Hydrogeology Journal

, Volume 18, Issue 1, pp 173–185 | Cite as

Marine electrical resistivity imaging of submarine groundwater discharge: sensitivity analysis and application in Waquoit Bay, Massachusetts, USA

  • Rory D. Henderson
  • Frederick D. Day-Lewis
  • Elena Abarca
  • Charles F. Harvey
  • Hanan N. Karam
  • Lanbo Liu
  • John W. LaneJr.
Paper

Abstract

Electrical resistivity imaging has been used in coastal settings to characterize fresh submarine groundwater discharge and the position of the freshwater/salt-water interface because of the relation of bulk electrical conductivity to pore-fluid conductivity, which in turn is a function of salinity. Interpretation of tomograms for hydrologic processes is complicated by inversion artifacts, uncertainty associated with survey geometry limitations, measurement errors, and choice of regularization method. Variation of seawater over tidal cycles poses unique challenges for inversion. The capabilities and limitations of resistivity imaging are presented for characterizing the distribution of freshwater and saltwater beneath a beach. The experimental results provide new insight into fresh submarine groundwater discharge at Waquoit Bay National Estuarine Research Reserve, East Falmouth, Massachusetts (USA). Tomograms from the experimental data indicate that fresh submarine groundwater discharge may shut down at high tide, whereas temperature data indicate that the discharge continues throughout the tidal cycle. Sensitivity analysis and synthetic modeling provide insight into resolving power in the presence of a time-varying saline water layer. In general, vertical electrodes and cross-hole measurements improve the inversion results regardless of the tidal level, whereas the resolution of surface arrays is more sensitive to time-varying saline water layer.

Keywords

Electrical resistivity imaging Coastal aquifers Groundwater/surface-water relations Submarine groundwater discharge Equipment/field techniques USA 

Imagerie de la résistivité électrique de sorties d’eaux souterraines en milieu marin: Analyse de sensibilité et mise en œuvre dans la baie de Waquoit, Massachusetts, Etats-Unis d’Amérique

Résumé

L’imagerie de la résistivité électrique a été utilisée en environnement côtier pour caractériser les arrivées d’eau douce souterraine ainsi que la position de l’interface eau salée/eau douce, du fait que la relation entre la conductivité électrique des blocs et la conductivité du fluide de la porosité est fonction de la salinité. L’interprétation de tomographes à des fins hydrologiques est complexe à cause des artefacts d’inversion, de l’incertitude associée aux limites géométriques du domaine investiguée, des erreurs de mesures et du choix de la méthode de régularisation. La variabilité de l’eau de mer en fonction des cycles de marée constitue un réel défi pour les techniques d’inversion. Les capacités et les limites de l’imagerie de la résistivité sont présentées, afin de caractériser la distribution de l’eau douce et de l’eau salée sous une plage. Les résultats expérimentaux fournissent de nouvelles informations concernant les sorties d’eau souterraine dans la baie de Waquoit, dans la Réserve Nationale de Recherche sur les Estuaires, à l’Est de Falmouth, dans le Massachusetts (Etats-Unis d’Amérique). Les tomographes des données expérimentales indiquent que la décharge des eaux souterraines peut être interrompue lors de marées de forte intensité, alors que les données de température montrent que la décharge se poursuit tout au long du cycle de la marée. Les analyses de sensibilité ainsi qu’une modélisation synthétique fournissent de nouvelles informations concernant la résolution d’un niveau d’eau ayant une salinité qui varie dans le temps. De manière générale, les électrodes verticales et les mesures croisées améliorent les résultats d’inversion indépendamment des niveaux de marée, alors que la résolution des signaux de surface est plus sensible pour le niveau d’eau salée variant dans le temps.

Diagnóstico de Imágenes de resistividad eléctrica marina de la descarga submarina de aguas subterráneas: Análisis de sensibilidad y aplicación en Waquoit Bay, Massachusetts, EEUU

Resumen

Se usó el diagnóstico de imágenes de resistividad eléctrica en escenarios costeros para caracterizar la descarga submarina de agua subterránea dulce y la posición de la interfase agua dulce / agua salada debido a la relación entre conductividad eléctrica global y la conductividad del fluido de los pozos, que a su vez es una función de la salinidad. La interpretación de los tomogramas para los procesos hidrológicos es complicada por el mecanismo de inversión, las incertidumbres asociadas con las limitaciones de la geometría de los relevamientos, los errores de mediciones, y la elección del método de regularización. La variación del agua salada sobre los ciclos de marea plantea desafíos particulares para la inversión. Las capacidades y limitaciones de los diagnósticos de imágenes de resistividad son presentadas para caracterizar la distribución del agua dulce y agua salada debajo de una playa. Los resultados experimentales proveen una nueva visión de la descarga submarina de agua subterránea dulce en la Reserva de investigación nacional estuárica de la Waquoit Bay, Este de Falmouth, Massachusetts (EEUU). Los tomogramas a partir de datos experimentales indican que la descarga submarina de agua subterránea dulce puede cesar en la pleamar, mientras que los datos de temperatura indican que la descarga continua a través del ciclo de mareas. El análisis de sensibilidad y modelado sintético provee una mejor visión en el poder de resolución en presencia de una capa de agua salina variable en el tiempo. En general, los electrodos verticales y mediciones transversales mejoran los resultados de la inversión independientemente de los niveles de mareas, mientras que la resolución de la distribución superficial es más sensible a la variación temporal de la capa de agua salina.

海洋高密度电阻率成像法研究海底地下水排泄 : 灵敏度分析及其在美国马萨诸赛州Waquoit海湾的应用

摘要

高密度电阻率成像已广泛应用于滨海地区, 以刻画海底地下淡水的排泄和确定咸水/淡水的界面位置。该的物理方法依据是地层电导率对孔隙流体电导率之间的依赖关系; 而孔隙流体电导率又是盐度的函数。水文过程层析成像的解释因反演伪像、由测线布设局限性带来的不确定度、测量误差,以及反演正则化方法的选择而变得非常复杂。海水随潮汐周期的变化对于反演是一种独特的挑战。本文论述了电阻率成像在刻画海滩下淡水/咸水分布时的功能和局限性。实验结果为美国马萨诸赛州东法尔茅斯Waquoit海湾国家海湾研究区的地下水排泄提供了新的认识。电阻率层析成像表明海底地下淡水的排泄可能在高潮时停止, 而温度数据表明在整个潮汐周期过程中地下淡水排泄是持续的。灵敏度分析与合成模拟有助于理解存在时变咸水层时的成像分辨率。总之, 无论在任何潮高条件下,采用垂向的电极阵和井间测量都会改善反演结果, 而地表电极阵列的分辨率则对时变咸水层更为敏感。

Imagiologia de resistividade eléctrica marinha da descarga submarina de água subterrânea: Análises de sensibilidade e aplicação na Baía de Waquoit, Massachusetts, EUA

Resumo

Foi utilizada imagiologia de resistividade eléctrica em locais costeiros para caracterizar a descarga submarina de água subterrânea doce e a posição da interface água doce/água salgada, dada a relação da condutividade eléctrica com a condutividade do fluido nos poros, que por sua vez é uma função da salinidade. A interpretação de tomografias em processos hidrológicos é complicada, devido a processos de inversão, incerteza associada a limitações da geometria da pesquisa, erros de medição e escolha do método de regularização. A variação da água do mar durante os ciclos das marés coloca um desafio particular para a inversão. As capacidades e limitações da imagiologia de resistividade são apresentadas, para caracterizar a distribuição de água doce e água salgada sob uma praia. Os resultados experimentais providenciam novas pistas sobre a descarga submarina de água subterrânea doce na Reserva de Pesquisa Estuarina Nacional da Baía de Waquoit, Este de Falmouth, Massachusetts (EUA). Tomogramas com dados experimentais indicam que a descarga submarina de água subterrânea doce pode parar durante uma maré alta, enquanto dados de temperatura indicam que a descarga continua através de todo o ciclo de maré. Análises de sensibilidade e modelos sintéticos providenciam pistas sobre o poder de resolução na presença de uma camada de água com conteúdos salinos variáveis no tempo. Em geral, eléctrodos verticais e medições cruzadas em furos melhoram os resultados da inversão, apesar dos níveis de maré, enquanto a resolução dos perfis de superfície é mais sensível à camada de água com conteúdos salinos variáveis no tempo.

References

  1. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoirs characteristics. J Petrol Technol 5:1–8Google Scholar
  2. Ataie-Ashtiani B, Volker RE, Lockington DA (1999) Tidal effects on sea water intrusion in unconfined aquifers. J Hydrol 216(1–2):17–31CrossRefGoogle Scholar
  3. Barlow PM (2003) Ground water in freshwater-saltwater environments of the Atlantic Coast, US Geol Surv Circ 1262:121Google Scholar
  4. Belaval M, Lane JW Jr, Lesmes DP, Kineke GC (2003) Continuous-resistivity profiling for coastal groundwater investigations: three case studies. In: Proceedings to the Symposium in the Application of Geophysics to Engineering and Environmental Problems (SAGEEP), 6–10 April 2003, San Antonio, TX, Environmental and Engineering Geophysics Society, Denver, CO, 14 pp. http://water.usgs.gov/ogw/bgas/publications/SAGEEP03_Belaval/SAGEEP03_Belaval.pdf. Cited 14 July 2009
  5. Binley A, Kemna A (2005) Electrical methods. In: Rubin Y, Hubbard S (eds) Hydrogeophysics. Springer, New York, pp 129–156Google Scholar
  6. Binley A, Shaw B, Henry-Poulter S (1996) Flow pathways in porous media: electrical resistance tomography and dye staining image verification. Meas Sci Technol 7:384–390CrossRefGoogle Scholar
  7. Bratton FJ, Bohlke JK, Manheim FT, Krantz DE (2004) Ground water beneath coastal bays of the Delmarva Peninsula: ages and nutrients. Ground Water 42(7):1021–1034CrossRefGoogle Scholar
  8. Burnett WC, Bokuniewicz H, Huettel M, Moore WS, Taniguchi M (2003) Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66:3–33CrossRefGoogle Scholar
  9. Buxton HT, Smolensky DA (1999) Simulation of the effects of development of the ground-water flow system of Long Island, New York. US Geol Surv Water Resour Invest Rep 98-4069Google Scholar
  10. Cambareri TC, Eichner EM (1998) Watershed delineation and ground water discharge to a coastal embayment. Ground Water 36(4):626–634CrossRefGoogle Scholar
  11. Colman JA, Masterson JP, Pabich WJ, Walter DA (2004) Effects of aquifer travel time on nitrogen transport to a coastal embayment. Ground Water 42(7):1069–1078CrossRefGoogle Scholar
  12. Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52(3):289–300CrossRefGoogle Scholar
  13. Cooper HH (1959) A hypothesis concerning the dynamic balance of fresh water and salt water in a coastal aquifer. J Geophys Res 64(4):461–467CrossRefGoogle Scholar
  14. Dahlin T, Loke MH (1998) Resolution of 2D Wenner resistivity imaging as assessed by numerical modeling. J Appl Geophys (38):237–249Google Scholar
  15. Daily W, Ramirez A, Binley A, LaBrecque D (2004) Electrical resistance tomography. The Leading Edge 23(5):438–442CrossRefGoogle Scholar
  16. Day-Lewis FD, Lane JW (2004) Assessing the resolution-dependent utility of tomograms for geostatistics. Geophys Res Lett 31(7)Google Scholar
  17. Day-Lewis FD, Harris JM, Gorelick SM (2002) Time-lapse inversion of crosswell radar data. Geophysics 67(6):1740–1752CrossRefGoogle Scholar
  18. Day-Lewis FD, Singha K, Binley AM (2005) Applying petrophysical models to radar travel time and electrical resistivity tomograms: resolution-dependent limitations. J Geophys Res 110(B08206):17. doi:10.1029/2004JB005369 Google Scholar
  19. Day-Lewis FD, White EA, Johnson CD, Lane JW Jr, Belaval M (2006) Continuous resistivity profiling to delineate submarine groundwater discharge-examples and limitations. The Leading Edge 25(6):724–728Google Scholar
  20. Day-Lewis FD, Chen Y, Singha K (2007) Moment inference from tomograms. Geophys Res Lett 34, L22404. doi:10.1029/2007GL031621
  21. deGroot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two dimensional models from magnetotelluric data. Geophysics 55(12):1613–1624Google Scholar
  22. Foyle AM, Henry VJ, Alexander CR (2002) Mapping the threat of seawater intrusion in a regional coastal aquifer-aquitard system in the southeastern United States. Environ Geol (43):151–159Google Scholar
  23. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ, 604 ppGoogle Scholar
  24. Frohlich RK, Urish DW (2002) The use of geoelectrics and test wells for the assessment of groundwater quality of a coastal industrial site. J Appl Geophys 50(3):261–278CrossRefGoogle Scholar
  25. Hem JD (1970) Study and interpretation of chemical characteristics of natural water (2nd edn.). US Geol Surv Water Suppl Pap 1473:363Google Scholar
  26. Henderson RD, Day-Lewis FD, Harvey CF (2009) Investigation of aquifer-estuary interaction using wavelet analysis of fiber-optic temperature data. Geophys Res Lett 36, L06403. doi:10.1029/2008GL036926
  27. Hidalgo JJ, Slooten LJ, Medina A, Carrera J (2004) A Newton-Raphson based code for seawater intrusion modeling and parameter estimation. In: Araguás L, Custodio E, Manzano M (eds) Groundwater and saline intrusion. Selected papers from the 18th Salt Water Intrusion Meeting, Cartagena, Spain, May 2004, IGME, Madrid, pp 111–120Google Scholar
  28. Jeng DS, Li L, Barry DA (2001) Water wave driven seepage in marine sediments. Adv Water Resour 24:1–10CrossRefGoogle Scholar
  29. Johannes RE (1980) The ecological significance of the submarine discharge of groundwater. Mar Ecol Prog Ser 3:365–373CrossRefGoogle Scholar
  30. Kemna A, Binley A, Day-Lewis F, Englert A, Tezkan B, Vanderborght J, Vereecken H, Winship P (2006) Solute transport processes. In: Vereecken H, Binley A, Cassiani G, Revil A, Titov K (eds) Applied hydrogeophysics, NATO Science Series IV: earth and environmental sciences, vol 71, Springer, Heidelberg, pp 117–159Google Scholar
  31. Kohout FA (1960) Cyclic flow of salt water in the Biscayne Aquifer of southeastern Florida. J Geophys Res 65(7):2133–2141CrossRefGoogle Scholar
  32. Krantz DE, Manheim FT, Bratton JF, Phelan DJ (2004) Hydrogeoligic setting and ground water flow beneath a section of Indian River Bay, Delaware. Ground Water (42):1035–1051Google Scholar
  33. LaCombe PJ, Carleton GB (2002) Hydrogeologic framework, availability of water supplies, and saltwater intrusion, Cape May County, New Jersey. US Geol Surv Sci Invest Rep 01-4246Google Scholar
  34. Liu L (2002) Saline water intrusion. Article 1.7.3.5 of the Encyclopedia of Life Support Systems (EOLSS), sponsored by the United Nations Education, Science and Culture Organization (UNESCO), EOLSS, Oxford, UKGoogle Scholar
  35. Loke MH, Lane JW Jr (2004) Inversion of data from electrical resistivity imaging surveys in water-covered areas. Explor Geophys (35):266–271Google Scholar
  36. Manheim FT, Krantz DE, Bratton JF (2004) Studying ground water under Delmarva coastal bays using electrical resistivity. Ground Water 42(7):1052–1068CrossRefGoogle Scholar
  37. Marksammer AJ, Person MA, Day-Lewis FD, Lane JW Jr, Cohen D, Dugan B, Kooi H, Willett M (2007) Integrating geophysical, hydrochemical and hydrologic data to understand the freshwater resources on Nantucket Island, Massachusetts. In: Hyndman DW, Day-Lewis FD, Singha K (eds) Surface hydrology: data integration for properties and processes. Geophysical Monograph Series 171, AGU, Washington, DCGoogle Scholar
  38. Menke W (1984) Geophysical data analysis: discrete inverse theory. Academic, Orlando, FL, 289 ppGoogle Scholar
  39. Michael HA, Lubetsky JS, Harvey CF (2003) Characterizing submarine groundwater discharge: a seepage meter study in Waquoit Bay, Massachusetts. Geophys Res Lett 30(6), 1297Google Scholar
  40. Michael HA, Mulligan AE, Harvey CF (2005) Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 436:1145–1148CrossRefGoogle Scholar
  41. Miller DC, Ullman WJ (2004) Ecological consequences of ground water discharge to Delaware Bay, United States. Ground Water 42(7):959–970CrossRefGoogle Scholar
  42. Miller CR, Routh PS (2007) Resolution analysis of geophysical images: comparison between point spread function and region of data influence measures. Geophys Prospect (55):835–852Google Scholar
  43. Moore WS (1999) The subterranean estuary: a reaction zone of ground water and sea water. Mar Chem 65:111–125CrossRefGoogle Scholar
  44. Nguyen F, Kemna A, Antonsson A, Engesgaard P, Ogilvy R (2009) Characterization of seawater intrusions using 2D electrical tomography. Near Surf Geophys. doi:10.3997/1873-0604.2009025
  45. Oldale RN (1981) Pleistocene stratigraphy of Nantucket, Martha's Vineyard, the Elizabeth Islands, and Cape Cod, Massachusetts. In: Larson GJ, Stone BD (eds) Late Wisconsinan glaciation of New England. Kendall/Hunt, Dubuque, IAGoogle Scholar
  46. Reilly TE, Goodman AS (1985) Quantitative analysis of saltwater-freshwater relationships in groundwater systems: a historical perspective. J Hydrol (80):125–160Google Scholar
  47. Robinson C, Gibbes B, Li L (2006) Driving mechanisms for groundwater flow and salt transport in a subterranean estuary. Geophys Res Lett 33(3):L03402.1–L03402.4. doi:10.1029/2005GL025247
  48. Schultz G (2002) Hydrologic and geophysical characterization of spatial and temporal variations in coastal aquifer systems. PhD Thesis, Georgia Institute of Technology, USA, 355 ppGoogle Scholar
  49. Schultz G, Ruppel C, Fulton P (2007) Integrating hydrologic and geophysical data to constrain coastal surficial aquifer processes at multiple spatial and temporal scales. In: Hyndman DW, Day-Lewis FD, Singha K (eds) Subsurface hydrology: data integration for properties and processes. Geophysical Monograph Series 171, AGU, Washington, DC, pp 161–182. doi: 10.1029/171GM13
  50. Shum KT (1992) Wave-induced advective transport below a rippled water-sediment interface. J Geophys Res 97(C1):789–808CrossRefGoogle Scholar
  51. Simmons GM (1992) Importance of submarine groundwater discharge and seawater cycling to material flux across sediment/water interfaces in marine environments. Mar Ecol Progr Ser 84:173–184CrossRefGoogle Scholar
  52. Slater LD, Sandberg SK (2000) Resistivity and induced polarization of salt transport under natural hydraulic gradients. Geophysics 65(2):408–420CrossRefGoogle Scholar
  53. Slomp CP, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86CrossRefGoogle Scholar
  54. Smith CG, Cable JE, Martin JB (2008) Episodic high intensity mixing events in a subterranean estuary: effects of tropical cyclones. Limnol Oceanogr 53(2):666–674Google Scholar
  55. Swarzenski PW, Burnett WC, Greenwood WJ, Herut B, Peterson R, Dimova N, Shalem Y, Yechieli Y, Weinstein Y (2006) Combined time-series resistivity and geochemical tracer to examine submarine groundwater discharge at Dor Beach, Israel. Geophys Res Lett 33, L24405Google Scholar
  56. Swarzenski PW, Simonds FW, Paulson AJ, Kruse S, Reich C (2007) Geochemical and geophysical examination of submarine groundwater discharge and associated nutrient loading estimates into Lynch Cove, Hood Canal, WA. Environ Sci Technol 41(20):7022–7029CrossRefGoogle Scholar
  57. Taniguchi M (2002) Tidal effects on submarine groundwater discharge into the ocean. Geophys Res Lett 29(12), 1561. doi:10.1029/2002GL014987
  58. Taniguchi M, Ishitobi T, Shimada J (2006) Dynamics of submarine groundwater discharge and fresh-water-seawater interface. J Geophys Res 111, C01008, 9 ppGoogle Scholar
  59. Taniguchi M, Tomotoshi I, Burnett WC, Wattayakorn G (2007) Evaluating ground water-sea water interactions via resistivity and seepage meters. Ground Water 45(6):729–735CrossRefGoogle Scholar
  60. Telford WM, Geldart LP, Sheriff RE, Keys DA (1990) Applied geophysics. Cambridge University Press, 2nd edn., Cambridge, 860 ppGoogle Scholar
  61. Urish DW, McKenna TE (2004) Tidal effects on ground water discharge through a sandy marine beach. Ground Water 42(7):971–982CrossRefGoogle Scholar
  62. Xu SZ, Duan BC, Zang DH (2000) Selection of the wavenumbers k using an optimization method for the inverse Fourier transform in 2.5D electrical modeling. Geophys Prosp 48:789–796CrossRefGoogle Scholar

Copyright information

© U.S. Geological Survey 2009

Authors and Affiliations

  • Rory D. Henderson
    • 1
    • 2
  • Frederick D. Day-Lewis
    • 1
  • Elena Abarca
    • 3
  • Charles F. Harvey
    • 3
  • Hanan N. Karam
    • 3
  • Lanbo Liu
    • 2
  • John W. LaneJr.
    • 1
  1. 1.US Geological Survey, Office of GroundwaterBranch of GeophysicsStorrsUSA
  2. 2.Center for Integrative GeosciencesUniversity of ConnecticutStorrsUSA
  3. 3.Department of Civil and Environmental EngineeringMITCambridgeUSA

Personalised recommendations