Advertisement

Hydrogeology Journal

, Volume 18, Issue 1, pp 227–246 | Cite as

Management of freshwater lenses on small Pacific islands

  • Ian White
  • Tony FalklandEmail author
Paper

Abstract

The nature of shallow aquifers and the impacts of seawater intrusion in small islands within the Pacific Ocean are reviewed. Many Pacific islands rely on shallow fresh groundwater lenses in highly permeable aquifers, underlain and surrounded by seawater, as their principal freshwater source. It is argued here that, in small islands, the nature of fresh groundwater lenses and their host aquifers coupled with frequent natural and ever-present anthropogenic threats make them some of the most vulnerable aquifer systems in the world. A simple steady-state approximation is used to provide insight into the key climatic, hydrogeological, physiographic, and management factors that influence the quantity of, and saline intrusion into freshwater lenses. Examples of the dynamic nature of freshwater lenses as they respond to these drivers are given. Natural and human-related threats to freshwater lenses are discussed. Long dry periods strongly coupled to sea surface temperatures impact on the quantity and salinity of fresh groundwater. The vulnerability of small island freshwater lenses dictates careful assessment, vigilant monitoring, appropriate development, and astute management. Strategies to aid future groundwater sustainability in small islands are presented and suggested improvements to donor and aid programs in water are also advanced.

Keywords

Freshwater lens Salinization Island hydrogeology Climatic variability Groundwater management 

Gestion des lentilles d’eau douce dans de petites îles du Pacifique

Résumé

La nature des aquifères peu profonds et les impacts de l’intrusion d’eau de mer dans les pays des petites îles de l’Océan Pacifique sont examinés. De nombreux territoires des îles du Pacifique comptent sur des lentilles d’eau douce peu profondes au sein d’aquifères extrêmement perméables, supportés et entourés par l’eau de mer,comme leur principale source d’eau douce. On indique ici que, dans les petites îles, la nature des lentilles d’eau douce souterraine et les aquifères hôtes associés à des menaces naturelles fréquentes et anthropiques toujours présentent en font quelques-uns des systèmes aquifères les plus vulnérables au monde. Un simple approximation en état permanent est utilisée pour fournir un aperçu des facteurs clés climatiques, hydrogéologiques, physiographiques et de gestion qui influent sur l’importance de l’intrusion d’eau saline dans les lentilles d’eau douce. Des exemples de la nature dynamique des lentilles d’eau douce lorsqu’elles répondent à ces causes sont donnés. Les menaces d’origine naturelle et humaine pour les lentilles d’eau douce sont examinées. De longues périodes sèches fortement associées aux températures de surface de la mer ont un impact sur la quantité et la salinité de l’eau douce souterraine. La vulnérabilité des lentilles d’eau douce des petites îles dictent une évaluation minutieuse, un contrôle rigoureux, une mise valeur appropriée et une gestion clairvoyante. Des stratégies destinées à assister la durabilité à venir de l’eau souterraine dans les petites îles sont exposées et des améliorations suggérées au décideur et des programmes d’assistance pour l’eau sont aussi présentés.

Gestión de lentes de agua dulce en pequeñas islas del Pacífico

Resumen

Se revisa la naturaleza de los acuíferos someros y los impactos de la intrusión de agua de mar en países de pequeñas islas en el Océano Pacífico. Muchos países de islas del Pacífico dependen de lentes de agua subterránea dulce someras en acuíferos altamente permeables, con el agua de mar subyacente y circundante, como su principal fuente de agua dulce. Se argumenta aquí, que en las pequeñas islas, la naturaleza de los lentes de agua subterránea dulce y sus acuíferos hospedantes asociados a frecuentes amenazas tanto naturales y como omnipresentes amenazas antrópicas, hacen que ellas sean los sistemas acuíferos más vulnerables en el mundo. Una simple aproximación en estado estacionario es usada para proveer conocimiento sobre los factores climáticos, hidrogeológicos, fisiográficos y de gestión claves que influyen en la cantidad de, e intrusión salina en los lentes de agua dulce. Se dan ejemplos de la naturaleza dinámica de las lentes de agua dulce en respuesta a estos forzantes. Se discuten las amenazas naturales y antrópicas a las lentes de agua dulce. Extensos períodos secos fuertemente asociados a la temperatura superficial del mar afectan la cantidad y salinidad del agua subterránea dulce. La vulnerabilidad de las lentes de agua dulce de pequeñas islas exige una evaluación cuidadosa, un monitoreo de alertas, un desarrollo apropiado y una gestión astuta. Se presentan las estrategias para ayudar a la sustentabilidad futura de las aguas subterráneas en pequeñas islas y se anticipan sugerencias para mejorar los programas de contribución y ayuda para el agua.

Gestão de lentículas de água doce em pequenas ilhas do Pacífico

Resumo

É passada em revista a natureza dos aquíferos superficiais e os impactes da intrusão marinha em pequenos países insulares do Oceano Pacífico. Muitos países insulares do Pacífico dependem de lentes de água subterrânea pouco profundas em aquíferos altamente permeáveis, subjacentes e rodeados por água do mar, como a sua principal fonte de água doce. Argumenta-se aqui que, em pequenas ilhas, a natureza das lentes de água doce subterrânea e dos seus aquíferos de acolhimento, juntamente com as sempre presentes, e naturalmente frequentes, ameaças antropogénicas, os torna nuns dos sistemas aquíferos mais vulneráveis em todo o mundo. Uma simples aproximação em regime permanente (“steady-state”) é utilizada para dar uma ideia dos factores chave de ordem climática, hidrogeológica, fisiográfica, e de gestão, que influenciam a quantidade e a intrusão salina nas lentes de água doce. São apresentados exemplos da natureza dinâmica das lentes de água doce e a forma como elas respondem a esses factores. São discutidas as ameaças naturais e humanas relacionadas com as lentículas de água doce. Longos períodos secos, fortemente associados à temperatura da superfície do mar, produzem impacte sobre a quantidade e salinidade da água doce. A vulnerabilidade das lentículas de água doce em pequenas ilhas dita uma avaliação cuidadosa, uma monitorização vigilante, um desenvolvimento adequado e uma gestão astuta. São apresentadas estratégias para auxiliar a sustentabilidade futura das águas subterrâneas em ilhas pequenas, e são dadas sugestões para uma melhor acção dos doadores e dos programas de ajuda.

Notes

Acknowledgements

Parts of this work were supported by the Kiribati Adaptation Program Phase II supported by AusAID, NZaid, and the World Bank, by the European Development Fund, by the Pacific Islands Applied Geoscience Commission (SOPAC) and by the Australian Centre for International Agricultural Research Project LWR1/2001/050. We are grateful to our colleagues throughout the Pacific who have generously worked with us and have taught us a great deal.

References

  1. ABOM (2009) Australian Bureau of Meteorology Pacific Islands Climate Prediction Project (PI-CPP) http://www.bom.gov.au/climate/pi-cpp/. Cited 23 July 2009
  2. Alam K, Falkland A (1997) Vulnerability to climate change of the Bonriki freshwater lens, Tarawa. Prepared for Ministry of Environment and Social Development, Tarawa, Republic of Kiribati, September 1997Google Scholar
  3. Alam K, Falkland A, Mueller N (2002) Sustainable Yield of Bonriki and Buota Freshwater Lenses. SAPHE Project, Hydrogeology Component. Tarawa, Republic of Kiribati, February 2002Google Scholar
  4. Ali M, Hay J, Maul G, Sem G (2001) Chapter 9: small island states. In Watson RT, Zinyowera MC, Moss RH, Dokken DJ (eds) IPCC Special Report on the Regional Impacts of Climate Change. An Assessment of Vulnerability. UNEP and WMO. www.grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/regional/index.htm. Cited 23 July 2009
  5. Anthony SS (1992) Electromagnetic methods for mapping freshwater lenses on Micronesian atoll islands. J Hydrol 137:99–111CrossRefGoogle Scholar
  6. Ayers JF (1981) Estimate of recharge to the freshwater lens of northern Guam. Tech. Rpt. No. 21, Water Resources Research Center, University of GuamGoogle Scholar
  7. Ayers JF, Vacher HL (1986) Hydrogeology of an atoll island, a conceptual model from a detailed study of a Micronesian example. Ground Water 24(2):185–198CrossRefGoogle Scholar
  8. Badon Ghijben W (1889) Nota in verband met de voorgenomen putboring nabij Amsterdam. (Notes on the probable results of the proposed well drilling near Amsterdam). Tijdschrift het Koninklijk Instituut voor Ingenieurs. The Hague, pp 8–22Google Scholar
  9. Bower R, Crennan L, Navatoga A (2005) The sanitation park project. Fiji. SOPAC Technical Report No. 386, SOPAC, Suva, FijiGoogle Scholar
  10. Buddemeier RW, Holladay GL (1977) Atoll hydrology, island ground-water characteristics and their relationship to diagenesis. Proc. 3rd Internat. Coral Reef Symposium, Miami, 2:167–174Google Scholar
  11. Burns WCG (2002) Pacific Island developing country water resources and climate change. In: Gleick PH, Burns WCG, Chalecki EL, Cohen M (eds) World's water 2002–2003: the biennial report on freshwater resources. Island Press, Washington, DC, pp 113–131Google Scholar
  12. Chapman TG (1985) The use of water balances for water resource estimation with special reference to small islands. Bulletin No. 4. Pacific Regional Team. Australian Development Assistance Bureau, Canberra, Australia, pp 34Google Scholar
  13. Crennan L, Berry G (2002) Review of community-based issues and activities in waste management, pollution prevention and improved sanitation in the Pacific Islands Region. IWP Technical Report 2002/03. In Wright A, Stacey N (eds) Issues for community based sustainable resource management and conservation: considerations for the Strategic Action Plan for the International Waters of the Pacific Small Island Developing States. The International Waters Programme, South Pacific Regional Environment Programme, Apia, SamoaGoogle Scholar
  14. Crennan L, Fatai T, Fakatava T (1998) Groundwater Pollution Study, Completion of Phase Two, Lifuka, Kingdom of Tonga, report submitted to UNESCO Office of Pacific States, Apia, Samoa, December 1998Google Scholar
  15. Dale WR, Waterhouse BC, Risk GF, Petty DR (1986) Coral island hydrology, a training guide for field practice. Commonwealth Science Council, Technical Publication Series, No. 214Google Scholar
  16. Depledge D (1997) Sanitation for Small Islands: Guidelines for selection and development. SOPAC Miscellaneous Report 250. SOPAC, Fiji, September 1997Google Scholar
  17. Detay M, Alessandrello E, Come P, Groom I (1989) Groundwater contamination and pollution in Micronesia. J Hydrol 112:149–170CrossRefGoogle Scholar
  18. DHC (1982) Kiribati – Tarawa water resources, Pre-design study. Prepared for the Australian Development Assistance Bureau by the Australian Government Department of Housing and ConstructionGoogle Scholar
  19. Dijon R (1983) Some aspects of water resources planning and management in smaller islands. Natural Resources Forum, United Nations 7(2):137–144Google Scholar
  20. Falkland A (1992) Review of Tarawa freshwater lenses, Republic of Kiribati. Report HWR92/681. Hydrology and Water Resources Branch, ACT Electricity and Water. Prepared for Australian International Development Assistance BureauGoogle Scholar
  21. Falkland A (1993) Hydrology and water management on small tropical islands. In Gladwell JS (ed) Proc. Symp. Hydrology of Warm Humid Regions. International Association of Hydrological Sciences Publ. No. 216:263–303Google Scholar
  22. Falkland A (1999) Water management for Funafuti, Tuvalu. Prepared for the Australian Agency for International Development, Canberra, Australia, August 1999Google Scholar
  23. Falkland A (2000a) Penrhyn, Cook Islands, Report on Water Investigations, June 2000. Prepared for Australian Agency for International Development, August 2000Google Scholar
  24. Falkland A (2000b) An outline of recent water supply improvements for Pangai-Hihifo, Lifuka, Kingdom of Tonga. Prepared for Tonga Water Board, August 2000Google Scholar
  25. Falkland A (2002) Tropical island hydrology and water resources: current knowledge and future needs. In: Gladwell JS (ed) Proc. Second International Colloquium on Hydrology and Water Resources Management in the Humid Tropics, 22–25 March 1999, UNESCO-IHP, CATHALAC, Panama City, PanamaGoogle Scholar
  26. Falkland A (2004) Preliminary Design Report for Four Infiltration Galleries at Bonriki, Tarawa, Kiribati. SAPHE Project, Hydrogeology Component. Tarawa, Republic of Kiribati, August 2004Google Scholar
  27. Falkland A, Brunel JP (1993) Review of hydrology and water resources of humid tropical islands. In: Bonell M, Hufschmidt MM, Gladwell JS (eds) Hydrology and water management in the humid tropics. Cambridge University Press, UNESCO, International Hydrology Series, pp 135–166Google Scholar
  28. Falkland A, Woodroffe CD (1997) Geology and hydrogeology of Tarawa and Christmas Island, Kiribati. Chapter 19. In: Vacher HL, Quinn TM (eds) Geology and hydrogeology of carbonate islands. Developments in Sedimentology 54. Elsevier, Amsterdam, pp 577–610Google Scholar
  29. Foale M (2003) The coconut odyssey: the bounteous possibilities of the tree of life. Australian Centre for International Agricultural Research, Canberra, p 132Google Scholar
  30. Furness LJ (1997) Hydrogeology of carbonate islands of the Kingdom of Tonga. Chapter 18. In: Vacher HL, Quinn TM (eds) Geology and hydrogeology of carbonate islands. Developments in Sedimentology 54. Elsevier, Amsterdam, pp 565–576Google Scholar
  31. Furness LJ, Gingerich S (1993) Estimation of recharge to the fresh water lens of Tongatapu, Kingdom of Tonga. In: Gladwell JS (ed) International Association of Hydrological Sciences Publ. No. 216:317–322Google Scholar
  32. Griggs JE, Peterson FL (1993) Ground-water flow dynamics and development strategies at the atoll scale. Ground Water 31(2):209–220CrossRefGoogle Scholar
  33. GWP (2006) Groundwater resources investigations on Niue Island for Government and South Pacific Applied Geoscience Commission (SOPAC), GWP Consultants, Charlbury, Oxford, United Kingdom, March 2006Google Scholar
  34. Hamlin SN, Anthony SS (1987) Ground-water resources of the Laura area, Majuro Atoll, Marshall Islands, USGS Water Resources Investigation Report 87–4047, Hawaii, U.S.A.Google Scholar
  35. Hein JR, Gray SC, Richmond BR (1997) Geology and hydrogeology of the Cook Islands. Chapter 16. In: Vacher HL, Quinn TM (eds) Geology and hydrogeology of carbonate islands. Developments in Sedimentology 54. Elsevier, Amsterdam, pp 503–535Google Scholar
  36. Herzberg A (1901) Die Wasserversorgung einiger Nordseebäder (The water supply on parts of the North Sea coast). Jour für Gasbeleuchtung und Wasserversorgung, München 44:815–819 45:842–844Google Scholar
  37. Hunt CD, Peterson FL (1980) Groundwater resources of Kwajalein island, Marshall Islands. Tech. Rpt. 126, Water Resources Research Centre, Univ. of HawaiiGoogle Scholar
  38. IETC (1998) Source book of alternative technologies for freshwater augmentation in Small Island Developing States. International Environmental Technology Centre in collaboration with South Pacific Applied Geoscience Commission and the Water Branch of UNEP, Technical Publication Series No. 8Google Scholar
  39. Jacobson G, Hill PJ (1980) Groundwater resources of Niue Island. Bureau of Mineral Resources Record No. 1980/14, Canberra, AustraliaGoogle Scholar
  40. Jacobson G, Hill PJ (1988) Hydrogeology and groundwater resources of Nauru Island, Central Pacific Ocean. Bureau of Mineral Resources Record No. 1988/12 Canberra, AustraliaGoogle Scholar
  41. Jacobson G, Taylor FJ (1981) Hydrogeology of Tarawa atoll, Kiribati. Bureau of Mineral Resources Record, No. 1981/31, Canberra, AustraliaGoogle Scholar
  42. Jacobson G, Hill PJ, Ghassemi F (1997) Geology and hydrogeology of Nauru Island. Chapter 24. In: Vacher HL, Quinn TM (eds) Geology and hydrogeology of carbonate islands. Developments in Sedimentology 54. Elsevier, Amsterdam, pp 707–742Google Scholar
  43. Mather JD (1973) The groundwater resources of southern Tarawa, Gilbert and Ellice Islands. Hydrogeological Department, Institute of Geological Sciences, UK, 54 ppGoogle Scholar
  44. Mink JF, Vacher HL (1997) Hydrogeology of northern Guam. Chapter 25. In: Vacher HL, Quinn TM (eds) Geology and hydrogeology of carbonate islands. Developments in Sedimentology 54. Elsevier, Amsterdam, pp 743–759Google Scholar
  45. Nullet D (1987) Water balance of Pacific atolls. Water Resour Bull 23(6):1125–1132Google Scholar
  46. Oberdorfer JA, Buddemeier RW (1984) Atoll island groundwater contamination: rapid recovery from saltwater intrusion. Annual Meeting of the Association of Engineering Geologists. Boston, Mass. USA, 9–11 Oct. 1984Google Scholar
  47. Oberdorfer JA, Buddemeier RW (1988) Climate change, effects on reef island resources. Sixth International Coral Reef Symposium, Townsville, Australia, 3:523–527Google Scholar
  48. Oberdorfer JA, Hogan PJ, Buddemeier RW (1990) Atoll island hydrogeology, flow and fresh water occurrence in a tidally dominated system. J Hydrol 120:327–340CrossRefGoogle Scholar
  49. Pacific HYCOS (2009) Pacific hydrological cycle observing system. http://pacific-hycos.org/. Cited 23 July 2009
  50. Peterson FL (1997) Hydrogeology of the Marshall Islands, Chap. 20. In: Vacher HL, Quinn TM (eds) Geology and hydrogeology of carbonate islands. Developments in Sedimentology 54. Elsevier, Amsterdam, pp 611–636Google Scholar
  51. Richards R (1991) Atoll vulnerability: the storm waves on Tokelau on 28 February 1987. In: Hay J (ed) South Pacific environments: interactions with weather and climate. University of Auckland, Environmental Science, pp 155–156Google Scholar
  52. Richardson and Dumbleton International (1978) Water resources, Tarawa, report on feasibility study. Prepared for the UK Ministry of Overseas Development on behalf of the Government of the Gilbert IslandsGoogle Scholar
  53. Scott D, Overmars M, Falkland A, Carpenter C (2003) Pacific dialogue on climate and water. synthesis report. SOPAC, February 2003, 36ppGoogle Scholar
  54. SOPAC (2005) First Groundwater Training Course. Hydrological training on surface water and groundwater, SOPAC Secretariat, 4th – 22nd April 2005, sponsored by NZAid, NIWA, UNESCO and SOPACGoogle Scholar
  55. SOPAC (2006) Second Groundwater Training Course. Hydrological training on surface water and groundwater, SOPAC Secretariat, 12th – 30th June 2006, sponsored by NZAid, NIWA and SOPACGoogle Scholar
  56. SOPAC (2009) Pacific Islands Applied Geoscience Commission. Water, Sanitation and Hygiene website http://www.pacificwater.org/index.cfm. Cited 23 July 2009.
  57. Spennemann DHR (2006) Freshwater lens, settlement patterns, resource use and connectivity in the Marshall Islands. Transforming Cultures eJournal 1(2):44–63Google Scholar
  58. Stewart M (1988) Electromagnetic mapping of fresh-water lenses on small oceanic islands. Ground Water 26(2):187–191CrossRefGoogle Scholar
  59. Terry JP (2007) Tropical cyclones, climatology and impacts in the South Pacific. Springer, Berlin Heidelberg New YorkGoogle Scholar
  60. Underwood MR, Peterson FL, Voss CI (1992) Groundwater lens dynamics of atoll islands. Water Resour Res 28(11):2889–2902CrossRefGoogle Scholar
  61. UNEP (2002) A directory of environmentally sound technologies for the integrated management of solid, liquid and hazardous waste for Small Island Developing States (SIDS) in the Pacific Region. Compiled by OPUS International in conjunction with South Pacific Regional Environment Programme (SPREP) and South Pacific Applied Geoscience Commission (SOPAC), July 2002Google Scholar
  62. UNESCO (1991) Hydrology and water resources of small islands, a practical guide. Studies and reports on hydrology No 49. prepared by A Falkland (ed) and E Custodio with contributions from A Diaz Arenas and L Simler and case studies submitted by others. UNESCO, Paris, FranceGoogle Scholar
  63. Vacher HL, Quinn TM (eds) (1997) Geology and hydrogeology of carbonate Islands. Developments in Sedimentology 54. Elsevier, AmsterdamGoogle Scholar
  64. van der Velde M (2006) Agricultural and climatic impacts on the groundwater resources of a small island. Measuring and modeling water and solute transport in soil and groundwater on Tongatapu. PhD Thesis, Faculty of Biological, agricultural and Environmental Engineering, Catholic University of Louvain, 263 ppGoogle Scholar
  65. van der Velde M, Green SR, Gee GW, Vanclooster M, Clothier BE (2005) Evaluation of drainage from passive suction and nonsuction flux meters in a volcanic clay soil under tropical conditions. Vadose Zone J 4:1201–1209CrossRefGoogle Scholar
  66. van der Velde M, Javaux M, Vanclooster M, Clothier BE (2006) El Niño-Southern Oscillation determines the salinity of the freshwater lens under a coral atoll in the Pacific Ocean. Geophys Res Lett 33:L21403. doi: 10.1029/2006GL027748 CrossRefGoogle Scholar
  67. van der Velde M, Green SR, Vanclooster M, Clothier BE (2007) Sustainable development in small island developing states: agricultural intensification, economic development, and freshwater resources management on the coral atoll of Tongatapu. Ecol Econ 61:456–468CrossRefGoogle Scholar
  68. Volker RE, Mariño MA, Rolston DE (1985) Transition zone width in ground water on ocean atolls. J Hydraul Eng 111(4):659–676CrossRefGoogle Scholar
  69. Voss CI (1984) SUTRA, A finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport. USGS Water Resources Investigation Report 84–4389, 409 ppGoogle Scholar
  70. Voss CI, Boldt D, Sharpiro AM (1997) A graphical-user interface for the US Geological Survey’s SUTRA code using Argus ONE (for Simulation of Variable–Density Saturated-Unsaturated Ground-Water Flow with Solute or Energy Transport), US Geological Survey, Open-File Report 97–421, Reston, VirginiaGoogle Scholar
  71. Wheatcraft SW, Buddemeier RW (1981) Atoll island hydrology. Ground Water 19(3):311–320CrossRefGoogle Scholar
  72. Wheeler C, Aharon P (1997) Geology and hydrogeology of Niue. Chap. 17. In: Vacher HL, Quinn TM (eds) Geology and hydrogeology of carbonate islands. Developments in Sedimentology 54. Elsevier, Amsterdam, pp 537–564Google Scholar
  73. White I, Falkland A (2004) Effects of pumping from infiltration galleries on crop health and production in low coral islands: groundwater impacts. ACIAR Project LWR1/2001/050, Equitable Groundwater Management for the Development of Atolls and Small Islands, Australian Centre for International Agricultural Research, Canberra. November 2004Google Scholar
  74. White I, Falkland A, Scott D (1999a) Droughts in small coral islands: Case study, South Tarawa, Kiribati. UNESCO IHP-V, Technical Documents in Hydrology, No. 26, UNESCO, Paris, 55 ppGoogle Scholar
  75. White I, Falkland A, Crennan L, Jones P, Metutera T, Etuati B, Metai E (1999b) Groundwater recharge in low coral islands Bonriki, South Tarawa, Kiribati. Issues, traditions and conflicts in groundwater use and management. UNESCO IHP-V, Technical Documents in Hydrology, No. 25, UNESCO, Paris, France, 39 ppGoogle Scholar
  76. White I, Falkland A, Etuati B, Metai E, Metutera T (2002) Recharge of fresh groundwater lenses: field study, Tarawa Atoll, Kiribati. Hydrology and Water Resources Management in the Humid Tropics, Proc. Second International Colloquium, 22–26 March 1999, Panama, Republic of Panama, IHP-V Technical Documents in Hydrology No 52, UNESCO, Paris, 2002, 299–332Google Scholar
  77. White I, Falkland A, Perez P, Metutera T, Metai E (2003) Water resources of Tarawa Atoll, Republic of Kiribati. ACIAR Project LWR1/2001/050 Equitable Groundwater Management for the Development of Atolls and Small Islands, Australian Centre for International Agricultural Research, Canberra, May 2003Google Scholar
  78. White I, Falkland A, Metutera T, Metai E (2005) Effects of landuse on groundwater quality in a low coral atoll: coliforms, nutrients and metals. ACIAR Project LWR1/2001/050, Equitable Groundwater Management for the Development of Atolls and Small Islands, Australian Centre for International Agricultural Research, Canberra, May 2005Google Scholar
  79. White I, Falkland A, Perez P, Dray A, Metutera T, Metai E, Overmars M (2007a) Challenges in freshwater management in low coral atolls. J Clean Prod 15:1522–1528CrossRefGoogle Scholar
  80. White I, Falkland A, Metutera T, Metai E, Overmars M, Perez P, Dray A (2007b) Climatic and human influences on groundwater in low Atolls. Vadose Zone J 6:581–590CrossRefGoogle Scholar
  81. White I, Falkland A, Metutera T, Katatia M, Abete-Reema T, Overmars M, Perez P, Dray A (2008) Safe water for people in low, small island Pacific nations: the rural-urban dilemma. Development 51:282–287CrossRefGoogle Scholar
  82. White I, Falkland A, Fatai T (2009) Vulnerability of groundwater in Tongatapu, Kingdom of Tonga: groundwater evaluation and monitoring assessment. Report to Pacific Islands Applied Geoscience Commission, EU EDF8, February 2009, ANU, CanberraGoogle Scholar
  83. WHO (2004) Guidelines for drinking-water quality. 3rd edn., including addenda in 2006 and 2008. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  84. WHO (2008) Sanitation, hygiene and drinking-water in the Pacific island countries. Converting commitment into action. World Health Organization and SOPAC, 2008Google Scholar
  85. Wooding RA (1963) Convection in a saturated porous media at large Rayleigh number or Peclet number. J Fluid Mech 15:527–544CrossRefGoogle Scholar
  86. Wooding RA (1964) Mixing-layer flows in a saturated porous media. J Fluid Mech 19:103–112CrossRefGoogle Scholar
  87. Woodroffe CD (2008) Reef-island topography and the vulnerability of atolls to sea-level rise. Global Planet Change 62:7–96CrossRefGoogle Scholar
  88. World Bank (2000) Cities, seas and storms, managing change in Pacific island economies, Volume IV, Adapting to Climate Change, Papua New Guinea and Pacific Island Country Unit, World Bank, November 2000Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Water Resources, Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralia
  2. 2.Island Hydrology ServicesCanberraAustralia

Personalised recommendations