Advertisement

Hydrogeology Journal

, 17:1665 | Cite as

Diagnostic hydrogeologic characteristics of a karst aquifer (Kentucky, USA)

  • Stephen R. H. WorthingtonEmail author
Paper

Abstract

Laboratory experiments and numerical modeling have shown that dissolution in carbonate aquifers results in high-permeability channel networks. However, the lack of techniques to assess the extent and significance of these channel networks presents a major problem in characterizing carbonate aquifers. This problem was addressed by identifying the differences between two simulations (with and without channels) of the intensely studied limestone aquifer at Mammoth Cave (Kentucky, USA). Long-distance tracer-test results and spring discharges were used for assessing model accuracy as well as head measurements in wells. The channel simulation provided a much better calibration than the homogeneous porous-medium simulation and revealed five important differences: (1) convergent flow to large springs, (2) equipotentials forming troughs, (3) decreases in hydraulic gradient and (4) increases in hydraulic conductivity in a downgradient direction, and (5) substantial scaling effects. These five characteristics are also common in other carbonate aquifers and provide a means of identifying whether a carbonate aquifer is more similar to porous-medium or to karst-aquifer end members.

Keywords

Carbonate rocks Conceptual models Karst Numerical models USA 

Diagnostic des caractéristiques hydrogéologiques d’un aquifère karstique (Kentucky, Etats-Unis)

Résumé

Les essais en laboratoire et les modélisations numériques ont démontré que la dissolution dans les aquifères carbonatés aboutit à la formation de réseaux chenalisés de très forte perméabilité. Cependant, le manque de méthodes permettant d’estimer l’extension et l’importance de ces réseaux de chenaux constitue un problème majeur pour la caractérisation des aquifères carbonatés. Ce problème a été abordé en identifiant les différences existant entre deux simulations (avec et sans chenaux) de l’aquifère calcaire de Mammoth Cave (Kentucky, Etats-Unis), déjà considérablement étudié. Les résultats de traçages longue distance et les débits des résurgences ont été utilisés pour tester la précision du modèle, de même que les mesures de niveau dans les puits. La simulation qui intègre des chenaux a produit une meilleure calibration que la simulation en milieu poreux homogène, et a mis en exergue cinq différences importantes : (1) un flux convergent en direction des sources majeures, (2) des équipotentielles formant des dépressions, (3) des décroissances du gradient hydraulique, (4) une augmentation des transmissivités vers l’aval hydraulique, et (5) des effets d’échelle marqués. Ces cinq caractéristiques sont également communes aux autres aquifères carbonatés, et fournissent un moyen d’identifier si un aquifère carbonaté est plus proche d’un milieu poreux ou au contraire du pôle constitué par les aquifères karstiques.

Diagnóstico de las características hidrogeológicas de un acuífero kárstico (Kentucky, EEUU)

Resumen

Los experimentos de laboratorio y los modelados numéricos han mostrado que la disolución en acuíferos carbonáticos da como resultado redes de canales de alta permeabilidad. Sin embargo la falta de técnicas para evaluar la extensión y el significado de estas redes de canales es un problema mayor en la caracterización de los acuíferos carbonáticos. Este problema fue evaluado identificando las diferencias entre dos simulaciones (con y sin canales) del intensamente estudiado acuífero de calizas en Mammoth Cave (Kentucky, EEUU). Los resultados de pruebas de trazadores de grandes distancias y las descargas de manantiales fueron usados para evaluar la precisión del modelo así como las mediciones de niveles en los pozos. La simulación del canal proveyó una mucho mejor calibración que la simulación de un medio poroso homogéneo y reveló cinco diferencias importantes: (1) flujo convergente hacia los grandes manantiales, (2) equipotenciales que forman depresiones, (3) disminución en el gradiente hidráulico y (4) aumento en la conductividad hidráulica en sentido gradiente abajo, y (5) efecto sustancial de escala. Estas cinco características son también comunes en otros acuíferos carbonáticos y proveen un medio de identificar si un acuífero carbonático es más similar a un medio poroso o a un estado final de un acuífero kárstico.

美国肯塔基州某岩溶含水层的诊断水文地质特征

摘要

实验室实验和数值模拟表明碳酸盐岩含水层里的溶解作用导致了岩层里高渗透性的管道系统。但是, 缺少评价这些管道系统的发育程度和重要性的方法是目前刻画碳酸盐含水层特征中存在的一个主要问题。这个问题已在对广泛研究过的美国肯塔基州Mammoth Cave的灰岩含水层进行的两个模拟 (有管道和无管道) 的不同中表述出来。利用长距离示踪试验结果和泉的排泄量来评价模型的准确度和井中水头的测量值。管道模拟比均质多孔介质模拟能提供更好的校正, 并揭示出5个重要的不同之处: 1) 流向大泉的收敛流; 2) 等势线形成水槽; 3) 水力梯度的减小; 4) 梯度减小方向上水力传导度的增大; 5) 本质上存在的尺度效应。这五个特征在其它碳酸盐含水层中也同样很普遍, 且为判断一个碳酸盐岩含水层与多孔介质或岩溶含水层端元何者更为类似提供了一种方法。

Diagnóstico das características hidrogeológicas de um aquífero cársico (Kentucky, USA)

Resumo

Experiências laboratoriais e modelação numérica demonstraram que a dissolução em aquíferos carbonatados dá origem a redes de canais de alta permeabilidade. Contudo, a inexistência de técnicas para caracterizar a extensão e o grau de significado destas redes de canais constitui o maior problema na caracterização de aquíferos carbonatados. Este problema foi abordado através da identificação das diferenças entre duas simulações (com e sem canais) no intensamente estudado aquífero calcário de Mammoth Cave (Kentucky, USA). Foram utilizados os resultados de ensaios com traçadores de longa distância e os caudais de nascentes na caracterização da precisão dos modelos, bem como os valores de potencial hidráulico em furos. A simulação considerando a rede de canais conduziu a uma calibração muito melhor do que a que considerou um meio poroso médio equivalente e revelou cinco diferenças importantes: (1) fluxo convergente em direcção às grandes nascentes, (2) equipotenciais formando depressões alongadas, (3) decréscimos no gradiente hidráulico, (4) aumentos na condutividade hidráulica no sentido do escoamento, e (5) efeitos de escala substanciais. Estas cinco características são também comuns a outros aquíferos carbonatados e constituem uma forma de identificar se um aquífero carbonatado é mais semelhante a um meio poroso ou aos termos finais de um aquífero cársico.

Notes

Acknowledgements

I am grateful to J. Donovan, M. Muldoon, J. Ray, J. Sharp Jr., C. Wicks and two anonymous reviewers for their helpful comments and suggestions on the manuscript, and to four anonymous reviewers for their interesting comments on an earlier version of the manuscript.

References

  1. Allen DJ, Brewerton LJ, Coleby LM, Gibbs BR, Lewis MA, Wagstaff SJ, Williams AT (1997) The physical properties of major aquifers in England and Wales. Tec Rep WD/97/34, British Geological Survey, Keyworth, England, 312 ppGoogle Scholar
  2. Anderson MP, Woessner WW (1992) Applied groundwater modeling. Academic, San Diego, CA, 381 ppGoogle Scholar
  3. Bauer S, Liedl R, Sauter M (2005) Modeling the influence of epikarst evolution on karst aquifer genesis: a time-variant recharge boundary condition for joint karst-epikarst development. Water Resour Res 41(9), W09416. doi: 10.1029/2004WR003321
  4. Berner RA, Morse JW (1974) Dissolution kinetics of calcium carbonate in sea water, IV: theory of calcite dissolution. Am J Sci 274:108–134Google Scholar
  5. Bredehoeft JD, Konikow LF (1993) Ground-water models: validate or invalidate. Ground Water 31:178–179CrossRefGoogle Scholar
  6. Courbon P, Chabert C, Bosted P, Lindsley K (1989) Atlas of the great caves of the world. Cave Books, St Louis, MO, 369 ppGoogle Scholar
  7. Crawford NC (2001) Field trip guide, part 1: environmental problems associated with urban development upon karst, Bowling Green, Kentucky. In: Beck BF, Herring JG (eds) Geotechnical and environmental applications of karst geology and hydrology. Balkema, Lisse, Netherlands, pp 397–424Google Scholar
  8. Cucchi F, Giorgetti F, Marinetti E, Kranj A (1997) Experiences in monitoring Timavo River (Classical Karst). In: Kranj A (ed) Tracer hydrology 97. Balkema, Rotterdam, The Netherlands, pp 213–218Google Scholar
  9. Davis H (1996) Hydrogeologic investigation and simulation of ground-water flow in the Upper Floridan Aquifer in north-central Florida and southwestern Georgia and delineation of contributing areas for selected City of Tallahassee, Florida, water-supply wells. US Geol Surv Water Resour Invest Rep 95-4296:55Google Scholar
  10. Deming D (2002) Introduction to hydrogeology. McGraw Hill, Boston 468Google Scholar
  11. Dreybrodt W (1990) The role of dissolution kinetics in the development of karst aquifers in limestone: a model simulation of karst evolution. J Geol 98:639–655CrossRefGoogle Scholar
  12. Dreybrodt W (1996) Principles of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models. Water Resour Res 32:2923–2935CrossRefGoogle Scholar
  13. Dreybrodt W, Gabrovšek F, Romanov D (2005) Processes of speleogenesis: a modeling approach. Karst Research Institute at ZRC SAZU, Postojna-Ljubljana, Slovenia, 376 ppGoogle Scholar
  14. Faulkner GL (1973) Geohydrology of the Cross-Florida Barge Canal area with special reference to the Ocala vicinity. US Geol Surv Water Resour Invest Rep 1-73:116Google Scholar
  15. Fitts CR (2002) Groundwater Science. Academic, Amsterdam, 450 ppGoogle Scholar
  16. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UK, 562 ppGoogle Scholar
  17. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ, 604 ppGoogle Scholar
  18. Granger DE, Fabel D, Palmer AN (2001) Pliocene-Pleistocene incision the Green River, Kentucky, determined from radioactive decay of cosmogenic 26Al and 10Be in Mammoth Cave sediments. Geol Soc Am Bull 113:825–836CrossRefGoogle Scholar
  19. Green RT, Painter SL, Sun A, Worthington SRH (2006) Groundwater contamination in karst terrranes. Water Air Soil Pollut 6:157–170CrossRefGoogle Scholar
  20. Groves C, Meiman J (2005) Weathering, geomorphic work, and karst landscape evolution in the Cave City Groundwater basin, Mammoth Cave, Kentucky. Geomorphology 67:115–126CrossRefGoogle Scholar
  21. Groves C, Meiman J, Howard AD (1999) Bridging the gap between real and mathematically simulated karst aquifers. In: Palmer AN, Palmer MV, Sasowsky ID (eds) Karst modeling. Special Publication No. 5, Karst Waters Institute, Charles Town, WVA, pp 197–202Google Scholar
  22. Halihan T, Mace RE, Sharp JM Jr (2000) Flow in the San Antonio segment of the Edwards aquifer: matrix, fractures, or conduits? In: Sasowsky ID, Wicks CM (eds) Groundwater flow and contaminant transport in carbonate aquifers. Balkema, Rotterdam, The Netherlands, pp 129–146Google Scholar
  23. Hanna RB, Rajaram H (1998) Influence of aperture variability on dissolutional growth of fissures in karst formations. Water Resour Res 34:2843–2853CrossRefGoogle Scholar
  24. Herman JS, White WB (1985) Dissolution kinetics of dolomite: effects of lithology and fluid flow velocity. Geochim Cosmochim Acta 49:2017–2026CrossRefGoogle Scholar
  25. Hess JW, White WB (1988) Storm response of the karstic carbonate aquifer of southcentral Kentucky. J Hydrol 99:235–252CrossRefGoogle Scholar
  26. Hess JW, White WB (1989) Water budget and physical hydrology. In: White WB, White EL (eds) Karst hydrology: concepts from the Mammoth Cave area. Reinhold, New York, pp 105–126Google Scholar
  27. Huntoon PW (1995) Is it appropriate to apply porous media groundwater circulation models to karstic aquifers? In: El-Kadi AI (ed) Groundwater models for resources analysis and management. Lewis, Boca Raton, FL, pp 339–358Google Scholar
  28. Jones WK (1997) Karst hydrology atlas of West Virginia. Special Publication No. 4, Karst Waters Institute, Charles Town, WVA, 111 ppGoogle Scholar
  29. Kaufmann G, Braun J (2000) Karst aquifer evolution in fractured, porous rock. Water Resour Res 36:1381–1391CrossRefGoogle Scholar
  30. Käss W (1998) Tracer technique in geohydrology. Balkema, Rotterdam, The Netherlands, 581 ppGoogle Scholar
  31. Konikow LF, Bredehoeft JD (1992) Ground-water models cannot be validated. Adv Water Resour 15:75–83CrossRefGoogle Scholar
  32. Kiraly L (1975) Report on the present knowledge on the physical characteristics of karstic rocks (in French). In: Burger A, Dubertret L (eds) Hydrogeology of Karstic Terrains. Int. Assoc. Hydrogeologists, Paris, pp 53–67Google Scholar
  33. Larocque M, Banton O, Ackerer O, Razack M (1999) Determining karst transmissivities with inverse modeling and an equivalent porous media. Ground Water 37:897–903CrossRefGoogle Scholar
  34. Liedl R, Sauter M, Hückinghaus D, Clemens T, Teutsch G (2003) Simulation of the development of karst aquifers using a coupled continuum pipe flow model. Water Resour Res 39(3), 1057. doi: 10.1029/2001WR001206 CrossRefGoogle Scholar
  35. Lindgren RJ, Dutton AR, Hovorka SD, Worthington SRH, Painter S (2004) Conceptualization and simulation of the Edwards Aquifer, San Antonio Region, Texas. US Geol Surv Sci Invest Rep 2004-5277, 154 ppGoogle Scholar
  36. McColloch JS (1986) Springs of West Virginia. West Virginia Geological and Economic Survey, Morgantown, WVA, 493 ppGoogle Scholar
  37. Meiman J, Ewers RO, Quinlan JF (1989) Investigation of flood pulse movement through a maturely karstified aquifer at Mammoth Cave National Park: a new approach. Proceedings of the Second Conference on Environmental Problems in Karst Terranes and their Solutions, National Water Well Association, Dublin, Ohio, October, 1988, pp 227-262Google Scholar
  38. Meiman JM, Leech BT Jr, Fry JF, Ray JA (1996) Groundwater hazard map of the Turnhole Spring karst groundwater basin: Mammoth Cave. Mammoth Cave National Park, Kentucky, 50 ppGoogle Scholar
  39. Meiman J, Groves C, Herstei S (2001) In-cave dye tracing and drainage basin divides in the Mammoth Cave Karst Aquifer, Kentucky. In: Kuniansky EL (ed) Karst Interest Group Proceedings, US Geol Surv Water Resour Invest Rep 01-4011, pp 179-18Google Scholar
  40. Meinzer OE (1927) Large springs in the United States, US Geol Surv Water Suppl Pap 557, 94 ppGoogle Scholar
  41. Neumann SP (2005) Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol J 13:124–147CrossRefGoogle Scholar
  42. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263:641–646CrossRefGoogle Scholar
  43. Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21CrossRefGoogle Scholar
  44. Palmer MV, Palmer AN (1975) Landform development in the Mitchell Plain of southern Indiana: origin of a partially karsted plain: Zeitschr Geomorphol 19: 1-39Google Scholar
  45. Pinder GF, Celia MA (2006) Subsurface hydrology. Wiley, Hoboken, NJ, 468 ppCrossRefGoogle Scholar
  46. Popper KR (1959) The logic of scientific discovery. Basic Books, New York 479 ppGoogle Scholar
  47. Plummer LN, Wigley TML (1976) The dissolution of calcite in CO2-saturated solutions at 25°C and 1 atmosphere total pressure. Geochim Cosmochim Acta 40:191–202CrossRefGoogle Scholar
  48. Quinlan JF (1986) Discussion of “Ground water tracers”, by Davis et al. (1985) with emphasis on dye tracing, especially in karst terranes. Ground Water 24:253–259 396-397CrossRefGoogle Scholar
  49. Quinlan JF, Ewers RO (1989) Subsurface drainage in the Mammoth Cave area. In: White WB, White EL (eds) Karst hydrology: concepts from the Mammoth Cave area. Reinhold, New York, pp 65–103Google Scholar
  50. Quinlan JF, Ray JA (1989) Groundwater basins in the Mammoth Cave Region, Kentucky. In: White WB, White EL (eds) Karst hydrology: concepts from the Mammoth Cave area. Reinhold, New York, pp 105–126Google Scholar
  51. Quinn JJ, Tomasko D (2000) A numerical approach to simulating mixed flow in karst aquifers. In: Sasowsky ID, Wicks CM (eds) Groundwater flow and contaminant transport in carbonate aquifers. Balkema, Rotterdam, The Netherlands, pp 147–156Google Scholar
  52. Quinlan JF, Ewers RO, Palmer AN (1986) Hydrogeology of Turnhole Spring groundwater basin, Kentucky. In: Centennial field guide: southeastern section, Geological Society of America, Boulder, CO, pp 7–12Google Scholar
  53. Ray JA, Currens JC (1998a) Mapped karst ground-water basins in the Beaver Dam 30 x 60 minute quadrangle, 1:100, 000. Kentucky Geological Survey, Lexington, KYGoogle Scholar
  54. Ray JA, Currens JC (1998b) Mapped karst ground-water basins in the Campbellsville 30 x 60 minute quadrangle, 1:100, 000. Kentucky Geological Survey, Lexington, KYGoogle Scholar
  55. Reimann T, Hill ME (2009) MODFLOW-CFP: a new conduit flow process for MODFLOW-2005. Ground Water. doi: 10.1111/j.1745-6584.2009.00561.x Google Scholar
  56. Rushton KR (2003) Groundwater hydrology; conceptual and computational models. Wiley, Chichester, UK, 416 ppCrossRefGoogle Scholar
  57. Sanz Pérez E (1996) Springs in Spain: classification according to their flows and lithologies and their hydraulic contributions. Ground Water 34:1033–1041CrossRefGoogle Scholar
  58. Sauter M (1992) Assessment of hydraulic conductivity in a karst aquifer at local and regional scale. In: Quinlan JF, Stanley A (eds) ecology, monitoring, and management of karst terranes. Conference proceedings. National Ground Water Association, Dublin, Ohio, pp 39–57Google Scholar
  59. Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we simulate flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards Aquifer, USA. J Hydrol 276:137–158CrossRefGoogle Scholar
  60. Schulze-Makuch D, Carlson DA, Cherkauer DS, Malik P (1999) Scale dependency of hydraulic conductivity in heterogeneous media. Ground Water 37:904–919CrossRefGoogle Scholar
  61. Shaw TR (1992) History of cave science. Sydney Speleological Society, Sydney, Australia 338 ppGoogle Scholar
  62. Shoemaker WB, Kuniansky EL, Birk S, Bauer S, Swaib ED (2008) Documentation of a conduit flow process (CFP) for MODFLOW-2005. US Geol Surv Tech Methods 6-A24Google Scholar
  63. Siemers J, Dreybrodt W (1998) Early development of karst aquifers on percolation networks of fractures in limestone. Water Resour Res 34:409–419CrossRefGoogle Scholar
  64. Slade RM Jr, Ruiz LM, Slagle DL (1985) Simulation of the flow system of Barton Springs and associated Edwards aquifer in the Austin area, Texas. US Geol Surv Water Resour Invest Rep 85-4299:49Google Scholar
  65. Smart PL, Hobbs SL (1986) Characterisation of carbonate aquifers: a conceptual base. In: Environmental problems in karst terranes and their solutions conference proceedings (1st, Bowling Green, Kentucky), National Water Well Association, Dublin, Ohio, pp 1-14Google Scholar
  66. Tobin BD, Weary DJ (2004) Digital engineering aspects of karst map: a GIS version of Davies WE, Simpson JH, Ohlmacher GC, Kirk WS, Newton EG (1984) Engineering aspects of karst: US Geological Survey, National Atlas of the United States of America, scale 1:7,500,000. US Geol Surv Open-File Rep 2004-1352Google Scholar
  67. Thrailkill J (1974) Pipe flow models of a Kentucky limestone aquifer. Ground Water 12:202–205CrossRefGoogle Scholar
  68. Todd DK, Mays LW (2005) Groundwater hydrology. Wiley, Hoboken, NJ, p 636Google Scholar
  69. Waddell RK (1982) Two-dimensional, steady-state model of ground-water flow, Nevada test site and vicinity, Nevada-California. US Geol Surv Water Resour Invest Rep 82-4085:77Google Scholar
  70. Wagner JR (1989) Potentiometric surface of the Floridan Aquifer System, Map Series 89–1. Northwest Florida Water Management District, Havana, FLGoogle Scholar
  71. White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New York, 464 ppGoogle Scholar
  72. White WB, White EL (1989) Karst hydrology: concepts from the Mammoth Cave area. Reinhold, New York, 346 ppGoogle Scholar
  73. Winograd IJ, Pearson FJ (1976) Major Carbon 14 anomaly in a regional carbonate aquifer: possible evidence for megascale channeling, South Central Great Basin. Water Resour Res 12:1125–1143CrossRefGoogle Scholar
  74. Worthington SRH (1999) A comprehensive strategy for understanding flow in carbonate aquifers. In: Palmer AN, Palmer MV, Sasowsky ID (eds) Karst modeling. Special Publication No. 5, Karst Waters Institute, Charles Town, WVA, pp 30–37Google Scholar
  75. Worthington SRH (2002) Test methods for characterizing contaminant transport in a glaciated carbonate aquifer. Environ Geol 42:546–551CrossRefGoogle Scholar
  76. Worthington SRH, Ford DC (1997) Borehole tests for megascale channeling in carbonate aquifers. In: Jeannin P-Y (ed) Proceedings of the Sixth Conference on Limestone Hydrology and Fissured Media. Centre of Hydrogeology, University of Neuchatel, Switzerland, pp 191–195Google Scholar
  77. Worthington SRH, Ford DC (2009) Self-organized permeability in carbonate aquifers. Ground Water 47:326–336CrossRefGoogle Scholar
  78. Worthington SRH, Davies GJ, Quinlan JF (1992), Geochemistry of springs in temperate carbonate aquifers: Recharge type explains most of the variation. In: Chauve P, Zwahlen F (eds) Proceedings of the Fifth Conference on the Hydrology of Limestone and Fractured Aquifers. Géologie-Mémoire Hors Série, vol 2, no. 11, Annales Scientifiques de l’Université de Besançon, France, pp 341-348Google Scholar
  79. Worthington SRH, Davies GJ, Ford DC (2000) Matrix, fracture and channel components of storage and flow in a Paleozoic limestone aquifer. In: Sasowsky ID, Wicks CM (eds) Groundwater flow and contaminant transport in carbonate aquifers. Balkema, Rotterdam, The Netherlands, pp 113–128Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Worthington GroundwaterDundasCanada

Personalised recommendations