Hydrogeology Journal

, 17:1859

The role of faulting on surface deformation patterns from pumping-induced groundwater flow (Las Vegas Valley, USA)

Paper

Abstract

Land subsidence and earth fissuring can cause damage in semiarid urbanized valleys where pumping exceeds natural recharge. In places such as Las Vegas Valley (USA), Quaternary faults play an important role in the surface deformation patterns by constraining the migration of land subsidence and creating complex relationships with surface fissures. These fissures typically result from horizontal displacements that occur in zones where extensional stress derived from groundwater flow exceeds the tensile strength of the near-surface sediments. A series of hypothetical numerical models, using the finite-element code ABAQUS and based on the observed conditions of the Eglington Fault zone, were developed. The models reproduced the (1) long-term natural recharge and discharge, (2) heavy pumping and (3) incorporation of artificial recharge that reflects the conditions of Las Vegas Valley. The simulated hydrostratigraphy consists of three aquifers, two aquitards and a relatively dry vadose zone, plus a normal fault zone that reflects the Quaternary Eglington fault. Numerical results suggest that a 100-m-wide fault zone composed of sand-like material produces: (1) conditions most similar to those observed in Las Vegas Valley and (2) the most favorable conditions for the development of fissures to form on the surface adjacent to the fault zone.

Keywords

Land subsidence Earth fissuring Numerical modeling ABAQUS USA 

Le rôle de la fracturation dans les formes de surface des déformations induites par le pompage des eaux souterraines (vallée de Las Vegas, Etats-Unis)

Résumé

Les affaissements et fissuration des terrains peuvent entraîner de graves dommages dans des vallées urbanisées et en climat semi-aride lorsque l‘extraction des eaux souterraines dépasse la recharge naturelle. Dans certains cas, comme celui de la vallée de Las Vegas (Etats-Unis), les failles quaternaires jouent un rôle important dans les formes de surface des déformations en délimitant la migration de la subsidence et en créant des relations complexes entre les fissures de surface. Ces fissures sont typiquement le résultat de déplacements horizontaux qui ont lieu dans des zones où le stress d’extension dû au flux souterrain excède la résistance à la traction des sédiments de surface. Une série de modèles numériques hypothétiques, utilisant le code ABAQUS par éléments finis et basé sur les conditions observées sur la zone de la faille d’Eglington, a été développé. Les modèles reproduisent (1) la recharge et la décharge naturelle à long terme, (2) les pompages intenses et (3) l’incorporation de la recharge artificielle qui reflète les conditions de la vallée de Las Vegas. L’hydrostratigraphie simulée consiste en trois aquifères, deux aquitards et une zone vadose relativement sèche ainsi qu’une zone de failles normales qui reflète les conditions de la faille quaternaire d’Eglington. Les résultats numériques suggèrent qu’une zone de faille large de 100 m et composée de matériaux de type sableux produit : (1) des conditions très similaires à celles observées dans la vallée de las Vegas et (2) de conditions favorables au développement de fissures qui se forment à proximité de la surface et de la zone de failles.

El rol del fallamiento en el esquema de deformación superficial a partir de del flujo de aguas subterráneas inducidos por bombeos (Valle de Las Vegas, EEUU)

Resumen

La subsidencia del terreno y las fisuras de la tierra pueden causar daños en valles semiáridos urbanizados donde el bombeo excede la recarga natural. En lugares como el valle Las Vegas (EEUU), las fallas cuaternarias juegan un rol importante en los esquemas de deformación superficial restringiendo la migración de la subsidencia del terreno y creando relaciones complejas con las fisuras de superficie. Estas fisuras resultan típicamente a partir de desplazamientos horizontales que ocurren en zonas donde las tensiones extensionales derivadas del flujo de aguas subterráneas exceden las fuerzas de cohesión de los sedimentos cercanos a la superficie. Se desarrollaron una serie de modelos numéricos hipotéticos, usando elementos finitos de código ABAQUS y basado en las condiciones de observación de la zona de falla de Eglington. Los modelos reprodujeron (1) la recarga y descarga natural a largo plazo, (2) la influencia del bombeo intensivo y (3) la incorporación de la recarga artificial que refleja las condiciones del Valle Las Vegas. La hidroestratigrafía simulada está compuesta de tres acuíferos, dos acuitardos y una zona vadosa relativamente seca, más una zona de falla directa que refleja la falla Eglington del Cuaternario. Los resultados numéricos sugieren que una zona de falla de 100 m de ancho compuesta de material de tipo arenoso produce: (1) condiciones muy similares a aquellas observadas en el Valle Las Vegas y (2) las condiciones más favorables para que se produzca el desarrollo de fisuras sobre la superficie adyacente a la zona de falla.

断层在因抽取地下水导致的地表变形模式中的作用 (美国拉斯维加斯流域)

摘要

地面沉降和地裂缝在地下水开采量超过天然补给量情况下的半干旱城市化流域能造成很大的破坏。在如美国拉斯维加斯流域, 第四纪断层通过约束地面沉降的迁移并与地裂缝形成复杂关系, 从而在地表变形模式中起着重要的作用。这些裂缝由地下水导致的拉伸压力大于近地表沉积物的表面张力时所致的水平驱替。基于Eglington断裂带观测数据, 利用有限元程序ABAQUS开发了一系列假设的数值模型。模拟重现了1) 长期的天然补给和排泄 ; 2) 大量抽水 ; 3) 考虑了反映拉斯维加斯流域情况的人工补给。模拟的水文分层包括三个含水层, 两个弱透水层和一个相对较干燥的包气带以及一个能反映Eglington第四系断层的正断层带组成。数值模拟结果表明, 由类似砂岩组成的宽100m的断层会导致 : 1) 与在拉斯维加斯观测到的非常类似的状况 ; 2) 在邻近断层区的地表形成地裂缝的最有利条件。

O papel das falhas nos padrões de deformação superficial devido ao fluxo subterrâneo induzido pela bombagem (Vale de Las Vegas, EUA)

Resumo

A subsidência e fissuração do solo podem causar danos em vales semi-áridos urbanizados onde a extracção de água subterrânea ultrapassa a recarga natural. Em zonas como o Vale de Las Vegas (EUA), as falhas quaternárias jogam um papel importante nos padrões de deformação superficial, através do constrangimento na migração da subsidência e criando complexas relações com as fissuras superficiais. Estas fissuras resultam normalmente de movimentos horizontais que ocorrem em zonas onde as forças extensivas, induzidas pelo fluxo de água subterrânea, ultrapassam a tensão dos sedimentos subsuperficiais. Foram desenvolvidos uma série de modelos numéricos com cenários hipotéticos que usam o código de elementos finitos ABAQUS, baseados nas condições observadas na zona da Falha de Eglington. Os modelos reproduzem (1) a recarga e descarga naturais de longo prazo, (2) a bombagem intensiva e (3) a incorporação da recarga artificial, as quais reflectem as condições do Vale de Las Vegas. A hidroestratigrafia simulada é composta por três aquíferos, dois aquitardos e uma zona vadosa relativamente seca, mais uma falha normal que reflecte a falha quaternária de Eglington. Os resultados numéricos sugerem que uma zona de falha de 100 m de largura, composta por materiais arenosos, produz: (1) condições muito semelhantes àquelas observadas no Vale de Las Vegas e (2) as condições mais favoráveis ao desenvolvimento de fissuras na superfície adjacente à zona de falha.

References

  1. Amelung F, Galloway DL, Bell JW, Zebker HA, Laczniak RJ (1999) Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27(6):483–486CrossRefGoogle Scholar
  2. Bell JW (1981) Subsidence in Las Vegas Valley, Bulletin 95. Nevada Bureau Mines Geol Bull 95:1–84Google Scholar
  3. Bell JW, Amelung F, Ramelli AR, Blewittet G (2002) Land subsidence in Las Vegas, Nevada, 1935–2000: new geodetic data show evolution, revised spatial patterns, and reduced rates. Environ Eng Geosci 7(3):155–174CrossRefGoogle Scholar
  4. Bell JW, Amelung A, Ferreti A, Bianchi M, Novali F (2008) Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resour Res 44, W02407. doi:10.1029/2007WR006152 CrossRefGoogle Scholar
  5. Bredehoeft DJ, Belitz K, Sharp-Hansen S (1992) The hydrodynamics of the Big Horn Basin: a study of the role of faults. AAPG Bull 76:530–546Google Scholar
  6. Burbey TJ (1999) Effects of horizontal strain in estimating specific storage and compaction in confined and leaky aquifer systems. Hydrogeol J 7(6):521–532CrossRefGoogle Scholar
  7. Burbey TJ (2002) The influence of faults in basins-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA. Hydrogeol J 10(5):525–538CrossRefGoogle Scholar
  8. Burbey TJ (2006) Three-dimensional deformation and strain induced by municipal pumping, part 2: numerical analysis. J Hydrol 330:422–434CrossRefGoogle Scholar
  9. Burbey TJ (2008) The Influence of geologic structures on deformation due to ground water withdrawal. Ground Water 46(2):202–211CrossRefGoogle Scholar
  10. Burbey TJ, Warner SM, Blewitt G, Bell JW, Hillet E (2006) Three-dimensional deformation and strain induced by municipal pumping, part 1: analysis of field data. J Hydrol 319:123–142CrossRefGoogle Scholar
  11. Coache R (2005) Las Vegas Valley water usage report. Clark County, Nevada, State of Nevada, Division of Water Resources, Las Vegas, NV, 23 ppGoogle Scholar
  12. Conwell FR (1965) Engineering geology and foundation condition survey of Las Vegas, Nevada. Publ NVO-99-05, US Atomic Energy Commission, Washington, DC, 49 ppGoogle Scholar
  13. de Polo CM, Bell JW (2000) Map of faults and earth fissures in Las Vegas area. Open-File Report 01-4, Nevada Bureau of Mines and Geology, Reno, and Las Vegas Water District, Las Vegas, NVGoogle Scholar
  14. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the US Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00-92, 121 ppGoogle Scholar
  15. Harrill JR (1976) Pumping and ground-water storage depletion in Las Vegas Valley, Nevada, 1955–1974. Nevada Div Water Resour Bull 44, 70 ppGoogle Scholar
  16. Helm DC (1984) Analysis of sedimentary skeletal deformation in a confined aquifer and the resulting drawdown. In: Rosenshein JS, Bennet GD (eds) Groundwater hydraulics. American Geophysical Union, Washington, DC, pp 29–82Google Scholar
  17. Helm DC (1994a) Horizontal aquifer movement in a Theis-Thiem confined system. Water Resour Res 30(4):953–964CrossRefGoogle Scholar
  18. Helm DC (1994b) Hydraulic forces that play a role in generating fissures at depth. Bull Assoc Eng Geol 31(3):293–302Google Scholar
  19. Hibbit (2004) ABAQUS/CAE User’s manual. Sorensen, Pawtucket, RI, USAGoogle Scholar
  20. Holzer TL (1984) Ground failure induced by groundwater withdrawal from unconsolidated sediments. In: Holzer TL (ed) Reviews in Engineering Geology. Geological Society of America, pp. 67–105Google Scholar
  21. Lin M, Chung C, Jeng F (2006) Deformation of overburden soil induced by thrust fault slip. Eng Geol 88:70–89CrossRefGoogle Scholar
  22. Lofgren BE (1978) Hydraulic stresses cause ground movement and fissures, Picacho, Arizona. Geol Soc Am Abstr 10(3):113Google Scholar
  23. Marler J, Ge S (2003) The permeability of the Elkhorn Fault Zone, South Park, Colorado. Ground Water 41(3):321–332CrossRefGoogle Scholar
  24. Maxey BG, Jameson CH (1948) Geology and water resources of the Las Vegas, Pahrump, and Indian Spring Valley, Clark and Nye Counties, Nevada. Water Resources Bulletin 5, Nevada Department of Conservation and Natural Resources, Reno, 128 ppGoogle Scholar
  25. Mayer A, May W, Lukkarila C, Diehl J (2007) Estimation of fault-zone conductance by calibration of a regional groundwater flow model: Desert Hot Springs, California. Hydrogeol J 15:1093–1106CrossRefGoogle Scholar
  26. Morgan SD, Dettinger MD (1996) Ground-Water conditions in Las Vegas Valley, Clark County. Nevada, part 2: hydrogeology and simulation of ground-water flow. US Geol Surv Water Suppl Pap 2320-B, 124 ppGoogle Scholar
  27. Pavelko MT (2004) Estimates of hydraulic properties from a one-dimensional numerical model of vertical aquifer-system deformation, Lorenzi Site, Las Vegas, Nevada. US Geol Surv Water Resour Invest Rep 03-4083Google Scholar
  28. Pavelko TM, Hoffmann J, Damar NA (2006) Interferograms showing land subsidence and uplift in Las Vegas Valley, Nevada, 1992–99. US Geol Surv Sci Invest Rep 2006-5218Google Scholar
  29. Sheng Z, Helm DC, Li J (2003) Mechanism of earth fissuring caused by groundwater withdrawal. Environ Eng Geosci 9(4):351–362CrossRefGoogle Scholar
  30. Stone CR, Luke B (2001) An overview of engineering with cemented soils in Las Vegas. In: Luke B, Werle JL (eds) Proceedings, 36th Annual Western States Symposium on Engineering Geology and Geotechnical Engineering, Las Vegas, March 2001, pp 135–144Google Scholar
  31. Werle JL, Luke B (2007) Engineering with heavily cemented soils in Las Vegas, Nevada. In: Olsen HW (ed) Geo-Denver 2007 New peaks in Geotechniques, Denver, CO, February 2007, pp 1–9Google Scholar
  32. Wolff RG (1970) Relationship between horizontal strain near a well and reverse water level fluctuation. Water Resour Res 6(6):1721–1728CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of GeosciencesVirginia TechBlacksburgUSA

Personalised recommendations