Advertisement

Hydrogeology Journal

, 17:2037 | Cite as

Constraints on water chemistry by chemical weathering in the Lake Qinghai catchment, northeastern Tibetan Plateau (China): clues from Sr and its isotopic geochemistry

  • Zhangdong JinEmail author
  • Jimin Yu
  • Sumin Wang
  • Fei Zhang
  • Yuewei Shi
  • Chen-Feng You
Report

Abstract

Lake water, river water, and groundwater from the Lake Qinghai catchment in the northeastern Tibetan Plateau, China have been analyzed and the results demonstrate that the chemical components and 87Sr/86Sr ratios of the waters are strictly constrained by the age and rock types of the tributaries, especially for groundwater. Dissolved ions in the Lake Qinghai catchment are derived from carbonate weathering and part from silicate sources. The chemistry of Buha River water, the largest tributary within the catchment, underlain by the late Paleozoic marine limestone and sandstones, constrains carbonate-dominated compositions of the lake water, being buffered by the waters from the other tributaries and probably by groundwater. The variation of 87Sr/86Sr ratios with cation concentrations places constraint on the Sr-isotopic compositions of the main subcatchments surrounding Lake Qinghai. The relative significance of river-water sources from different tributaries (possibly groundwater as well) in controlling the Sr distribution in Lake Qinghai provides the potential to link the influence of hydrological processes to past biological and physical parameters in the lake. The potential role of groundwater input in the water budget and chemistry of the lake emphasizes the need to further understand hydrogeological processes within the Lake Qinghai system.

Keywords

Hydrochemistry Tracer tests Groundwater flow Chemical weathering China 

Impact de l’altération météorique sur la chimie de l’eau du bassin versant du lac Qinghai, Nord-Est du Plateau tibétain (Chine): indications fournies par Sr et ses isotopes

Résumé

Les eaux du lac, des rivières et de la nappe du bassin versant du lac Qinghai, Nord-Est du Plateau tibétain, Chine, ont été analysées; les résultats montrent que les compositions chimiques et les ratios 87Sr/86Sr de l’eau et particulièrement ceux de la nappe portent nettement la marque de la nature et de l’âge des roches de l’impluvium. Les ions du bassin d’alimentation du lac Qinghai proviennent de l’altération de roches carbonatées d’une part et de roches siliceuses d’autre part. La chimie de l’eau de la rivière Buha, le plus important tributaire du bassin sur substrat de calcaires et grès marins du paléozoique supérieur, impose une dominante carbonatée à l’eau du lac, tamponnée par l’eau des autres affluents et probablement par celle de la nappe. La corrélation des ratios 87Sr/86Sr avec les concentrations cationiques fait de Sr le marqueur isotopique du principal sous-bassin versant entourant le lac Qinghai. Le contrôle de l’apport de Sr dans le lac par les différents tributaires (incluant la nappe) montre le lien entre processus hydrogéologiques et histoires biologique et géochimique. L’importance des eaux souterraines dans la chimie et dans le bilan des apports démontre la nécessité d’une meilleure compréhension du système hydrogéologique du lac Qinghai.

Condicionamientos en la química del agua por meteorización química en la cuenca del Lago Qinghai, en el noreste de la meseta Tibetana (China): Claves a partir del Sr y su geoquímica isotópica

Resumen

Se analizaron el agua lacustre, el agua fluvial y el agua subterránea de la cuenca del Lago Qinghai en el noreste de la meseta Tibetana, China y los resultados demuestran que los componentes químicos y la relación 87Sr/86Sr de las aguas están estrictamente condicionados por la edad y tipo de rocas de los tributarios, especialmente para el aguas subterránea. Los iones disueltos en la cuenca del Lago Qinghai provienen de la meteorización de carbonatos y de parte de fuentes de silicatos. La química del agua del Río Buha, el mayor afluente dentro de la cuenca, que yace encima de las calizas y areniscas marinas del Paleozoico tardío, condiciona los compuestos mayormente carbonáticos del agua del lago, siendo am amortiguado por las agua de los otros tributarios y probablemente por el agua subterránea. La variación de la relación 87Sr/86Sr con concentraciones de cationes pone condiciones sobre las composiciones isotópicas del Sr de las principales subcuencas que rodean al lago Qinghai. La importancia relativa de las fuentes del agua del río provenientes de los distintos tributarios (posiblemente también del agua subterránea) controla la distribución del Sr, lo cual provee la capacidad de conectar la influencia de procesos hidrológicos a los parámetros biológicos y geoquímicos pasados en el lago. El rol potencial de la entrada de las aguas subterráneas en el balance de agua y la química del lago enfatizó la necesidad de entender profundamente los procesos hidrogeológicos dentro del sistema del Lago Qinghai.

青海湖流域化学风化对水化学组成的制约 : 来自Sr及其同位素地球化学的线索

摘 要

通过位于青藏高原东北缘的青海湖流域湖水、河水和地下水的化学分析结果表明, 流域内水体的化学组成和87Sr/86Sr比值主要受各河流受风化岩石的年龄和类型的严格制约, 特别是地下水的组成。青海湖流域溶解性离子主要来源于碳酸盐风化, 部分来自硅酸盐风化。作为流域内最大的河流, 布哈河的下伏围岩以晚古生代海相灰岩和砂岩为主, 其河水的化学组成控制了湖水的碱性特征, 而其他河流及地下水对湖水组成则主要起到缓冲作用。87Sr/86Sr和离子组成可以有效地定义青海湖流域内各子流域特征的水化学组成。通过各子流域的河水 (包括地下水在内) 对青海湖湖水Sr组成相对重要性的认识, 将为探讨流域水文过程对过去生物和地球化学参数的制约提供有力的线索。流域内地下水注入对湖水化学及通量的可能影响, 则需要进一步理解青海湖流域内的水文过程。

Constrangimentos à qualidade química da água em função da meteorização química na bacia do Lago Qinghai, Nordeste do Planalto Tibetano (China): inferências a partir do Sr e dos seus isótopos geoquímicos

Resumo

Constrangimentos à qualidade química da água em função da meteorização química na bacia do Lago Qinghai, Nordeste do Planalto Tibetano (China): inferências a partir do Sr e dos seus isótopos geoquímicos. A água dos lagos, dos rios, e as águas subterrâneas da bacia do Lago Qinghai, no Nordeste do Planalto Tibetano (China), foram analisadas, tendo os resultados demonstrado que as componentes químicas e o índice 87Sr/86Sr das águas são influenciados pela idade e pela composição das rochas das bacias afluentes, especialmente no que respeita às águas subterrâneas. Os iões dissolvidos na bacia afluente ao lago Qinghai são derivados de meteorização de carbonatos e também parcialmente de silicatos. A química da água do rio Buha, o maior afluente da bacia, formada por depósitos de calcários e arenitos marinhos do Paleozóico Superior, influencia a composição predominantemente carbonatada das águas do lago, a qual é tamponada pelas águas provenientes dos outros afluentes e provavelmente das águas subterrâneas. A variação do índice 87Sr/86Sr com a concentração de catiões coloca constrangimentos à composição dos isótopos de Sr das principais sub-bacias que envolvem o Lago Qinghai. A importância relativa das fontes de águas fluviais provenientes dos diversos afluentes (e possivelmente também das águas subterrâneas) no controlo da distribuição de Sr no Lago Qinghai sugere uma influência dos processos hidrológicos no passado biológico e geoquímico dos parâmetros do lago. A contribuição potencial das águas subterrâneas para o volume total e para o quimismo do lago enfatizam a necessidade de se prosseguir a análise e compreensão dos processos hidrogeológicos dos sistemas hídricos do Lago Qinghai.

Контроль химического выветривания водяной химией в бассейне озера Цинхая: Ниточки от геохимии Sr и его изотопов

РЕЗЮМЕ

Химический анализ воды озера, реки и подземных вод в бассейне озера Цинхая, находящегося на северо-восточном крае плато Цинцзана показывает, что химический состав и отношение 87Sr/86Sr воды (особенно подземной воды) строго контролируются возрастами и типами выветриванных пород, по которым текут реки. Большинство растворимых ионов в бассейне озера Цинхая происходит от выветриванных карбонатов, небольшая часть—от силикатов. В качестве наибольшой реки в бассейне озера Цинхая, река Буха течёт по поздно- палеозойскому известняку и песчанику. Химический состав воды реки Буха опрелеляет, что вода озера Цинхая обладает щёлочой характеристикой, а другие реки и подземная вода играют буферную роль для состава воды озера. Пользуя отношение 87Sr/86Sr и ионный состав, могут чётко описать химический компонент воды в бассейне озера Цинхая. Познание важности компонента стронция в речных, в том числе подземных водах, для озера Цинхая будет предоставить важные ниточки по контроли гидрографического процесса прошедшими биологическими и геохимическими параметрами. Нужно дальше изучать гидрографический процесс в бассейне озера Цинхая, чтобы пояснить возможное влияние импорта подземных вод на химию и сток воды озера.

Notes

Acknowledgements

This work has been financially supported by National Natural Science Foundation of China through grants 40599423 and 40873082, and by National Basic Research Program of China (2004CB720200). We especially thank Associate Professor Zhu Yuxin in Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Miss Sun Yufang in Nanjing Institute of Soil Sciences, Chinese Academy of Sciences, Miss Zhang Ting in Institute of Earth Environment, Chinese Academy of Sciences, Professor Jiang Shaoyong and Mrs. Pu Wei in State Key Laboratory for Research of Mineral Deposits, Nanjing University, and Dr. Hazel Chapman in Department of Earth Sciences, University of Cambridge, for their kind help and suggestions with respect to sample analyses and laboratory work. Thanks are extended to Professor Yang Bo in Qinghai Institute of Salt Lake, Chinese Academy of Sciences for his assistance with sample collection. The manuscript greatly benefited from constructive comments by Rose Seth and an anonymous reviewer, and by Managing Editor Philippe Renard, Associate Editor Sam Earman and Technical Editorial Advisor Sue Duncan.

Supplementary material

10040_2009_480_MOESM1_ESM.pdf (72 kb)
ESM Compositions of river waters in Lake Qinghai catchment (PDF 71 kb)

References

  1. Åberg G (1995) The use of natural strontium isotopes as tracers in environmental studies. Water Air Soil Pollut 79:309–322Google Scholar
  2. Banner JL, Musgrove M, Capo R (1994) Tracing ground–water evolution in a limestone aquifer using Sr isotopes, effects of multiple sources of dissolved ions and mineral–solution reactions. Geology 22:687–690CrossRefGoogle Scholar
  3. Basu AR, Jacobsen SB, Poreda RJ et al (2001) Large groundwater strontium flux to the oceans from the Bengal basin and the marine strontium isotope record. Science 293:1470–1473CrossRefGoogle Scholar
  4. Bickle MJ, Harris NBW, Bunbury JM et al (2001) Controls on the 87Sr/86Sr ratio of carbonates in the Garhwal Himalaya, headwaters of the Ganges. J Geol 109:737–753CrossRefGoogle Scholar
  5. Bickle MJ, Chapman HJ, Bunbury JM et al (2005) Relative contributions of silicate and carbonate rocks to riverine Sr fluxes in the headwaters of the Ganges. Geochim Cosmochim Acta 69:2221–2240CrossRefGoogle Scholar
  6. Bieman PR, Steig EJ (1996) Estimating rates of denudation using cosmogenic isotope abundances in sediment. Earth Surf Proc Land 21:125–139CrossRefGoogle Scholar
  7. Blum JD, Erel Y, Brown K (1993) 87Sr/86Sr ratios of Sierra Nevada stream waters: implications for relative mineral weathering rates. Geochim Cosmochim Acta 57:5019–5025CrossRefGoogle Scholar
  8. Blum JD, Klaue A, Nezat CA et al (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417:729–731CrossRefGoogle Scholar
  9. Capo RC, Stewart BW, Chadwick OA (1998) Strontium isotopes as tracers of ecosystem processes, theory and methods. Geoderma 82:197–225CrossRefGoogle Scholar
  10. Cartwright I, Weaver T, Petrides B (2007) Controls on 87Sr/86Sr ratios of groundwater in silicate-dominated aquifers: SE Murray Basin, Australia. Chem Geol 246:107–123CrossRefGoogle Scholar
  11. Chen KZ, Bowler JM, Kelts K (1990) Paleoclimatic evolution within the Qinghai–Xizang (Tibet) Plateau in the last 40,000 years (in Chinese). Quat Sci 1:21–31CrossRefGoogle Scholar
  12. English NB, Bertancourt JL, Dean JS et al (2001) Strontium isotopes reveal distant sources of architectural timber in Chaco Canyon, New Mexico. Proc Natl Acad Sci USA 98:11891–11896CrossRefGoogle Scholar
  13. Evans MJ, Derry LA, Anderson SP et al (2001) Hydrothermal source of radiogenic Sr to Himalayan rivers. Geology 29:803–806CrossRefGoogle Scholar
  14. Faure G (1986) Principles of isotope geology. Wiley, New YorkGoogle Scholar
  15. Gaillardet J, Dupré B, Louvat P et al (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30CrossRefGoogle Scholar
  16. Goldstein SJ, Jacobsen SB (1987) The Nd and Sr isotopic systematics of river-water dissolved material, implications for the sources of Nd and Sr in seawater. Chem Geol 66:245–272Google Scholar
  17. Graustein WC, Armstrong RL (1983) The use of 87Sr/86Sr to measure atmospheric transport into forested watersheds. Science 219:289–292CrossRefGoogle Scholar
  18. Holmes JA, Darbyshire D, Heaton T (2007) Palaeohydrological significance of late Quaternary strontium isotope ratios in a tropical lake. Chem Geol 236:281–290CrossRefGoogle Scholar
  19. Jackson RB, Banner JL, Jobbagy EG et al (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626CrossRefGoogle Scholar
  20. Jin ZD, Wang SM, Shen J et al (2001) Chemical weathering since the Little Ice Age recorded in lake sediments: a high-resolution proxy of past climate. Earth Surf Proc Land 26:775–782CrossRefGoogle Scholar
  21. Jin ZD, Li FC, Cao JJ et al (2006) Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: implications for provenance, sedimentary sorting, and catchment weathering. Geomorphology 80:147–163CrossRefGoogle Scholar
  22. Kober B, Schwalb A, Schettler G et al (2007) Constraints on paleowater dissolved loads and on catchment weathering over the past 16 ka from 87Sr/86Sr ratios and Ca/Mg/Sr chemistry of freshwater ostracode tests in sediments of Lake Constance, Central Europe. Chem Geol 240:361–376CrossRefGoogle Scholar
  23. Krishnaswami S, Trivedi JR, Sarin MM et al (1992) Strontium isotopes and rubidium in the Ganga-Brahmaputra river system: weathering in the Himalaya, fluxes to the Bay of Bengal and contributions to the evolution of oceanic 87Sr/86Sr. Earth Planet Sci Lett 109:243–253CrossRefGoogle Scholar
  24. Last WM, Smol JP (2001) Tracking environmental change using lake sediments. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  25. LBCAS (Lanzhou Branch of Chinese Academy of Sciences) (1994) Recent environmental evolution and prediction in Qinghai Lake (in Chinese). Science Press, BeijingGoogle Scholar
  26. Lerman A (1978) Lake: chemistry, geology, physics. Springer, BerlinGoogle Scholar
  27. Li XY, Xu HY, Sun YL et al (2007) Lake-level change and water balance analysis at Lake Qinghai, west China during recent decades. Water Resour Manage 21:1505–1516CrossRefGoogle Scholar
  28. LIGCAS (Lanzhou Institute of Geology of Chinese Academy of Sciences) (1979) An investigation report on Lake Qinghai (in Chinese). Science Press, BeijingGoogle Scholar
  29. Lister GS, Kelts K, Chen K et al (1991) Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for ostracoda since the last Pleistocene. Palaeogeogr Palaeoclimatol Palaeoecol 84:141–162CrossRefGoogle Scholar
  30. Lyons WB, Carey AE, Hicks DM et al (2005) Chemical weathering in high-sediment-yielding watersheds, New Zealand. J Geophys Res 110, F01008. doi: 10.1029/2003JF000088 CrossRefGoogle Scholar
  31. Négrel P, Allègre CJ, Dupré B et al (1993) Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: The Congo Basin case. Earth Planet Sci Lett 120:59–76CrossRefGoogle Scholar
  32. Palmer MR, Edmond JM (1992) Controls over the strontium isotope composition of river water. Geochim Cosmochim Acta 56:2099–2111CrossRefGoogle Scholar
  33. Pretti VA, Stewart BW (2002) Solute sources and chemical weathering in the Owens Lake watershed, eastern California. Water Resour Res 38(8):1127. doi: 10.1029/2001WR000370 CrossRefGoogle Scholar
  34. Qin B, Huang Q (1998) Evaluation of the climatic change impacts on the inland lake: a case study of Lake Qinghai, China. Clim Change 39:695–714CrossRefGoogle Scholar
  35. Reneau SL, Dietrich WE (1991) Erosion rates in the southern Oregon Coast Range: evidence for an equilibrium between hill-slope erosion and sediment yield. Earth Surf Proc Land 16:307–322CrossRefGoogle Scholar
  36. Rosen MR (1994) The importance of groundwater in playas: a review of playa classifications and the sedimentology and hydrology of playas. In: Rosen MR (ed) Paleoclimate and basin evolution of playa systems. Geol Soc Am Spec Pap 289:1–18Google Scholar
  37. Shen J, Liu X, Wang S et al (2005) Palaeoclimatic changes in the Lake Qinghai area during the last 18,000 years. Quat Int 136:131–140CrossRefGoogle Scholar
  38. Shi YF (1958) A preliminary investigation on natural geography of Qinghai Lake and its nearby regions (in Chinese). Acta Geograph Sin 24:33–46Google Scholar
  39. Shi YF, Kong ZC, Wang SM et al (1993) Mid-Holocene climates and environments in China. Global Planet Change 7:219–233CrossRefGoogle Scholar
  40. Singh SK, Kumar A, France-Lanord C (2007) Sr and 87Sr/86Sr in waters and sediments of the Brahmaputra River system: silicate weathering, CO2 consumption and Sr flux. Chem Geol 234:308–320CrossRefGoogle Scholar
  41. Smol J (2002) Pollution of lakes and rivers: a paleoenvironmental perspective. Arnold, LondonGoogle Scholar
  42. Sun JC (1938) Lake Qinghai (in Chinese). Geol Rev 3:122–134Google Scholar
  43. Sun DP, Tang Y, Xu ZQ et al (1991) A preliminary investigation on chemical evolution of the Lake Qinghai water (in Chinese). Chin Sci Bull 15:1172–1174Google Scholar
  44. Wadleigh MA, Veizer J, Brooks C (1985) Strontium and its isotopes in Canadian rivers. Geochim Cosmochim Acta 49:1727–1736CrossRefGoogle Scholar
  45. Wang S, Shi Y (1992) Review and discussion on the late Quaternary evolution of Qinghai Lake (in Chinese with English abstract). J Lake Sci 4:1–8Google Scholar
  46. White AF, Blum AE (1995) Effects of climate on chemical weathering in watersheds. Geochim Cosmochim Acta 59:1729–1747CrossRefGoogle Scholar
  47. Wiche GJ (1992) Hydrology and water-level fluctuations of Devils Lake, North Dakota. US Geol Surv Water Suppl Pap 2340:75–87Google Scholar
  48. Yan HY, Jia SF (2003) Water balance and water resources allocation of Qinghai Lake (in Chinese with English abstract). J Lake Sci 15:35–40Google Scholar
  49. Yan JP, Hinderer M, Einsele G (2002) Geochemical evolution of closed-basin lakes, general model and application to Lakes Qinghai and Turkana. Sediment Geol 148:105–122CrossRefGoogle Scholar
  50. Yu B, Dong H, Jiang H (2007) Discovery of spheric dolomite aggregations in sediments from the bottom of Qinghai Lake and its significance for dolomite problem (in Chinese). Geoscience 21:66–70Google Scholar
  51. Zhang PX, Zhang BZ, Qian GM (1994) Study on the paleoenvironmental parameters since Holocene in Qinghai Lake (in Chinese). Quat Sci 3:225–238Google Scholar
  52. Zheng MP (1989) Saline lakes on the Qinghai–Xizang (Tibet) Plateau. Science and Technology Publishing House, BeijingGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Zhangdong Jin
    • 1
    • 2
    Email author
  • Jimin Yu
    • 3
  • Sumin Wang
    • 4
  • Fei Zhang
    • 1
  • Yuewei Shi
    • 5
  • Chen-Feng You
    • 2
  1. 1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  2. 2.Earth Dynamic System Research CenterNational Cheng Kung UniversityTainanTaiwan
  3. 3.Lamont-Doherty Earth Observatory of Columbia UniversityPalisadesUSA
  4. 4.Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
  5. 5.The Bureau of Hydrology and Water Resources of Qinghai ProvinceXiningChina

Personalised recommendations