Hydrogeology Journal

, Volume 18, Issue 1, pp 131–145 | Cite as

Computational and conceptual issues in the calibration of seawater intrusion models

  • Jesús Carrera
  • Juan J. Hidalgo
  • Luit J. Slooten
  • Enric Vázquez-Suñé
Paper

Abstract

The inverse problem of seawater intrusion (SWI) is reviewed. It represents a challenge because of both conceptual and computational difficulties and because coastal aquifer models display many singularities: (1) head measurements need to be complemented with density information; (2) salinity concentration data are very sensitive to flow within the borehole. Data problems can be reduced by incorporating the measurement process within model calibration; (3) SWI models are extremely sensitive to aquifer bottom topography; (4) the initial conditions may be far from steady state and depend on the location and type of sea-aquifer connection. Problems with aquifer geometry and initial conditions can be addressed by parameterization, which allows for modification during inversion. The four sets of difficulties can be partly overcome by using tidal response and electrical conductivity data, which are highly informative and provide extensive coverage. Still, SWI inversion is extremely demanding from a computation point of view. Computational improvements are discussed.

Keywords

Coastal aquifers Inverse modelling Numerical modeling 

Problèmes conceptuels et de calibration des modèles d’intrusion marines

Resumé

Le problème inverse de l’intrusion saline (SWI) est décrit ici. Il représente un challenge de par les difficultés de concept et de calcul et du fait que les modèles d’aquifères côtiers présentent diverses particularités: (1) la mesure du niveau piézométrique nécessite une information dense; (2) les données de concentration en sels sont sensibles aux flux au sein des forages. Le problème de données peut être réduit par l’incorporation des processus de mesure dans la calibration du modèle; (3) les modèles de SWI sont extrêmement sensibles à la topographie de la base des aquifères; (4) les conditions initiales peuvent être loin de l’état stationnaire et dépendent de la localisation et du type de connexion entre la mer et l’aquifère. Les problèmes de la géométrie des aquifères et des conditions initiales peuvent être adressées par la paramétrisation qui permet des modifications durant l’inversion. Les quatre types de difficultés peuvent être en partie dépassés en utilisant la réponse tidale et les données de conductivité qui apportent beaucoup d’information sur une surface importante. SWI reste toutefois très demandeuse en calcul. Des améliorations de calculs sont discutées.

Aspectos computacionales y conceptuales de la calibración de modelos de intrusión marina

Resumen

Se presenta una revisión del problema inverso en intrusión marina, que representa un desafío tanto por las dificultades conceptuales y computacionales como por las abundantes singularidades de los modelos de acuíferos costeros: (1) Las medidas de nivel necesitan complementarse con información sobre la densidad; (2) Los datos de concentración de salinidad son muy sensibles al flujo en el interior del sondeo. Los problemas con los datos se pueden reducir incorporando el proceso de medida en la calibración; (3) Los modelos de intrusión marina son extremadamente sensibles a la topografía de la base del acuífero; (4) Las condiciones iniciales pueden estar lejos del estado estacionario y depender de la situación y tipo de la conexión mar-acuífero. Estos dos últimos problemas pueden abordarse mediante la parametrización de la geometría del acuífero y las condiciones iniciales, lo que permite su modificación durante la inversión. Los cuatro conjuntos de dificultades pueden ser parcialmente superados usando la respuesta a las mareas y datos de conductividad eléctrica, que son muy informativos y de extensa cobertura. Aún así, la inversión de problemas de intrusión marina es extremadamente exigente desde el punto de vista computacional. Se discuten algunas mejoras computacionales.

海水入侵模型识别中的计算和概念问题

摘要

本文对海水入侵 (SWI) 的反问题进行了评述研究。这项工作的挑战性体现在概念和计算的困难, 以及沿海含水层模型的特异性质 : (1) 水头测量需要辅之以密度信息; (2) 盐度数据对钻孔中水的流动非常敏感。测量过程中加入模型识别可以减少数据带来的问题; (3) SWI模型对含水层底部地形极度敏感; (4) 初始条件与稳态相去甚远, 且取决于海与含水层连接的位置和类型。调参能够解决含水层形态和初始条件的问题, 因为在反演过程中调参可以进行适当的修改。这四个难点可以通过潮水响应和电导率数据部分解决, 因其能够提供较高和覆盖面较广的信息量。尽管如此, SWI反演仍极度依赖于计算方法。最后讨论了计算方法的改进。

Problemas computacionais e conceptuais na calibração de modelos de intrusão marinha

Resumo

Faz-se uma revisão do problema inverso da intrusão de água salgada marinha (seawater intrusion, SWI). Trata-se de um desafio motivado por dificuldades de natureza conceptual e computacional e pelo facto dos modelos de aquíferos costeiros incluírem muitas singularidades: (1) Medidas de carga hidráulica necessitam ser complementadas com informação acerca da densidade; (2) Os dados de concentração da salinidade são muito sensíveis ao escoamento dentro do furo. Os problemas com os dados podem ser reduzidos através da incorporação dos processos de medição na calibração do modelo; (3) Os modelos de SWI são extremamente sensíveis à topografia da base do aquífero; (4) As condições iniciais podem estar longe de ser estacionárias e dependem da localização e tipo de conexão mar-aquífero. Os problemas com a geometria do aquífero e as condições iniciais podem ser tratados através da parametrização, a qual permite modificações durante a inversão. Os quatro conjuntos de dificuldades podem ser parcialmente ultrapassados através da utilização da resposta de maré e pela utilização de dados de condutividade eléctrica, que são altamente informativos e proporcionam uma cobertura extensiva. Entretanto, a inversão SWI é altamente exigente sob o ponto de vista computacional. São discutidos aperfeiçoamentos computacionais.

Notes

Acknowledgements

The authors are grateful to comments by three anonymous reviewers, and the editors (Elena Abarca and Vincent Post). Much of the experience summarized here has been obtained through projects funded by ENRESA (Spanish radioactive waste management company), CICYT (Spanish research funding agency), ACA (Catalonian water agency), IGME (Spanish geological survey) and EU (notably project SALTRANS).

References

  1. Abarca E, Vázquez-Suñé E, Carrera J, Capino B, Gámez D, Batlle F (2006) Optimal design of measures to correct seawater intrusion. Water Resour Res 42(9), W09415CrossRefGoogle Scholar
  2. Abarca E, Carrera J, Sanchez-Vila X, Dentz M (2007a) Anisotropic dispersive Henry problem. Adv Water Resour 30(4):913–926CrossRefGoogle Scholar
  3. Abarca E, Carrera J, Sanchez-Vila X, Voss CI (2007b) Quasy-horizontal circulation cells in 3D seawater intrusion. J Hydrol 339(3–4):118–129CrossRefGoogle Scholar
  4. Alcolea A, Carrera J, Medina A (2006) Pilot points method incorporating prior information for solving the groundwater flow inverse problem. Adv Water Resour 29(11):1678–1689CrossRefGoogle Scholar
  5. Alcolea A, Castro E, Barbieri M, Carrera J, Bea S (2007) Inverse modeling of coastal aquifers using tidal response and hydraulic tests. Ground Water 45(6):711–722CrossRefGoogle Scholar
  6. Alcolea A, Renard P, Mariethoz G, Bertone F (2009) Reducing the impact of a desalination plant using stochastic modeling and optimization techniques. J Hydrol 365:275–288CrossRefGoogle Scholar
  7. Ataie-Ashtiani B, Volker RE, Lockington DA (2001) Tidal effects on groundwater dynamics in unconfined aquifers. Hydrol Process 15:655–669CrossRefGoogle Scholar
  8. Barazzuoli P, Nocchi M, Rigati R, Salleolini M (2008) A conceptual and numerical model for groundwater management: a case study on a coastal aquifer in southern Tuscany, Italy. Hydrogeol J 16(8):1557–1576CrossRefGoogle Scholar
  9. Barlebo HC, Hill MC, Rosbjerg D (2004) Investigating the Macrodispersion Experiment (MADE) site in Columbus, Mississippi, using a three-dimensional inverse flow and transport model. Water Resour Res 40(4), W04211CrossRefGoogle Scholar
  10. Bauer P, Held RJ, Zimmermann S, Linn F, Kinzelbach W (2006a) Coupled flow and salinity transport modelling in semi-arid environments: the Shashe River Valley, Botswana. J Hydrol 316(1–4):163–183CrossRefGoogle Scholar
  11. Bauer P, Supper R, Zimmermann S, Kinzelbach W (2006b) Geoelectrical imaging of groundwater salinization in the Okavango Delta, Botswana. J Appl Geophys 60(2):126–141CrossRefGoogle Scholar
  12. Becker L, Yeh WWG (1972) Identification of parameters in unsteady open channel flows. Water Resour Res 8(4):956–965CrossRefGoogle Scholar
  13. Benhachmi, MK, Ouazar D, Naji A, Cheng AHD, El Harrouni K (2003) Pumping optimization in saltwater intruded aquifers by simple genetic algorithm-Deterministic model. Proceedings of Coastal Aquifers Intrusion Technology: Mediterranean Countries International Conference (TIAC'03), vol 1, Alicante, Spain, March 2003, pp 291-293Google Scholar
  14. Bray BS, Yeh WWG (2008) Improving seawater barrier operation with simulation optimization in southern California. J Water Res Pl-ASCE 134(2):171–180CrossRefGoogle Scholar
  15. Bray BS, Tsai FTC, Sim Y, Yeh WWG (2007) Model development and calibration of a saltwater intrusion model in southern California. JAWRA 43(5):1329–1343Google Scholar
  16. Bridger DW, Allen DM (2006) An investigation into the effects of diffusion on salinity distribution beneath the Fraser River Delta, Canada. Hydrogeol J 14(8):1423–1442CrossRefGoogle Scholar
  17. Canot E, de Dieuleveult C, Erhel J (2006) A parallel software for a saltwater intrusion problem. In: Joubert GR, Nagel WE, Peters FJ, Plata O, Tirado P, Zapata E (eds) Parallel computing: current and future issues of high-end computing, Proceedings of the International Conference ParCo 2005, vol 33. NIC Series, John von Neumann Institute for Computing, Jülich, Germany, pp 399–406Google Scholar
  18. Carr PA, Vanderkamp GS (1969) Determining aquifer characteristics by tidal method. Water Resour Res 5:1023–1031CrossRefGoogle Scholar
  19. Carrera J (1987) State of the art of the inverse problem applied to the flow and solute transport problems. In: Groundwater flow and quality modeling, NATO ASI Ser:549-585Google Scholar
  20. Carrera J, Glorioso L (1991) On geostatistical formulations of the groundwater flow inverse problem. Adv Water Resour 14(5):273–283CrossRefGoogle Scholar
  21. Carrera J, Neuman SP (1986a) Estimation of aquifer parameters under transient and steady-state conditions: 1. maximum likelihood method incorporating prior information. Water Resour Res 22(2):199–210CrossRefGoogle Scholar
  22. Carrera J, Neuman SP (1986b) Estimation of aquifer parameters under transient and steady-state conditions: 2. uniqueness, stability and solution algorithms. Water Resour Res 22(2):211–227CrossRefGoogle Scholar
  23. Carrera J, Neuman SP (1986c) Estimation of aquifer parameters under transient and steady-state conditions: 3. application to synthetic and field data. Water Resour Res 22(2):228–242CrossRefGoogle Scholar
  24. Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten L (2005) Inverse problem in hydrogeolgy. Hydrogeol J 13:206–222CrossRefGoogle Scholar
  25. Chang S, Yeh WWG (1976) Proposed algorithm for solution of large-scale inverse problem in groundwater. Water Resour Res 12(3):365–374CrossRefGoogle Scholar
  26. Clauser C (ed) (2003) Numerical simulation of reactive flow in hot aquifers. SHEMAT and PROCESSING SHEMAT. Springer, New YorkGoogle Scholar
  27. Comte JC, Banton O (2007) Cross-validation of geo-electrical and hydrogeological models to evaluate seawater intrusion in coastal aquifers. Geophys Res Lett 34(10):L10402CrossRefGoogle Scholar
  28. Cooley RL (1985) A comparison of several methods of solving nonlinear-regression groundwater-flow problems. Water Resour Res 21(10):1525–1538CrossRefGoogle Scholar
  29. Custodio E, Bayó A, Pelaez MD (1971) Geoquímica y datación de aguas para el estudio del movimiento de las aguas subterráneas en el delta del Llobregat (Barcelona) [Geochemistry and water datation for the study of the movement of groundwater in the Llobregat Delta (Barcelona) ]. In: Primer congreso Hispano-Luso-Americano de Geología Económica, vol 5, Madrid-Lisboa Comunicación E-5-2. IGME, Madrid, pp 2–23Google Scholar
  30. Dagan G (1985) Stochastic modeling of groundwater-flow by unconditional and conditional probabilities: the inverse problem. Water Resour Res 21:65–72CrossRefGoogle Scholar
  31. Dausman AM, Doherty J, Langevin CD (2009) Hypothesis testing of buoyant plume migration using a highly parameterized variable-density groundwater model at a site in Florida, USA. Hydrogeol J. doi:10.1007/s10040-009-0511-6 Google Scholar
  32. Davis SN (1969) Porosity and permeability of natural materials. In: DeWiest RJM (ed) Flow through porous media. Academic, New York, pp 54–86Google Scholar
  33. de Marsily G, Delhomme JP, Delay F, Buoro A (1999) 40 years of inverse problems in hydrogeology. CR Acad Sci Paris Earth Planet Sci 329(2):73–87Google Scholar
  34. Distefano N, Rath A (1975) An identification approach to subsurface hydrological systems. Water Resour Res 11(6):1005–1012CrossRefGoogle Scholar
  35. Doherty J (2002) PEST: Model-independent parameter estimation user manual, 5th edn. Watermark Numerical Computing, Brisbane, Queensland, AustraliaGoogle Scholar
  36. Doherty J (2008) Incorporating Initial Conditions in the Model Calibration Process. Proceedings of the 20th SWIM meeting. Naples, FL, USA, 23–27 June 2008, pp 64–67. http://conference.ifas.ufl.edu/swim/papers.pdf. September 2009
  37. Duan QY, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031CrossRefGoogle Scholar
  38. Emselem Y, de Marsily G (1971) An automatic solution for the inverse problem. Wat Resour Res 7(5):1264–1283CrossRefGoogle Scholar
  39. Feseker T (2007) Numerical studies on saltwater intrusion in a coastal aquifer in northwestern Germany. Hydrogeol J 15:267–279CrossRefGoogle Scholar
  40. Galarza GA, Carrera J, Medina A (1999) Computational techniques for optimization of problems involving non-linear transient simulations. Int J Numer Methods Eng 45:319–334CrossRefGoogle Scholar
  41. Gámez D, Simó JA, Lobo FJ, Barnolas A, Carrera J, Vázquez-Suñé E (2009) Onshore–offshore correlation of the Llobregat deltaic system, Spain: development of deltaic geometries under different relative sea-level and growth fault influences. Sediment Geol 217(1–4):64–84. doi:10.1016/j.sedgeo.2009.03.007 Google Scholar
  42. Giudici M, Ponzini G, Parravicini G (2000) Uniqueness and stability of the determination of aquifer properties with inverse problems. In: Bjerg PL, Engesgaard P, Krom TD (eds) Proceedings of the International Conference on Groundwater Research, Copenhagen, Denmark, 6–8 June 2000, pp 91–92Google Scholar
  43. Griewank A (2000) Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM, PhiladelphiaGoogle Scholar
  44. He B, Takase K, Wang Y (2007) Regional groundwater prediction model using automatic parameter calibration SCE method for a coastal plain of Seto Inland Sea. Water Resour Manage 21(6):947–959CrossRefGoogle Scholar
  45. Henry H (1964) Effects of dispersion on salt encroachment in coastal aquifers. US Geol Surv Water Suppl Pap 1613-CGoogle Scholar
  46. Hernández AF, Neuman SP, Guadagnini A, Carrera J (2006) Inverse stochastic moment analysis of steady state flow in randomly heterogeneous media. Water Resour Res 42(5), W05425CrossRefGoogle Scholar
  47. Hill M (1998) Methods and guidelines for effective model calibration. US Geol Surv Water Resour Invest Rep 98-4005Google Scholar
  48. Hill MC, Østerby O (2003) Determining extreme parameter correlation in ground water models. Ground Water 41(4):420–430CrossRefGoogle Scholar
  49. Hunt RJ, Doherty J, Tonkin MJ (2007) Are models too simple? Arguments for increased parameterization. Ground Water 45:254–262CrossRefGoogle Scholar
  50. Iribar V, Carrera J, Custodio E, Medina A (1997) Inverse modelling of seawater intrusion in the Llobregat delta deep aquifer. J Hydrol 198(1–4):226–244CrossRefGoogle Scholar
  51. Jacquard P, Jain C (1965) Permeability distribution from field pressure data. Soc Pet Eng J 5(4):281–294Google Scholar
  52. Kafri U, Goldman M, Lyakhovsky V, Scholl C, Helwig S, Tezkan B (2007) The configuration of the fresh-saline groundwater interface within the regional Judea Group carbonate aquifer in northern Israel between the Mediterranean and the Dead Sea base levels as delineated by deep geoelectromagnetic soundings. J Hydrol 344(1–2):123–134CrossRefGoogle Scholar
  53. Karahanoglu N, Doyuran V (2003) Finite element simulation of seawater intrusion into a quarry-site coastal aquifer, Kocaeli-Darica, Turkey. Environ Geol 44(4):456–466CrossRefGoogle Scholar
  54. Katsifarakis KL, Petala Z (2006) Combining genetic algorithms and boundary elements to optimize coastal aquifers' management. J Hydrol 327(1–2):200–207. doi:10.1016/j.jhydrol.2005.11.016 CrossRefGoogle Scholar
  55. Kitanidis PK, Vomvoris EG (1983) A geostatistical approach to the inverse problem in groundwater modelling (steady state) and one dimensional simulations. Water Resour Res 19(3):677–690CrossRefGoogle Scholar
  56. Knopman DS, Voss CI (1989) Multiobjective sampling design for parameter-estimation and model discrimination in groundwater solute transport. Water Resour Res 25(10):2245–2258CrossRefGoogle Scholar
  57. Knudby C, Carrera J (2006) On the use of apparent hydraulic diffusivity as an indicator of connectivity. J Hydrol 329(3–4):377–389CrossRefGoogle Scholar
  58. Lebbe L (1999) Parameter identification in fresh-saltwater flow based on borehole resistivities and freshwater head data. Adv Water Resour 22(8):791–806CrossRefGoogle Scholar
  59. Lu C, Lichtner PC (2007) High resolution numerical investigation on the effect of convective instability on long term CO2 storage in saline aquifers. J Phys: Conf Ser 78 012041. doi:10.1088/1742-6596/78/1/012042
  60. Mantoglou A (2003) Pumping management of coastal aquifers using analytical models of saltwater intrusion. Water Resour Res 33:1335CrossRefGoogle Scholar
  61. Martínez-Landa L, Carrera J (2006) A methodology to interpret cross-hole tests in a granite block. J Hydrol 325:222–240CrossRefGoogle Scholar
  62. McLaughlin D, Townley LLR (1996) A reassessment of the groundwater inverse problem. Water Resour Res 32(5):1131–1161CrossRefGoogle Scholar
  63. Medina A, Carrera J (1996) Coupled estimation of flow and solute transport parameters. Water Resour Res 32:3063–3076CrossRefGoogle Scholar
  64. Medina A, Carrera J (2003) Geostatistical inversion of coupled problems: dealing with computational burden and different types of data. J Hydrol 281:251–264CrossRefGoogle Scholar
  65. Momii K, Shoji J, Nakagawa K (2005) Observations and modelling of seawater intrusion for a small limestone island aquifer. Hydrol Process 19(19):3897–3909CrossRefGoogle Scholar
  66. Mulligan AE, Evans RL, Lizarralde D (2007) The role of paleochannels in groundwater/seawater exchange. J Hydrol 335(3–4):313–329CrossRefGoogle Scholar
  67. Nelson RW (1960) In-place measurement of permeability in heterogeneous media: 1. theory of a proposed method. J Geophys Res 65(6):1753–1758CrossRefGoogle Scholar
  68. Neuman SP (1973) Calibration of distributed parameter groundwater flow models viewed as a multiple-objective decision process under uncertainty. Water Resour Res 9(4):1006–1021CrossRefGoogle Scholar
  69. Neuman SP, Carrera J (1985) Maximum-likelihood adjoint-state finite-element estimation of groundwater parameters under steady-state and nonsteady-state conditions. Appl Math Comput 17:405–432CrossRefGoogle Scholar
  70. Neuman SP, Yakowitz S (1979) Statistical approach to the inverse problem of aquifer hydrology: 1. theory. Water Resour Res 15(4):845–860CrossRefGoogle Scholar
  71. Person M, Taylor JZ, Dingman SL (1998) Sharp interface models of salt water intrusion and wellhead delineation on Nantucket Island, Massachusetts. Ground Water 36(5):731–742CrossRefGoogle Scholar
  72. Poeter EP, Hill MC (1997) Inverse models: a necessary next step in groundwater modeling. Ground Water 35(2):250–260CrossRefGoogle Scholar
  73. Poeter, EP, Hill MC, Banta ER, Mehl S, Christensen S (2005) UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation. US Geol Surv Tech Methods 6-A11, 283 ppGoogle Scholar
  74. Pool M, Carrera J (2009) Dynamics of negative hydraulic barriers to prevent seawater intrusion. Hydrol J. doi:10.1007/s10040-009-0516-1 Google Scholar
  75. Post V, Kooi H, Simmons C (2007) Using hydraulic head measurements in variable-density ground water flow analyses. Ground Water 45:664–671CrossRefGoogle Scholar
  76. Rall, LB (1981) Automatic differentiation: techniques and applications. Lecture Notes in Computer Science, vol 120. Springer, BerlinGoogle Scholar
  77. Rao SVN, Thandaveswara BS, Bhallamudi SM, Srivivasulu V (2003) Optimal groundwater management in deltaic regions using simulated annealing and neural networks. Water Resour Manage 17(6):409–428CrossRefGoogle Scholar
  78. Rath V, Wolf A, Bücker HM (2006) Joint three-dimensional inversion of coupled groundwater flow and heat transfer based on automatic differentiation: sensitivity calculation, verification, and synthetic examples. Geophys J Int 167:453–466CrossRefGoogle Scholar
  79. Refsgaard JC, van der Sluijs JP, Brown J, van der Keur P (2006) A framework for dealing with uncertainty due to model structure error. Adv Water Resour 29:1586–1597CrossRefGoogle Scholar
  80. Rötting TS, Carrera J, Bolzicco J, Salvany JM (2006) Stream-stage response tests and their joint interpretation with pumping tests. Ground Water 44(3):371–385CrossRefGoogle Scholar
  81. Rubin Y, Dagan G (1987) Stochastic identification of transmissivity and effective recharge in steady groundwater flow: 1. theory. Water Resour Res 23(7):1185–1192CrossRefGoogle Scholar
  82. Saltelli A, Ratto M, Tarantola S, Campolongo F (2005) Sensitivity analysis for chemical models. Chem Rev 105:2811–2827CrossRefGoogle Scholar
  83. Sanz E, Voss CI (2006) Inverse modeling for seawater intrusion in coastal aquifers: insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem. Adv Water Resour 29(3):439–457CrossRefGoogle Scholar
  84. Shalev E, Lazar A, Wollman S (2009) Biased monitoring of fresh water-salt water mixing zone in coastal aquifers. Ground Water 47(1):49–56CrossRefGoogle Scholar
  85. Shoemaker WB (2004) Important observations and parameters for a salt water intrusion model. Ground Water 42:829–840CrossRefGoogle Scholar
  86. Tellam JH, Lloyd JW, Walters M (1986) The morphology of a saline groundwater body: its investigation, description and possible explanation. J Hydrol 83(1–2):1–21CrossRefGoogle Scholar
  87. Tonkin MJ, Doherty J (2005) A hybrid regularized inversion methodology for highly parameterized environmental models. Water Resour Res 41, W10412. doi:10.1029/2005WR003995 CrossRefGoogle Scholar
  88. Townley LR, Wilson JL (1985) Computationally efficient algorithms for parameter estimation and uncertainty propagation in numerical models of groundwater flow. Water Resour Res 21(12):1851–1860CrossRefGoogle Scholar
  89. Tsai FTC, Sun NZ, Yeh WWG (2003) Global-local optimization for parameter structure identification in three-dimensional groundwater modeling. Water Resour Res 39(2):1043. doi:10.1029/2001WR001135 CrossRefGoogle Scholar
  90. Usunoff E, Carrera J, Mousavi SF (1992) An approach to the design of experiments for discriminating among alternative conceptual models. Adv Water Resour 15(3):199–214CrossRefGoogle Scholar
  91. Van Meir N, Lebbe L (2005) Parameter identification for axi-symmetric density-dependent groundwater flow based on drawdown and concentration data. J Hydrol 309(1–4):167–177CrossRefGoogle Scholar
  92. Vázquez-Suñé E, Abarca E, Carrera J, Capino B, Gámez D, Pool M, Simo A, Batlle F, Niñerola JM, Ibañez X (2006) Groundwater modelling as a tool for the European Water Framework Directive (WFD) application: the Llobregat case. Phys Chem Earth 31(17):1015–1029Google Scholar
  93. Vecchia AV, Cooley RL (1987) Simultaneous confidence and prediction intervals for nonlinear regression models with application to a groundwater flow model. Water Resour Res 23(7):1237–1250CrossRefGoogle Scholar
  94. Vermeulen PTM, Stroet CBMT, Heemink AW (2006) Model inversion of transient nonlinear groundwater flow models using model reduction. Water Resour Res 42(9), W09417CrossRefGoogle Scholar
  95. Werner AD, Gallagher MR (2006) Characterisation of sea-water intrusion in the Pioneer Valley, Australia, using hydrochemistry and three-dimensional numerical modelling. Hydrogeol J 14(8):1452–1469CrossRefGoogle Scholar
  96. Willmann M, Carrera J, Sanchez-Vila X (2008) Transport upscaling in heterogeneous aquifers: What physical parameters control memory functions? Water Resour Res 44, W12437CrossRefGoogle Scholar
  97. Yakirevich A, Melloul A, Sorek S, Shaath S, Borisov V (1998) Simulation of seawater intrusion into the Khan Yunis area of the Gaza Strip coastal aquifer. Hydrogeol J 6(4):549–559CrossRefGoogle Scholar
  98. Yechieli Y, Kafri U, Goldman M, Voss CI (2001) Factors controlling the configuration of the fresh-saline water interface in the Dead Sea coastal aquifers: synthesis of TDEM surveys and numerical groundwater modelling. Hydrogeol J 9(4):367–377CrossRefGoogle Scholar
  99. Yeh WWG (1986) Review of parameter estimation procedures in groundwater hydrology: the inverse problem. Water Resour Res 22:95–108CrossRefGoogle Scholar
  100. Yeh WWG, Bray B (2006) Modeling and optimization of seawater intrusion barriers in southern California coastal plain. Technical Completion Reports, Paper 983, University of California Water Resources Center, Riverside, CAGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jesús Carrera
    • 1
  • Juan J. Hidalgo
    • 1
    • 2
  • Luit J. Slooten
    • 1
    • 2
  • Enric Vázquez-Suñé
    • 1
  1. 1.Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC)BarcelonaSpain
  2. 2.Department of Geotechnical Engineering and Geo-SciencesTechnical University of Catalonia (UPC)BarcelonaSpain

Personalised recommendations