Hydrogeology Journal

, Volume 17, Issue 5, pp 1111–1131

Comparison of alternative representations of hydraulic-conductivity anisotropy in folded fractured-sedimentary rock: modeling groundwater flow in the Shenandoah Valley (USA)

  • Richard M. Yager
  • Clifford I. Voss
  • Scott Southworth
Paper

Abstract

A numerical representation that explicitly represents the generalized three-dimensional anisotropy of folded fractured-sedimentary rocks in a groundwater model best reproduces the salient features of the flow system in the Shenandoah Valley, USA. This conclusion results from a comparison of four alternative representations of anisotropy in which the hydraulic-conductivity tensor represents the bedrock structure as (model A) anisotropic with variable strikes and dips, (model B) horizontally anisotropic with a uniform strike, (model C) horizontally anisotropic with variable strikes, and (model D) isotropic. Simulations using the US Geological Survey groundwater flow and transport model SUTRA are based on a representation of hydraulic conductivity that conforms to bedding planes in a three-dimensional structural model of the valley that duplicates the pattern of folded sedimentary rocks. In the most general representation, (model A), the directions of maximum and medium hydraulic conductivity conform to the strike and dip of bedding, respectively, while the minimum hydraulic-conductivity direction is perpendicular to bedding. Model A produced a physically realistic flow system that reflects the underlying bedrock structure, with a flow field that is significantly different from those produced by the other three models.

Keywords

USA Fractured rocks Numerical modeling Bedrock structure Anisotropy 

Comparaison de représentations alternatives de l’anisotropie de la conductivité hydraulique dans des roches sédimentaires plissées et fracturées: modélisation de l’écoulement des eaux souterraines dans la vallée de Shenandoah (Etats-Unis)

Résumé

Une représentation numérique qui traduit de manière explicite l’anisotropie généralisée en trois dimensions de roches sédimentaires plissées et fractures, dans un modèle hydrodynamique, reproduit le mieux les caractéristiques essentielles du système d’écoulement de la Vallée de Shenandoah (Etats-Unis). Cette conclusion repose sur la comparaison de quatre représentations possibles de l’anisotropie dans lesquelles le tenseur de perméabilité représente la structure du bedrock comme (modèle A) anisotrope avec des directions et des pendages variables, (model B) horizontalement anisotrope avec une direction uniforme, (modèle C) horizontalement anisotrope avec des directions variables, et (modèle D) isotrope. Des simulations à l’aide du modèle d’écoulement et de transport SUTRA de l’U.S.G.S. sont basées sur une représentation de la conductivité hydraulique concordante aux plans de stratification dans un modèle structural en trois dimensions de la vallée, qui transcrit l’agencement des roches sédimentaires plissées. Dans la représentation la plus générale, (model A), les directions des conductivités hydrauliques maximales et médianes concordent avec les directions et pendages des couches, respectivement, tandis que la direction des conductivité hydrauliques minimales est perpendiculaire à la stratification. Le Modèle A fournit un système d’écoulement physiquement réaliste qui reflète la structure du substratum sous-jacent, avec un champ d’écoulement significativement différent de ceux produits par les trois autres modèles.

Comparación de representaciones alternativas de la anisotropía de la conductividad hidráulica en rocas sedimentarias fracturadas plegadas: modelación del flujo subterráneo en el Shenandoah Valley (EEUU)

Resumen

Una representación numérica que representa explícitamente la anisotropía generalizada tridimensional en rocas sedimentarias fracturadas plegadas en un modelo de aguas subterráneas es la que mejor reproduce las características más destacadas del sistema de flujo en el Shenandoah Valley, EEUU. Esta conclusión resulta de una comparación de 4 representaciones alternativas de anisotropías en las cuales el tensor de la conductividad hidráulica representa la estructura del basamento como (modelo A) anisotrópico con inclinación y rumbo variable, (modelo B) horizontalmente anisotrópico con un rumbo uniforme, (modelo C) horizontalmente anisotrópico con rumbos variables, y (modelo D) isotrópico. Las simulaciones usando el modelo de flujo y transporte del agua subterránea del US Geological Survey SUTRA están basadas en una representación de la conductividad hidráulica que se conforma con planos de estratificación en un modelo estructural tridimensional del valle que duplica el esquema de rocas sedimentarias plegadas. En la representación más general, (modelo A), las direcciones de la conductividad hidráulica máxima y media se adaptan al rumbo e inclinación de la estratificación, respectivamente, mientras que la dirección de conductividad hidráulica mínima es perpendicular a la estratificación. El modelo A produjo un sistema de flujo físicamente realista que refleja la estructura del basamento subyacente, con un campo de flujo que es significativamente diferente de aquellos producidos por los otros 3 modelos.

褶皱裂隙沉积岩中水力传导度各向异性数字仿真的比较: 美国Shenandoah流域的地下水流模拟

摘要

地下水模型中可正确描述一般褶皱裂隙沉积岩三维各向异性的数值表述能很好的复制美国Shenandoah流域地下水流特征。该结论由下述四种描述各项异性的数值表述得出: 即渗透系数张量所代表的基岩结构为不同走向和倾向的各向异性 (模型A) , 走向一致的水平向各向异性 (模型B) , 走向不同的水平向各向异性 (模型C) , 和各向同性 (模型D) 。利用美国地质调查局地下水流与运移模型SUTRA的模拟是基于代表相应于流域中褶皱沉积岩模式三维结构模型中层面的渗透系数。在最常规的表述 (模型A ) 中, 渗透系数最大值和中间值的方向分别受层面的走向和倾向控制, 而最小值方向则与层面垂直。模型A产出了一个物理上现实的能反映下伏基岩结构的流动系统, 具有与其它三个模型显著不同的流场。

Comparação entre representações alternativas da anisotropia na condutividade hidráulica em rochas sedimentares fracturadas e dobradas: modelação do fluxo de água subterrânea em Shenandoah Valley (EUA)

Resumo

A reprodução mais adequada das características relevantes do sistema de fluxo em Shenandoah Valley, EUA, é conseguida, num modelo de fluxo das águas subterrâneas, através de uma representação numérica explícita da anisotropia tri-dimensional generalizada de rochas sedimentares fracturadas e dobradas. Esta conclusão resulta da comparação entre quatro representações alternativas da anisotropia em que o tensor da condutividade hidráulica representa a estrutura do bedrock como (modelo A) anisotrópico com atitudes variáveis, (modelo B) anisotrópico na horizontal com direcção uniforme, (modelo C) anisotrópico na horizontal com direcção variável; (modelo D) isotrópico. As simulações conduzidas com o modelo de transporte e fluxo SUTRA, do USGS, baseiam-se na representação da condutividade hidráulica orientada segundo os planos de estratificação num modelo estrutural tri-dimensional que reproduz o padrão de dobramento das rochas sedimentares. Na representação mais geral (modelo A), as direcções de condutividade hidráulica máxima e média orientam-se, respectivamente, segundo a direcção e a inclinação da estratificação, enquanto a direcção de condutividade hidráulica mínima é perpendicular à estratificação. O Modelo A produziu uma representação fisicamente realista do sistema de fluxo que reflecte as características do bedrock, com uma representação de fluxo significativamente diferente da produzida pelos outros três modelos.

References

  1. Anderman ER, Kipp KL, Hill MC, Valstar J, Neupauer RM (2002) MODFLOW-2000, The US geological survey modular ground-water model: documentation of the model-layer variable-direction horizontal anisotropy (LVDA) capability of the hydrogeologic-unit flow (HUF) package. US Geol Surv Open-File Rep 02–409Google Scholar
  2. Argus Interware (1997) User’s guide Argus ONE, Argus open numerical environments: a GIS modeling system, ver. 4.0. Argus, Jericho, NYGoogle Scholar
  3. Beaudoin G, Therrien R, Savard C (2006) 3D numerical modeling of fluid flow in the Val-d’Or orogenic gold district: major crustal shear zones drain fluids from overpressured vein fields. Miner Deposita 41:82–98CrossRefGoogle Scholar
  4. Belcher WR (ed) (2004) Death Valley regional ground-water flow system, Nevada and California: hydrogeologic framework and transient ground-water flow model. US Geol Surv Sci Invest Rep 2004–5205Google Scholar
  5. Burbey TJ (2003) Water-management model: Frederick county sanitation authority. PhD Thesis, Virginia Tech, USAGoogle Scholar
  6. Burton WC, Plummer LN, Busenberg E, Lindsey BD, Gburek WJ (2002) Influence of fracture anisotropy on ground water ages and chemistry, Valley and Ridge province, Pennsylvania. Ground Water 40(3):242–257CrossRefGoogle Scholar
  7. Carleton GB, Welty C, Buxton HT (1999) Design and analysis of tracer tests to determine effective porosity and dispersivity in fractured sedimentary rocks, Newark Basin, New Jersey. US Geol Surv Water Resour Invest Rep 98–4126AGoogle Scholar
  8. Fan Y, Toran L, Schlische RW (2007) Groundwater flow and groundwater-stream interaction in fractured and dipping sedimentary rocks: insights from numerical models. Water Resour Res 43, W01409 doi:10.1029/2006WR004864 CrossRefGoogle Scholar
  9. Goode DJ, Senior LA (2000) Simulation of aquifer tests and ground-water flowpaths at the local scale in fractured shales and sandstones of the Brunswick Group and Lockatong Formation, Lansdale, Montgomery County, Pennsylvania. US Geol Surv Open-File Rep 00—97Google Scholar
  10. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the US Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00–92Google Scholar
  11. Harlow GE Jr, Orndorff RC, Nelms DL, Weary DJ, Moberg RM (2005) Hydrogeology and ground-water availability in the carbonate aquifer system of Frederick County, Virginia. US Geol Surv Sci Invest Rep 2005–5161Google Scholar
  12. Haugh CJ (2002) Hydrogeology and ground-water-flow simulation of the cave springs area, Hixson, Tennessee. US Geol Surv Water Resour Invest Rep 02–4091Google Scholar
  13. Hoaglund JR, Pollard D (2003) Dip and anisotropy effects on flow using a vertically skewed model grid. Ground Water 41(6):841–846CrossRefGoogle Scholar
  14. Jones WK (1991) The carbonate aquifer of the northern Shenandoah Valley of Virginia and West Virginia. In: Kastning EH, Kastning KM (eds) Appalachian karst. National Speleological Society, Huntsville, Al, pp 217–222Google Scholar
  15. Kozar MD, Weary DJ, Paybins KS, Pierce HA (2007) Hydrogeologic setting and ground-water flow in the Leetown Area, West Virginia. US Geol Surv Sci Invest Rep 2007–5066Google Scholar
  16. Lewis JC (1992) Effect of anisotropy on groundwater discharge to streams in fractured Mesozoic basin rocks. American Water Resources Association Monograph Series 17, American Water Res. Assoc., Middleburg, VA, pp 94–105Google Scholar
  17. Lewis-Brown, JC, Rice DE (2002) Simulated ground-water flow, Naval Air Warfare Center, West Trenton, New Jersey. US Geol Surv Water Resour Invest Rep 02-4019Google Scholar
  18. Lewis-Brown JC, Rice DE, Rosman R, Smith NP (2005) Hydrogeologic framework, ground-water quality, and simulation of ground-water flow at the Fair Lawn Well Field Superfund Site, Bergen County, New Jersey. US Geol Surv Sci Invest Rep 2004-5280Google Scholar
  19. Lindsey BD, Koch ML (2004) Determining sources of water and contaminants to wells in a carbonate aquifer near Martinsburg, Blair County, Pennsylvania, by use of geochemical indicators, analysis of anthropogenic contaminants, and simulation of ground-water flow. US Geol Surv Sci Invest Rep 2004–5124Google Scholar
  20. Michalski A, Britton R (1997) The role of bedding fractures in the hydrogeology of sedimentary bedrock: evidence from the Newark Basin, New Jersey. Ground Water 35(2):318–327CrossRefGoogle Scholar
  21. Michel RL (1992) Residence times in river basins as determined by analysis of long-term tritium records. J Hydrol 130:367–378CrossRefGoogle Scholar
  22. Muldoon MA, Simo JA, Bradbury KR (2001) Correlation of hydraulic conductivity with stratigraphy in a fractured-dolomite aquifer, northeastern Wisconsin, USA. Hydrogeol J 9(6):570–583CrossRefGoogle Scholar
  23. Nelms DL, Harlow GE Jr, Hayes DC (1997) Base-flow characteristics of streams in the Valley and Ridge, the Blue Ridge, and the Piedmont physiographic provinces of Virginia. US Geol Surv Water Suppl Pap 2457Google Scholar
  24. Neupaurer RM, Wilson JL (2004) Numerical implementation of a backward probabilistic model of ground water contamination. Ground Water 42(2):175–189CrossRefGoogle Scholar
  25. Poeter EP, Hill MC, Banta ER, Mehl, S, Christensen S (2005) UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation. US Geol Surv Tech Methods 6-A11Google Scholar
  26. Risser DW, Bird PH (2003) Aquifer tests and simulation of ground-water flow in Triassic sedimentary rocks near Colmar, Bucks and Montgomery Counties, Pennsylvania. US Geol Surv Water Resour Invest Rep 03–4159Google Scholar
  27. Senior LA, Goode DJ (1999) Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania. US Geol Surv Water Resour Invest Rep 99–4228Google Scholar
  28. Therrien R, Sudicky EA (1996) Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media. J Contam Hydrol 23:1–44CrossRefGoogle Scholar
  29. Vecchioli J (1967) Directional hydraulic behavior of a fractured-shale aquifer in New Jersey. In: Proc. from Symp. on the Hydrology of Fractured Rock, Dubrovnik, Yugoslavia, 1965, International Association of Scientific Hydrology, Wallingford, UK, vol 73, No. 1, pp 318–326Google Scholar
  30. Voss CI, Provost AM (2002) SUTRA: a model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geol Surv Water Resour Invest Rep 02–4231Google Scholar
  31. Weary DJ, Harlow GE Jr, Orndorff RC, Alemán-González W (2004) Interdisciplinary cooperative geologic mapping and ground-water resource analyses of Frederick County, Virginia by the US Geological Survey. Geol Soc Am Abstr Programs 36:5Google Scholar
  32. Weiss E (1985) Evaluating the hydraulic effects of changes in aquifer elevation using curvilinear coordinates. J Hydrol 81:253–275CrossRefGoogle Scholar
  33. White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New YorkGoogle Scholar
  34. Winston RB, Voss CI (2004) SUTRAGUI, a graphical user interface for SUTRA, a model for ground-water flow with solute or energy transport. US Geol Surv Open-File Rep 03–285Google Scholar
  35. Yager RM (1996) Simulated three-dimensional ground-water flow in the Lockport Group, a fractured-dolomite aquifer near Niagara Falls, New York. US Geol Surv Water Suppl Pap 2487Google Scholar
  36. Yager RM, Southworth S, Voss CI (2008) Simulation of ground-water flow in the Shenandoah Valley, Virginia and West Virgina, using variable-direction anisotropy in hydraulic conductivity to represent bedrock structure. US Geol Surv Sci Invest Rep 2008–5002Google Scholar
  37. Zanini L, Novakowski KS, Lapcevic P, Bickerton GS, Voralek J, Talbot C (2000) Ground water flow in a fractured carbonate aquifer inferred from combined hydrogeological and geochemical measurements. Ground Water 38(3):350–360CrossRefGoogle Scholar
  38. Zheng C, Bennett GD (2002) Applied contaminant transport modeling. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Richard M. Yager
    • 1
  • Clifford I. Voss
    • 2
  • Scott Southworth
    • 2
  1. 1.US Geological SurveyIthacaUSA
  2. 2.US Geological SurveyRestonUSA

Personalised recommendations