Advertisement

Hydrogeology Journal

, 17:1589 | Cite as

Hydrogeological model of a high-energy geothermal field (Bouillante area, Guadeloupe, French West Indies)

  • P. LachassagneEmail author
  • J. C. Marechal
  • B. Sanjuan
Paper

Abstract

The Bouillante geothermal field provides about 8% of the annual electricity needs of the French West Indies island of Guadeloupe. It has been the subject of several studies covering various disciplines. A hydrogeological conceptual model of the field is proposed. The reservoir consists of two perpendicular sets of fractures and faults, related to major regional tectonic structures, which have been clogged near surface by self sealing. The heat exchanges of the reservoir with the outside are reduced, through thermal and hydraulic blanketing, to conductive transfers. Convection cells are active within the reservoir, ensuring its thermal and geochemical homogeneity. Heat exchange with the magmatic chamber is only conductive. The Na–Cl geothermal fluid in the reservoir is composed of 60% seawater and 40% freshwater and has reached a chemical equilibrium with a mineralogical assemblage at 250–260°C. Many arguments (equilibrium state, absence of tritium, low in/out fluxes, large reservoir volume) suggest a long residence time (>100 years) of the geothermal fluid. Three factors explain the existence and location of the geothermal field: a heat source (cooling hypovolcanic intrusion), a network of permeable fractures at the origin of the geothermal aquifer, and an impermeable surface cover, limiting the loss of energy and ensuring the durability of the field.

Keywords

Conceptual model Geothermal field Groundwater hydraulics Guadeloupe French West Indies 

Modèle conceptuel hydrogéologique d’un champ géothermique haute énergie (Bouillante, Guadeloupe, Antilles françaises)

Résumé

Le gisement géothermique de Bouillante contribue actuellement pour environ 8% aux besoins en électricité de l’île de la Guadeloupe (Antilles françaises). Il a fait l’objet de nombreuses études et recherche dans des disciplines variées. Sur cette base, un modèle conceptuel hydrogéologique de ce champ geothermal est proposé. Le réservoir est constitué de deux réseaux de fractures et failles perpendiculaires, liés à des structures tectoniques régionales majeures, qui sont colmatées, au sein des 4 à 500 premiers mètres sous la surface, par des phénomènes de self-sealing et d’argilisation. Les échanges de chaleur entre le réservoir et la surface sont limités à des transferts par conduction du fait de l’isolation thermique et surtout hydraulique. Des cellules de convection sont actives au sein du réservoir et assurent son homogénéité thermique et géochimique. Les transferts de chaleur depuis la chambre magmatique vers le réservoir sont uniquement de type conductif. Le fluide géothermal, de type chloruré-sodique, est composé à 60 % d’eau de mer et à 40 % d’eau douce d’origine météorique. Il est en équilibre avec l’assemblage minéralogique du réservoir à 250-260°C. De nombreux arguments (état d’équilibre, absence de tritium, faibles flux d’eau entrant et sortant naturellement du réservoir, volume important de celui-ci) suggèrent des temps de séjour importants du fluide dans le réservoir (>100 ans). Trois facteurs expliquent l’existence et la localisation du champ géothermal : la présence d’une source de chaleur (une intrusion volcanique en cours de refroidissement), un réseau de fractures perméables à l’origine de l’aquifère géothermal et une couverture imperméable qui limite les pertes d’énergie thermique et assure la durabilité du champ.

Modelo hidrogeológico de un campo geotérmico de alta energía (Área de Bouillante, Guadalupe, Antillas francesas)

Resumen

El campo geotérmico Bouillante provee alrededor del 8% de la electricidad anual que necesitan las islas de Guadalupe en las Antillas Francesas. Ello ha sido objeto de varios estudios que cubren varias disciplinas. Se propone un modelo hidrogeológico conceptual del campo. El reservorio consiste en 2 conjuntos perpendiculares de fallas y fracturas relacionados a las principales estructuras tectónicas regionales, las cuales han sido obturadas cerca de la superficie por autosellado. Los intercambios de calor del reservorio con el exterior están reducidos, por la cubierta hidráulica y térmica, a transferencias conductivas. Las celdas de convección están activas dentro del reservorio, asegurando su homogeneidad geoquímica y térmica. El intercambio de calor con la cámara magmática es solo conductivo. El fluido geotérmico Na-Cl en el reservorio está compuesto de 60% de agua de mar y 40% de agua dulce y ha alcanzado un equilibrio químico con una composición mineralógica de 250-260°C. Muchos argumentos (estados de equilibrio, ausencia de tritio, bajos flujos de ingreso / egreso, gran volumen de reservorio) sugieren un gran tiempo de residencia (>100 años) del fluido geotérmico. Tres factores explican la existencia y la ubicación del campo geotérmico: una fuente de calor (enfriamiento de la intrusión hipovolcánica), una red de fracturas permeables en el origen del acuífero geotérmico y una cubierta superficial impermeable, que limita la perdida de energía y asegura la durabilidad del campo.

某高能地热田的水文地质模型 (法属西印度群岛之瓜德罗普岛Bouillante地区)

摘要:

Bouillante地热田每年供应法属西印度群岛瓜德罗普岛所需电力的8%。它已成为若干跨学科研究的主题。我们为其建立了水文地质概念模型。该热储由两组与区域大构造有关的相互垂直的断裂构成, 在近地表为自封闭作用所堵塞。因热和水力覆盖对热对流的阻滞, 热储与外界的热交换被削弱至只有传导。热储中的对流单元非常活跃, 保证了热量和地球化学的均一性。热储与岩浆房的热交换只能通过传导进行。热储中的Na-Cl型地热流体是由60%的海水和40%的淡水构成, 并在250-260°C与周围的矿物组合达到化学平衡。许多证据 (如平衡状态, 无氚, 低流入/流出通量, 大的储库体积) 表明地热流体滞留时间较长 (>100年) 。三个因素解释了该地热田的成因和位置: 热源(次火山侵入的冷却) , 渗透性裂隙网络构成的地热含水层以及限制能量散失和保证地热田持久性的隔水盖层。

Modelo hidrogeológico de um campo geotérmico de elevada energia (área de Bouillante, Guadalupe, Antilhas Francesas)

Resumo

O campo geotermal de Bouillante fornece cerca de 8% do consumo de electricidade anual das ilhas de Guadalupe, nas Antilhas Francesas, e tem sido objecto de inúmeros estudos envolvendo diferentes disciplinas. Propõe-se um modelo hidrogeológico conceptual do campo. O reservatório consiste em dois conjuntos perpendiculares de fracturas e falhas, relacionadas com estruturas tectónicas regionais de maior dimensão, que foram colmatadas próximo da superfície por auto selagem. As trocas de temperatura do reservatório com o exterior são escassas, devido a isolamento térmico e hidráulico a transferências. As células de convecção são activas dentro do reservatório, assegurando a sua homogeneidade térmica e geoquímica. As trocas de calor com a câmara magmática são apenas condutivas. O fluido geotermal Na-Cl no reservatório é constituído em 60% por água do mar e em 40% por água doce e atingiu o equilíbrio químico e mineralógico a 250-260 ºC. Vários argumentos (estado de equilíbrio, ausência de trítio, baixos fluxos de entrada e de saída, largo volume de reservatório) sugerem um longo tempo de residência (> 100 anos) dos fluidos geotérmicos. Três factores explicam a existência e localização do campo geotermal: a fonte de calor (arrefecimento de intrusão hipovulcânica), uma rede de fracturas permeáveis na origem do aquífero geotermal, e uma camada superficial impermeável, que limita as perdas de energia e assegura a durabilidade do campo.

Notes

Acknowledgements

The authors thank ADEME (Agence de l’Environnement et de la Maîtrise de l‘Energie) and Geothermie Bouillante Ltd for supporting this research under various funding projects (particularly ADEME grants Nos. 02 05 035 and 02 05 036 Geothermie Bouillante grant RPI No. 141). The authors also thank Geothermie Bouillante Ltd and CFG Services for site facilities and technical and scientific support. Dr H. Traineau is particularly thanked for the fruitful discussions in the field and for his manuscript review. B. Aunay is thanked for his help for the drawing of some illustrations.

References

  1. Akasako H, Matsuda K, Tagomori K, Koseki T, Takahashi H, Dwipa S, Muraoka HC (2002) Conceptual models for geothermal systems in the Wolo Bobo, Nage and Mataloko fields, Bajawa area, central Flores, Indonesia: Indonesia-Japan geothermal exploration project in Flores Island. Bull Geol Surv Jpn 53(2–3):375–387Google Scholar
  2. Andreieff P, Bouysse P, Westercamp D (1989) Géologie de l’arc insulaire des petites Antilles et évolution géodynamique de l’Est-Caraïbe [Geology of the Lesser Antilles insular arc and Eastern Caribbean geodynamical evolution]. BRGM, Orléans, France Google Scholar
  3. Arellano VM, Garcia A, Barragan RM, Izquierdo G, Aragon A, Nieva D (2003) An updated conceptual model of the Los Humeros geothermal reservoir (Mexico). J Volcanol Geoth Res 124(1–2):67–88CrossRefGoogle Scholar
  4. Barker JA (1988) A generalized radial flow model for hydraulic tests in fractured rock. Water Resour Res 24(10):1796–1804CrossRefGoogle Scholar
  5. Barthes V, Mennechet C (1984) Prospection géothermique de la région de Bouillante–Vieux habitants (Guadeloupe). Etude gravimétrique [Geothermal survey of the Bouillante–Vieux habitants (Guadeloupe) area. Gravimetric study]. BRGM report no. 84 SGN 063 GTH, BRGM, Orléans, FranceGoogle Scholar
  6. Batini F, Brogi A, Lazzarotto A, Liotta D, Pandeli E (2003) Geological features of Larderello-Travale and Mt. Amiata geothermal areas (southern Tuscany, Italy): geology of Italy. Episodes 26(3):239–244Google Scholar
  7. Bernard M-L, Molinié J, Petit R-H, Beauducel F, Hammouya G, Marion G (2006) Remote and in situ plume measurements of acid gas release from La Soufrière volcano, Guadeloupe. J Volcanol Geoth Res 150(4):395CrossRefGoogle Scholar
  8. Bertini G, Casini M, Gianelli G, Pandeli E (2006) Geological structure of a long-living geothermal system, Larderello, Italy. Terra Nova 18(3):163–169CrossRefGoogle Scholar
  9. Bodvarsson GS, Benson SM, Sigurdsson O, Stefansson V, Eliasson ET (1984a) The Krafla geothermal field, Iceland, 1. Analysis of well test data. Water Resour Res 20(11):1515–1530CrossRefGoogle Scholar
  10. Bodvarsson GS, Pruess K, Stafansson V, Eliasson ET (1984b) The Krafla geothermal field, Iceland, 2. The natural state of the system. Water Resour Res 20(11):1531–1544CrossRefGoogle Scholar
  11. Bodvarsson GS, Pruess K, Stefansson V, Eliasson ET (1984c) The Krafla geothermal field, Iceland, 3. The generating capacity of the field. Water Resour Res 20(11):1545–1559CrossRefGoogle Scholar
  12. Boudon G, Dagain J, Semet M, Westercamp D (1982) Carte géologique du Massif volcanique de la Soufrière. Département de la Guadeloupe, Petites Antilles [Geological map of the Soufrière volcano. Guadeloupe Department, Lesser Antilles], BRGM, Orléans, FranceGoogle Scholar
  13. Bouysse P (1988) Opening of the Grenada back-arc basin and evolution of the Caribbean plate during the Mesozoic and early Paleogene. Tectonophysics 149:121–143Google Scholar
  14. CFG (2001) Champ géothermique de Bouillante. Synthèse lithologique des nouveaux puits BO-5, BO-6 et BO-7 et corrélation entre puits [Bouillante geothermal field. Lithological synthesis of the new wells BO-5, BO-6 and BO-7 and correlation between wells]. CFG report, CFG, OrléansGoogle Scholar
  15. Clemente WC, Villadolid-Abrigo FL (1993) The Bulalo geothermal field, Philippines: reservoir characteristics and response to production. Geothermics 22(5/6):381–394CrossRefGoogle Scholar
  16. Combarnous MA, Bories SA (1975) Hydrothermal convection in saturated porous media. Adv Hydrosci 10:231–307Google Scholar
  17. Cormy G, Demians d’Archimbaud J, Surcin J (1970) Prospection géothermique aux Antilles françaises, Guadeloupe et Martinique [Geothermal survey in French West Indies, Guadeloupe and Martinique]. Geothermics (special issue) 2:57–72CrossRefGoogle Scholar
  18. Correia H, Sigurdsson O, Sanjuan B, Tulinius H, Lasne E (2000) Stimulation test of a high-enthalpy geothermal well by cold water injection. Geotherm Resour Council Trans 24:129–136Google Scholar
  19. Demians d’Archimbaud J, Munier-Jolain J-P (1976) Les progrès de l’exploration géothermique à Bouillante en Guadeloupe [The progress of geothermal exploration at Bouillante, Guadeloupe]. Eurafrep S.A., Proc. 25th Workshop on Geothermal Reservoir Eng., Stanford, CA, USA, 24–26 January 2000, pp 101–104Google Scholar
  20. Demians d’Archimbaud J, Surcin J (1976) Recherches d’énergie géothermiques en Guadeloupe [Study of geothermal energy on Guadeloupe]. Bull BRGM 4:365–373Google Scholar
  21. Dilsiz C (2006) Conceptual hydrodynamic model of the Pamukkale hydrothermal field, southwestern Turkey, based on hydrochemical and isotopic data. Hydrogeol J 14(4):562CrossRefGoogle Scholar
  22. Dim JR, Sakura YS, Fukami HF, Miyakoshi AM (2002) Spatial characteristics of groundwater temperature in the Ishikari Lowland, Hokkaido, northern Japan: analytical and numerical applications. Hydrogeol J 10(2):296CrossRefGoogle Scholar
  23. Fabriol H (2001) Champ géothermique de Bouillante : synthèse des études géophysiques [Bouillante geothermal field: synthesis of the geophysical studies]. BRGM report no. RP-50259-FR, BRGM, Orléans, FranceGoogle Scholar
  24. Fabriol H, Bitri A, Bourgeois B, Debeglia N, Genter A, Guennoc P, Jousset P, Miehé J, Roig JY, Thinon I, Traineau H, Sanjuan B, Truffert C (2005) Geophysical methods applied to the assessment of the Bouillante geothermal field (Guadeloupe, French West Indies). World Geothermal Congress, WGC 2005, Antalaya, Turkey, April 2005Google Scholar
  25. Fabriol R, Ouzounian G (1985) Prospection géothermique des zones de Bouillante et de la Soufrière (Guadeloupe): modèle hydrogéochimique [Geothermal survey of the Bouillante and Soufrière areas (Guadeloupe): hydrogeochimical model]. BRGM report No. 85 SGN 433 GTH, BRGM, Orléans, FranceGoogle Scholar
  26. Feuillet N, Manighetti I, Tapponnier P (2001) Extension active perpendiculaire a la subduction dans l’arc des petites Antilles (Guadeloupe, Antilles francaises) [Active extension perpendicular to the subduction in the lesser Antilles arc (Guadeloupe, French West Indies)]. CR Acad Sci Paris Earth Planet Sci 333(9):583–590Google Scholar
  27. Feuillet N, Manighetti I, Tapponnier P (2002) Arc parallel extension and localization of volcanic complexes in Guadeloupe, Lesser Antilles. J Geophys Res 107(B12)):2331–2359CrossRefGoogle Scholar
  28. Flores-Márquez E, Jiménez-Suárez G, Martínez-Serrano R, Chávez R, Pérez D (2006) Study of geothermal water intrusion due to groundwater exploitation in the Puebla Valley aquifer system, Mexico. Hydrogeol J 14(7):1216CrossRefGoogle Scholar
  29. Gadiala A, Westercamp D (1984) Prospection géothermique de la région de Bouillante–Vieux Habitants (Guadeloupe). Rapport géologique [Geothermal survey of the Bouillante–Vieux Habitants area (Guadeloupe)]. BRGM report No. 84 SGN 063 GTH, BRGM, Orléans, FranceGoogle Scholar
  30. Gandino A, Guidi M, Merlo C, Mete L, Rossi R, Zan L (1985) Preliminary model of the Ribeira Grande geothermal field (Azores Islands). Geothermics 14(1):91–105CrossRefGoogle Scholar
  31. Genter A, Traineau H (2004) Synthèse méthodologique sur l’exploration géothermique haute énergie dans les DOM: approche géologique. [Methodological synthesis on high energy geothermal exploration in French overseas regions: geological approach]. GHEDOM project, BRGM report BRGM/RP-53130-FR, BRGM, Orléans, France, 86 ppGoogle Scholar
  32. Guillou-Frottier L (2003) Compilation et analyse des données thermiques sur le champ géothermique de Bouillante: premières interprétations pour le fonctionnemen du champ géothermique [Compilation and analysis of the thermal data on the Bouillante geothermal field: first interpretations of the functioning of the geothermal field]. BRGM Report No. BRGM/RP-52452-FR, BRGM, Orléans, FranceGoogle Scholar
  33. Guisseau D, Patrier Mas P, Beaufort D, Girard JP, Inoue A, Sanjuan B, Petit S, Lens A, Genter A (2007) Significance of the depth-related transition montmorillonite-beidellite in the Bouillante geothermal field (Guadeloupe, Lesser Antilles). Am Mineral 92(11–12):1800–1813CrossRefGoogle Scholar
  34. Hulen JB, Anderson TD (1998) The Awibengkok, Indonesia, geothermal research project. 23rd Workshop on Geothermal Reservoir Engineering, Stanford Geothermal Program, Stanford, CAGoogle Scholar
  35. Ingebritsen S, Scholl M (1993) The hydrogeology of Kilauea volcano. Geothermics 22:255–270CrossRefGoogle Scholar
  36. Kühn M, Stöfen H (2005) A reactive flow model of the geothermal reservoir Waiwera, New Zealand. Hydrogeol J 13(4):606CrossRefGoogle Scholar
  37. Lachassagne P, Maréchal J (2004) Synthèse des connaissances hydrogéologiques, profondes et de subsurface, sur le champ géothermique de Bouillante [Synthesis of the deep and subsurface hydrogeological knowledge about the Bouillante geothermal field]. BRGM report No. RP-53404-FR, BRGM, Orléans, FranceGoogle Scholar
  38. Lachassagne P, Blavoux B, Livet M (2006) Généralités sur les eaux souterraines. 5. Aquifères volcaniques, chapitre I [Generalities on the aquifers. 5. Volcanic aquifers, Chap. I]. In: Roux JC (ed) Aquifères et Eaux Souterraines en France [Aquifers and Groundwater in France, vol 1]. BRGM, Orléans, France, pp 52–58Google Scholar
  39. Maréchal J-C, Perrochet P, Tacher L (1999) Long term simulation of thermal and hydraulic characteristics in a mountain massif: the Mont-Blanc case study, French and Italian Alps. Hydrogeol J 7:341–354CrossRefGoogle Scholar
  40. Mas A, Guisseau D, Patrier Mas P, Beaufort D, Genter A, Sanjuan B, Girard JP (2006) Clay minerals related to the hydrothermal activity of the Bouillante geothermal field (Guadeloupe). J Volcanol Geoth Res 158(3–4):380CrossRefGoogle Scholar
  41. Patrier P, Beaufort D, Mas A, Traineau H (2003) Surficial clay assemblage associated with the hydrothermal activity of Bouillante (Guadeloupe, French West Indies). J Volcanol Geoth Res 126(1–2):143CrossRefGoogle Scholar
  42. Sanjuan B (2001) Champ géothermique de Bouillante (Guadeloupe): synthèse des travaux réalisés en géochimie avant 1999 [Bouillante geothermal field (Guadeloupe): synthesis of the geochemical studies performed before 1999]. BRGM report No. RC-51672-FR, BRGM, Orléans, France, 64 ppGoogle Scholar
  43. Sanjuan B, Brach M (1997) Etude hydrogéochimique du champ géothermique de Bouillante (Guadeloupe) [Hydrogeochemical study of the Bouillante geothermal field (Guadeloupe)]. BRGM report No. R39880, BRGM, Orléans, FranceGoogle Scholar
  44. Sanjuan B, Lasne E, Brach M (2000) Bouillante geothermal field (Guadeloupe). Geochemical monitoring during a thermal stimulation operation. 25th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 24–26 January 2000Google Scholar
  45. Sanjuan B, Lasne E, Brach M (2001) Bouillante geothermal fluid: mixing and water/rock interaction processes at 250°C. Proc. 10th Water-Rock Interaction (WRI-10), Cagliari, Italy, 10–15 June 2001, pp 911–914Google Scholar
  46. Sanjuan B, Le Nindre Y-M, Menjoz A, Sbai A, Brach M, Lasne E (2004) Travaux de recherche liés au développement du champ géothermique de Bouillante [Research studies linked to the development of the Bouillante geothermal field (Guadeloupe)]. BRGM Report No. RP-53136-FR, BRGM, Orléans, France, 166 ppGoogle Scholar
  47. Sanjuan B, Traineau H, Roig JY, Miehé J, Cotiche C, Lachassagne P, Maréchal J, Fabriol H, Brach M (2005) Reconnaissance du potentiel géothermique du secteur nord de la baie de Bouillante, en Guadeloupe, par des méthodes d’exploration de surface [Survey of the geothermal potentialities of the Bouillante bay northern sector (Guadeloupe) by surface exploration methods]. BRGM report No. RC-53634-FR, BRGM, Orléans, France, 120 ppGoogle Scholar
  48. Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings, Science 277:957–1962Google Scholar
  49. Tamanyu S, Wood CP (2003) Characterization of geothermal systems in volcano-tectonic depressions: Japan and New Zealand. Bull Geol Surv Jpn 54(3–4):117–129Google Scholar
  50. Thinon I, Bitri A, Guennoc P (2004) Levé sismique et magnétique le long de la côte ouest de l’île de Basse Terre, Guadeloupe: apports à la compréhension du contexte structural du champ géothermique de Bouillante [Seismic and magnetic surveys along the western coast of the Basse Terre island (Guadeloupe): comprehension of the structural context of the Bouillante geothermal field]. BRGM report No. RP-53152-FR, BRGM, Orléans, FranceGoogle Scholar
  51. Traineau H (2001) Champ géothermique de Bouillante (Guadeloupe): synthèse des travaux réalisés en géologie avant 1999 [Bouillante geothermal field (Guadeloupe): synthesis of the geological studies performed before 1999], CFG report, CFG, OrléansGoogle Scholar
  52. Traineau H, Sanjuan B, Beaufort D, Castaing BMC, Correia H, Genter A, Herbrich B (1997) The Bouillante geothermal field revisited: new data on the fractured geothermal reservoir in light of a future stimulation experiment in a low productive well. 22nd Workshop Geothermal Reservoir Engineering, Stanford, CA, 27–29 January 1997Google Scholar
  53. Violette S, Ledoux E, Goblet P, Carbonnel J-P (1997) Hydrologic and thermal modeling of an active volcano: the Piton de la Fournaise, Reunion. J Hydrol 191(1–4):37–63CrossRefGoogle Scholar
  54. Vosteen H-D, Schellschmidt R (2003) Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock: heat flow and the structure of the lithosphere. Phys Chem Earth 28(9–11):499–509Google Scholar
  55. Westercamp D, Traineau H (1987) Hydrogeologic and geothermal scheme of an insular arc stratovolcano: Mount Pelee, Martinique, French Antilles. Bull Soc Geol France 3(6):1063–1073Google Scholar
  56. Zarrouk S, Kaya E, O’Sullivan M (2006)A review of worldwide experience of reinjection in geothermal fields. 28th New Zealand Geothermal Workshop, Auckland, 15–17 November 2006Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.BRGM, Water DivisionHard Rock Aquifers UnitMontpellierFrance
  2. 2.BRGM, Department of Geothermal EnergyOrléans Cedex 2France
  3. 3.Evian CedexFrance

Personalised recommendations