optimista), o que envolveu um incremento na temperatura / evaporação / evapotranspiração e um pequeno decréscimo na precipitação. O modelo foi calibrado eficientemente para o período de 1990–1992. Os dois cenários climáticos básicos mostram que as respostas dos níveis do lago levarão a um decréscimo de 24.2 cm e 12 cm, respectivamente, e a um incremento das concentrações totais de azoto de 3.4% e 10%, em relação aos valores do início dos anos 90. Estas conclusões importantes sugerem que os planos de mitigação e gestão óptima devem ser desenvolvidos para eliminar os impactes anteriormente mencionados das alterações climáticas e mostram que a pesquisa futura deverá continuar.

References

  1. Abbott MB, Bathurst JC, Cunge JA, O’Connell PE, Rasmussen J (1986) An introduction to the European hydrological system - Systeme Hydrologique Europeen, “SHE”, 2: Structure of a Physically-Based, Distributed Modelling System. J Hydrol 87:61–77CrossRefGoogle Scholar
  2. Andersen HE, Kronvang B, Larsen SE, Hoffmann CC, Jensen TS, Rasmussen EK (2006) Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Sci Total Environ 365:223–237CrossRefGoogle Scholar
  3. Arnold J, Allen P (1996) Estimating hydrologic budgets for three Illinois watersheds. J Hydrol 176:57–77CrossRefGoogle Scholar
  4. Bechtold I, Kohne S, Youssef MA, Lennartz B, Skaggs RW (2007) Simulating nitrogen leaching and turnover in a subsurface-drained grassland receiving animal manure in northern Germany using DRAINMOD-N II. Agric Water Manage 93:30–44CrossRefGoogle Scholar
  5. Bertahas I, Dimitriou E, Karaouzas I, Laschou S, Zaharias I (2006) Climate change and agricultural pollution effects on the trophic status of a Mediterranean lake. Hydrobiologia 34:349–359Google Scholar
  6. Bhumbla DK (2007) Agriculture practices and nitrate pollution of water, West Virginia University, Accessed on 11/9/2007 http://transpaktrading.com/static/pdf/research/environment/AgPracticesAndNitrate.pdf
  7. Campolo M, Andreussi P, Soldati A (2002) Water quality control in the river Arno. Water Res 36:2673–2680CrossRefGoogle Scholar
  8. Chen H, Guo S, Xu C, Singh VP (2007) Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin. J Hydrol 344:171–184CrossRefGoogle Scholar
  9. DHI (2007) The MIKE SHE user and technical reference manual. Danish Hydraulic Institute, CopenhagenGoogle Scholar
  10. Dimitriou E, Zacharias I (2006) Groundwater vulnerability and risk mapping in a geologically complex area by using stable isotopes, remote sensing and GIS techniques. Environ Geol 51(2):309–323CrossRefGoogle Scholar
  11. Eckert DJ (2007) Nitrates in surface water, Ohio State University, Department of Horticulture and Crop Science, Ohio, Accessed 21/09/2008 on : http://ohioline.osu.edu/agf-fact/0204.html
  12. EEC (European Economic Community) (2000) The council of 23 October 2000 establishing a framework for community action in the field of water policy (2000/60/EC). Off J European Communities L327:1–72Google Scholar
  13. Eurostat (1997) Meeting of the Subgroup on Nitrogen Balances of the Working Group ‘Statistics on the Environment’. LuxemburgGoogle Scholar
  14. Goderya FS, Dahab MF, Woldt WE, Bogardi I (1996) Incorporation of spatial variability in modeling non-point source groundwater nitrate pollution. Water Science and Technology 33(4-5):233–240CrossRefGoogle Scholar
  15. Hookey GR (1987) Prediction of delays in ground water response to catchment clearing. J Hydrol 94:181–198CrossRefGoogle Scholar
  16. Intergovernmental Panel on Climate Change (2007) Fourth Assessment Report: Climate Change 2007, Accessed on 20/9/2008: http://www.ipcc.ch/publications_and_data/publications_and_data_reports.htm
  17. Koussouris Th (1993) Contribution on the study of agricultural effects and other activities on trophic state of Trichonis Lake and the possibilities on its aquaculture, Doctorate Degree Thesis in Ecology and Environmental Protection, Veterinary Faculty, Aristotle University of Thessaloniki, Thessaloniki, pp 116 (in Greek with English summary)Google Scholar
  18. Kristensen KJ, Jensen SE (1975) A model for estimating actual evapotranspiration from potential evapotranspiration. Nord Hydrol 6:70–88Google Scholar
  19. Lin Yu-Pin, Hongb N-M, Pei-Jung Wu, Chen-Fa Wu, Verburg PH (2007) Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in northern Taiwan. Landsc Urban Plan 80:111–126CrossRefGoogle Scholar
  20. Maidment DR (1993) Handbook of hydrology. McGraw-Hill, New YorkGoogle Scholar
  21. Mays LW (1996) Water resources handbook. McGraw-Hill, New York, p. 1568Google Scholar
  22. McLay CDA, Dragten R, Sparling G, Selvarajah N (2001) Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environ Pollut 115:191–204CrossRefGoogle Scholar
  23. MEPPW (Ministry for the Environment, Physical Planning and Public Works) (2004) Country Profile: Greece, National Reporting to the Twelfth Session of the Commission on Sustainable Development of the United Nations (UN CSD 12), Athens, March 2004Google Scholar
  24. Mercado A (1976) Nitrate and chloride pollution of aquifers: a regional study with the aid of a single-cell model. Water Resour Res 12(4):731–747CrossRefGoogle Scholar
  25. Nikolaidis NP, Heng H, Semagin R, Clausen JC (1998) Non-linear response of a mixed land use watershed to nitrogen loading. Agric Ecosyst Environ 67:251–265CrossRefGoogle Scholar
  26. NMS (National Meteorological Service) (2007) Meteorological data of Agrinio meteorological station. AthensGoogle Scholar
  27. Refsgaard JC (1997) Parameterisation, calibration and validation of distributed hydrological models. J Hydrol 198:69–97CrossRefGoogle Scholar
  28. Richards RP, Baker DB, Creamer NL, Kramer JW, Ewing DE, Merryfield BJ, Wallrabenstein LK (1996) Well water quality, well vulnerability, and agricultural contamination in the Mid-Western United States. J Environ Qual 25:389–402Google Scholar
  29. Salama R, Hatton T, Dawes W (1999) Predicting land use impacts on regional scale groundwater recharge and discharge. J Environ Qual 28(2):446–460CrossRefGoogle Scholar
  30. Schilling KE, Wolter CF (2001) Contribution of base flow to nonpoint source pollution loads in an agricultural watershed. Ground Water 39(1):49–58CrossRefGoogle Scholar
  31. Schlumberger Water Services (2003) Enviro-Base Lite, Accessed on 20/2/2006: www.waterloohydrogeologic.com
  32. Scibek J, Allen DM (2006) Comparing modelled responses of two high-permeability, unconfined aquifers to predicted climate change. Global Planet Change 50:50–62CrossRefGoogle Scholar
  33. Scibek J, Allen DM, Cannon AJ, Whitfield PH (2007) Groundwater-surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. J Hydrol 333:165–181CrossRefGoogle Scholar
  34. Sharpley AN, Syers JK, Tillman RW (1983) Transport of ammonium- and nitrate-nitrogen in surface runoff from pasture as influenced by urea application. Water Air Soil Pollut 20:425–430CrossRefGoogle Scholar
  35. Willis GH, Southwick LM, Fouss JL, Carter CE, Rogers JS (1997) Nitrate losses in runoff and subsurface drain effluent from controlled-water-table plots. Bull Environ Contam Toxicol 58:566–573CrossRefGoogle Scholar
  36. World Health Organization (WHO) (2006) 3rd edn, Guidelines for drinking-water quality: incorporating first addendum. Vol. 1, Recommendations, 515 ppGoogle Scholar
  37. Yadav SN, Wall DB (1998) Benefit-cost analysis of best management practices implemented to control nitrate contamination of groundwater. Water Resour Res 34(3):497–504CrossRefGoogle Scholar
  38. Zacharias I, Dimitriou E, Koussouris TH (2003) Estimating groundwater discharge into a lake through underwater springs by using GIS technologies. Environ Geol J 44(7):843–851CrossRefGoogle Scholar
  39. Zacharias I, Dimitriou E, Koussouris Th (2004) Quantifying land-use alterations and associated hydrologic impacts at a wetland area by using remote sensing and modeling techniques. Environ Modell Assess 9:23–32CrossRefGoogle Scholar
  40. Zacharias I, Dimitriou E, Koussouris TH (2005) Integrated water management scenarios for wetland protection: application in Lake Trichonis. Environ Model Softw 20:177–185CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Hellenic Centre for Marine ResearchInstitute of Inland WatersAttikisGreece

Personalised recommendations