Hydrogeology Journal

, Volume 17, Issue 6, pp 1483–1494 | Cite as

Water management in the Basin of Mexico: current state and alternative scenarios

Report

Abstract

Water management policies in the Basin of Mexico, where Mexico City and its nearly 20 million inhabitants live, are analyzed. After a brief description of how water has been managed, possible water management plans that would change water management practices in the Basin are discussed and a call is made for a change in the defensive attitude towards water taken to date. As the aquifer’s replacement cost is considered to be the proxy for the implementation of water tariffs, this is determined, based on the cost of future water sources, and found to be 0.65-0.72 USD/m3. This is twice the amount currently charged in the Federal District (0.34 USD/m3), where 45% of the City's domestic water users are found. As another alternative, the development of an artificial recharge program is also analyzed and found to be a plausible way to increase water supply at a unitary cost of 0.605 USD/m3. Despite the presence of these alternatives, it is suggested that water management in the Basin needs to change from a water supply approach to a water demand approach.

Keywords

Mexico Groundwater management Replacement cost Artificial recharge Water tariffs 

Gestion de l'eau dans le bassin du Mexique : état actuel et scénarios alternatifs

Résumé

Des politiques de gestion de l'eau dans le bassin du Mexique, où Mexico et ses presque 20 millions d'habitants vivent, sont analysées. Après une courte description de la façon dont l'eau a été contrôlée, des plans possibles de gestion de l'eau qui changeraient des pratiques de gestion de l'eau dans le bassin sont discutés et un appel est fait pour un changement de l'attitude défensive envers l'eau prise jusqu'ici. Car le coût de remplacement de la couche aquifère est considéré la procuration pour l'exécution des tarifs d'eau, c'est déterminé, basé sur le coût de futures sources d'eau, et trouvé pour être 0.65-0.72 USD/m3. C'est deux fois le montant actuellement facturé au District Fédéral (0.34 USD/m3), où 45% des utilisateurs domestiques de l'eau sont trouvés. En tant qu'autre alternative, le développement d'un programme artificiel de recharge est également analysé et avéré une manière plausible d'augmenter l'approvisionnement de l’eau à un coût unitaire de 0.605 USD/m3. En dépit de la présence de ces solutions on suggère que la gestion de l'eau dans le bassin doive changer d'une approche d'approvisionnement de l’eau en une approche de gestion de demande.

Manejo de recursos Hidráulicos en la Cuenca de Méxicol: estado acutal y escenarios alternativos

Resumen

Las políticas de manejo de recursos Hidráulicos en la Cuenca de México, donde se encuentra la Ciudad de Mexico y sus cerca de 20 millones de habitantes son analizadas en este trabajo. Después de una breve descripción de cómo el agua ha sido manejada, diferentes alternativas de manejo que pueden cambiar la situación actual son discutidas y se hace un llamado a cambiar la actitud defensiva que se ha tenido en el manejo del agua desde la fundación de la Ciudad hasta nuestros días. Debido a que el costo de reemplazo del acuífero es considerado como la pauta para la adecuada implementación de tarifas de suministro de agua, es determinado mediante el costo de posibles fuentes de agua futuras. El costo de reemplazo varía entre 0.65 y 0.72 USD/m3, lo cual corresponde al doble de la tarifa actual del Distrito Federal (0.34 USD/m3), donde el 45% de los usuarios de agua doméstica de la Ciudad se localizan. Como alternativa, el desarrollo de un programa de recarga artificial al acuífero es también analizado, encontrando que es una posible vía para aumentar el suministro de agua, con un costo unitario de 0.605 USD/m3. A pesar de la existencia de estas alternativas, se sugiere que el manejo de los recursos hidráulicos en la Cuenca de México cambie en la forma en la que se realiza, enfocándose en el manejo de la demanda de agua y no en incrementar el suministro.

A gestão da água na Bacia do México: estado actual e cenários alternativos

Resumo

Analisam-se as políticas de gestão da água na Bacia do México, onde se localiza a Cidade do México, com os seus quase 20 milhões de habitantes. Após uma breve descrição de como se tem gerido a água, discutem-se os possíveis planos de gestão da água, que iriam alterar as suas práticas na Bacia, e apela-se à mudança na atitude defensiva que tem existido relativamente à água até à data. Dado que o custo de substituição do aquífero é considerado um bom critério para a fixação das tarifas de água, este é determinado com base no custo de futuras origens de água, obtendo-se o valor de 0.65-0.72 USD/m3. É o dobro do valor cobrado actualmente no Distrito Federal (0.34 USD/m3), onde se encontram 45% dos utilizadores domésticos da Cidade. Como alternativa, é analisado o desenvolvimento de um programa de recarga artificial, que se revela ser uma forma plausível de reforçar o abastecimento de água a um custo unitário de 0.605 USD/m3. Não obstante a existência destas alternativas, considera-se que a gestão da água na Bacia deve mudar a sua abordagem de abastecimento para uma abordagem pelas necessidades de água.

Notes

Acknowledgements

Financial support from Mexico’s National Science and Technology Council (CONACyT) and the National Science and Engineering Research Council of Canada (NSERC) is acknowledged. We would like to thank the comments provided by two anonymous reviewers and Chris Scott, which helped to improve the contents of the report.

References

  1. Anders R, Yanko WA, Schroeder RA, Jackson JL (2004) Virus fate and transport during recharge using recycled water at a research field site in the Montebello Forebay, Los Angeles County, California, 1997–2000. US Geol Surv Sci Invest Rep 2004–5161Google Scholar
  2. Banco de Mexico (2008) Historical inflation rates in Mexico. http://www.banxico.org.mx/PortalesEspecializados/inflacion/inflacion.html. Cited 7 October 2008
  3. Birkle P, Torres-Rodriguez V, González-Partida E (1998) The water balance for the Basin of the Valley of Mexico and implications for future water consumption. Hydrogeol J 6:500–517CrossRefGoogle Scholar
  4. Bribiesca-Castrejón JL (1960) El agua potable en la República Mexicana [Potable water in the Mexican Republic]. Ingeniería Hidráulica en México Enero-Marzo, January–March, pp 107–125Google Scholar
  5. Carrera-Hernández JJ, Gaskin SJ (2007) The Basin of Mexico aquifer system: regional groundwater level dynamics and database development. Hydrogeol J 8(15):1577–1590CrossRefGoogle Scholar
  6. Carrera-Hernández JJ, Gaskin SJ (2008) Spatio-temporal analysis of potential aquifer recharge: application to the Basin of Mexico. J Hydrol 353(3-4):228–246Google Scholar
  7. CNA (1996) Estudio para determinar la oferta y la demanda de agua en la Cuenca del Valle de México [Study to determine water demand and its offer in the Basin of Mexico]. Technical report, Hitomex, Comisión Nacional del Agua, Mexico CityGoogle Scholar
  8. CNA (2001) Plan nacional hidráulico (National hydraulic plan) 2001-2006. Technical report, Subdirrección de planeación, Comisión Nacional del Agua, Mexico CityGoogle Scholar
  9. CNA (2008) Estadisticas del Agua en Mexico (Water statistics in Mexico). Comision Nacional del Agua, Mexico City, 233 ppGoogle Scholar
  10. Collin M, Melloul A (2001) Combined land use and environmental factors for sustainable groundwater management. Urban Water 3:227–239CrossRefGoogle Scholar
  11. Comision del Agua del Estado de Mexico (2008) Tarifas de agua [Water tariffs]. Comision del Agua del Estado de Mexico, Mexico City. http://www.edomex.gob.mx/caem. Cited 7 October 2008
  12. Cortes A, Durazo J, Farvolden R (1997) Studies of isotopic hydrology of the basin of Mexico and vicinity: annotated bibliography and interpretation. J Hydrol 198:346–376CrossRefGoogle Scholar
  13. De Löe R (2001) Moving down the food chain: the increasing importance of local level water management. In: Proceedings from International Symposium on Integrated Water Resources Management, Davis, CA, April 2000, no. 272, IAHS, Wallingford, UKGoogle Scholar
  14. DGCOH (1991) Recarga artificial de agua residual tratada al acuífero del valle de méxico [Artificial aquifer recharge with wastewater in the Basin of Mexico]. Ing Hidrrául México VI(2):65–70Google Scholar
  15. DGCOH (1994) Plan maestro de drenaje (master plan for drainage) 1994–2010. Technical report, Dirección General de Construcción y Operación Hidráulica, México CityGoogle Scholar
  16. DGCOH (1995) Plan maestro de agua potable [Master plan for potable water] 1995–2010. Technical report, Dirección General de Construcción y Operación Hidráulica, México CityGoogle Scholar
  17. DGCOH (1997) Estudio de factibilidad para el reuso de las aguas residuales y pluviales del valle de méxico para satisfacer la demanda de agua potable a mediano plazo, a través de la recarga de acuíferos [Feasibility study for the reuse of rainfall and sewage water to satisfy water demand in the medium term through aquifer recharge]. Technical report, Instituto de Ingeniería, UNAM, Dirección General de Construcción y Operación Hidráulica, México CityGoogle Scholar
  18. DGCOH (2000) Piezometría del Valle de México [Piezometry in the Valley of Mexico]. Technical report, Lesser, Dirección General de Construcción y Operación Hidráulica, México CityGoogle Scholar
  19. Donovan DJ, Katzer T, Brothers K, Cole E, Johnson M (2002) Cost-benefit analysis of artificial recharge in Las Vegas Valley, Nevada. J Water Res Plan Manage 128(5):356–365CrossRefGoogle Scholar
  20. Durazo J (1996) Ciudad de México: acuitardo superficial y contaminación acuifera [Mexico City: Superficial aquitard and aquifer pollution]. Ing HidrráulMéxico XI(2):5–14Google Scholar
  21. Feng G (2001) Strategies for sustainable water resources management in water scarce regions in developing countries. In: Proceedings from International Symposium on Integrated Water Resources Management, Davis, CA, April 2000, no. 272, IAHS, Wallingford, UKGoogle Scholar
  22. Figueroa-Vega G (1984) Case story no. 9.8. México, D. F., México. In: Guidebook to studies of land subsidence due to groundwater withdrawal, UNESCO, ParisGoogle Scholar
  23. González-Antón C, Arias C (2001) The incorporation of integrated management in European water policy. In: Proceedings from International Symposium on Integrated Water Resources Management, Davis, CA, April 2000, no. 272, IAHS, Wallingford, UKGoogle Scholar
  24. González-Morán T, Rodríguez R, Cortes SA (1999) The Basin of Mexico and its metropolitan area: water abstraction and related environmental problems. J South American Earth Sci12(6):607–613Google Scholar
  25. INEGI (2002) Estadisticas del Medio Ambiente del Distrito Federal y Zona Metropolitana [Environmental statistics for the Federal District and the Metropolitan Zone]. INEGI, Aguascalientes, MexicoGoogle Scholar
  26. INEGI (2007) Estadisticas del Medio Ambiente del Distrito Federal y Zona Metropolitana [Environmental statistics for the Federal District and the Metropolitan Zone]. INEGI, Aguascalientes, MexicoGoogle Scholar
  27. Jiménez B, Chávez A (2004) Quality assessment of an aquifer recharge with wastewater for its potential use as drinking source: “El Mezquital Valley” case. Water Sci Technol 50(2):269–276Google Scholar
  28. Llamas MR (2005) Comment on the article “A participatory approach to integrated aquifer management: the case of Guanajuato state, Mexico”. Hydrogeol J 14:264CrossRefGoogle Scholar
  29. Lowry CS, Anderson MP (2006) An assessment of aquifer storage recovery using goundwater flow models. Ground Water 44(5):661–667Google Scholar
  30. Marroquín-Rivera J (1914) Memoria de las obras de aprovisionamiento de agua potable a la Ciudad de México [Memory of the water supply works for Mexico City. Hermanos, México CityGoogle Scholar
  31. Mathes WM (1970) To save a city: The Desague of Mexico-Huehuetoca, 1607. The Americas 26(4):419–438CrossRefGoogle Scholar
  32. Mazari M, Alberro J (1990) Hundimiento de la ciudad de méxico [The sinking of Mexico City]. In: Problemas de la Cuenca de México [Problems in the Basin of Mexico]. El Colegio de México, Mexico City, pp 83–114Google Scholar
  33. National Academy of Sciences (1994) Groundwater recharge using waters of impaired quality. National Academy Press, Washington, DCGoogle Scholar
  34. NRC (1995) Mexico City’s water supply: improving the outlook for sustainability. National Academy of Sciences, Washington, DCGoogle Scholar
  35. Ortega A, Farvolden RN (1989) Computer analysis of regional groundwater flow and boundary conditions in the Basin of Mexico. J Hydrol 110:271–294CrossRefGoogle Scholar
  36. Perló-Cohen M (1999) El paradigma porfiriano: historia del desague del Valle de México [The Porfirian paradigm: history of the drainage of the Valley of Mexico]. Miguel Angel Porrua, Mexico CityGoogle Scholar
  37. Ramirez-Sama C (1990) El agua en la Cuenca de México [Water in the Basin of Mexcio]. In: Problemas de la cuenca del Valle de México [Problems in the Basin of Mexico]. El Colegio de México, Mexico City, pp 61–80Google Scholar
  38. Rudolp DL, Sultan R, Garfias J, McLaren RG (2006) Significance of enhanced infiltration due to groundwater extraction on the disappearance of a headwater lagoon system: Toluca Basin,Mexico. Hydrogeol J 14:115–130CrossRefGoogle Scholar
  39. Saaden-Hazin L (1997) Toward more efficient urban water management in Mexico. Water Int 22(3):153–158CrossRefGoogle Scholar
  40. Sandoval R (2004) A participatory approach to integrated aquifer management: the case of Guanajuato State, Mexico. Hydrogeol J 12:6–13CrossRefGoogle Scholar
  41. Sheng Z (2005) An aquifer storage and recovery system with reclaimed wastewater to preserve native groundwater resources in El Paso, Texas. J Environ Manage 75:367–377CrossRefGoogle Scholar
  42. Sistema de Aguas de la Ciudad de Mexico (2008) Tarifas de agua para el Distrito Federal [Water tariffs in the Federal District]. SACM, Delegación Cuauhtémoc, Mexico. www.sacm.df.gob.mx/. Cited 7 October 2008
  43. Strozzi T, Wegmüller U, Werner CL, Wiesman A, Spreckels V (2003) JERS SAR interferometry for land subsidence monitoring. IEEE Trans Geosci Rem Sens 41:1702–1708CrossRefGoogle Scholar
  44. White DE, Sladek GJ (1990) Summary of data from the 1981-83 pilot study and 1985-89 operations of the Hueco Bolson recharge project, northeast El Paso, Texas. Technical report OFR 90-175, US Geological Survey, Boulder, COGoogle Scholar
  45. World Health Organization (2002) World health organization consultation on health risks in aquifer recharge using reclaimed water: report on a meeting of an expert group. WHO, Copenhagen, DenmarkGoogle Scholar
  46. Zuluaga AM, Haggarty L, Brook P (2001) Thirst for reform? Private sector participation in providing Mexico City's water supply. World Bank Policy Research Working Paper No. 2654, World Bank, Washington, DC. Available at http://ssrn.com/abstract=632722. Cited 7 October 2008

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Applied Geosciences, Instituto Potosino de Investigacion Científica y Tecnológica (IPICYT)San Luis PotosiMexico
  2. 2.Department of Civil Engineering and Applied MechanicsMcGill UniversityMontrealCanada

Personalised recommendations