Advertisement

Hydrogeology Journal

, Volume 17, Issue 4, pp 793–815 | Cite as

Temporal response of hydraulic head, temperature, and chloride concentrations to sea-level changes, Floridan aquifer system, USA

  • J. D. HughesEmail author
  • H. L. Vacher
  • Ward E. Sanford
Paper

Abstract

Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick.

Keywords

Coastal aquifers Heterogeneity Salt-water/fresh-water relations Sea-level change USA 

Réponse temporelle aux variations du niveau de la mer sur la charge, la température et les concentrations en chlorure du système aquifère de Floride, USA

Résumé

La modélisation des écoulements et du transport du système du “Floridan aquifer” [aquifère captif qui s’étend sous la Floride], en trois dimension avec effet densitaire montre que les concentrations actuelles en chlorure ne sont pas en équilibre avec le niveau actuel de la mer, et également, que la configuration géométrique de l’aquifère a un impact significatif sur les réponses du système. La modélisation montre que les charges hydrauliques s’équilibrent en premier, suivies des températures, puis des concentrations en chlorure. Le model a été bâtit à partir d’une version modifiée du code SUTRA capable de simuler le transport de plusieurs espèces en solution et le transport de chaleur, et a été comparé à des conditions de pré-développement en utilisant des charges hydrauliques, des températures et des concentration en chlorure provenant de 315 puits d’observations. Trois hypothèses de variation sinusoïdale du niveau de la mer s’étendant sur 100 000 ans ont été utilisées pour évaluer comment l’aquifère réagit à ce changement. Les résultats du modèle montrent que la réaction de la charge hydraulique est en retard sur la variation du niveau de la mer uniquement là où la couche Miocène Hawthorn qui rend l’aquifère captif est épaisse et représente un frein significatif à l’écoulement. Les températures s’équilibrent rapidement sauf lorsque la couche Hawthorn est épaisse et la durée de la variation de niveau de la mer est longue (au-delà de 30 000 ans). Les temps de réponse des concentrations en chlorure pour se mettre en équilibre sont les plus courts à proximité de la cote et aux endroits où l’aquifère est libre. En revanche, les concentrations en chlorure ne changent pas de manière significative sur les 100 000 ans de simulation lorsque la couche Hawthorn est épaisse.

Respuesta temporal de la carga hidráulica, temperatura y concentraciones de cloruro a los cambios de nivel del mar, sistema acuífero de Florida, EEUU

Resumen

La modelación tridimensional y dependiente de la densidad de transporte y flujo del sistema acuífero de Florida, EEUU muestra que las concentraciones actuales de cloruro no están en equilibrio con el nivel del mar actual y, segundo, que la configuración geométrica del acuífero tiene un efecto significativo en las respuestas del sistema. La modelación muestra que la carga hidráulica se equilibra primero, seguida por las temperaturas y luego por las concentraciones de cloruro. El modelo fue construido usando una versión modificada de SUTRA capaz de simular distintas formas de transporte de soluto y calor, y fue comparado con las condiciones previas al desarrollo usando cargas hidráulicas, concentraciones de cloruro y temperatura de 315 pozos de observación. Se usaron tres cambios hipotéticos y sinusoidales del nivel del mar a lo largo de más de 100,000 años para evaluar como el acuífero simulado responde a los cambios del nivel del mar. Los resultados del modelo muestran que las distintas respuestas de la carga hidráulica se retrasan respecto a los cambios de nivel del mar solo donde la unidad confinante Hawthorn miocena es de mayor espesor y representa una significativa restricción para el flujo. Las temperaturas se equilibran rápidamente excepto donde la unidad confinante Hawthorn tiene mayor espesor y la duración del evento del nivel del mar es larga (más de 30,000 años). Los tiempos de respuestas para el equilibro de las concentraciones son más cortos cerca de la línea de costa y donde el acuífero es no confinado, en contraste, las concentraciones de cloruro no cambian significativamente sobre un período de simulación de 100,000 años donde la unidad confinante Hawthorn es de mayor espesor.

美国佛罗里达州含水层系统中水头、温度和氯化物浓度对海平面变化的时间响应

摘要

美国佛罗里达含水层系统基于密度的三维水流和运移模型表明, 现在的氯化物浓度同当前的海平面没有达到平衡; 其次, 含水层的几何结构对系统响应影响很大。模型显示, 水头首先达到平衡, 接着是温度, 然后是氯化物浓度。模型是利用改进的SUTRA建立的, 能够模拟多种热流和溶质运移, 并利用315眼观测井的水头、氯化物浓度和温度数据进行了拟合。假想海平面在100,000年内发生三个正弦变化, 并用此估算含水层对海平面变化的响应。模拟结果表明, 只有中新统Hawthorn隔水层较厚, 对水流阻碍较大时, 水头响应才会滞后于海平面变化。温度会很快达到平衡, 除非Hawthorn隔水层较厚和海平面变化周期很长 (超过30,000年) 。在海岸附近以及含水层具有自由边界的地区, 氯化物浓度达到平衡的响应时间最短。但在Hawthorn隔水层较厚的地区, 氯化物浓度在超过100,000年的模拟期内没有明显变化。

Resposta temporal do nível piezométrico, da temperatura e das concentrações de cloreto às alterações do nível do mar, sistema aquífero Floridan, EUA

Resumo

A modelação tridimensional do escoamento e transporte dependente da densidade do sistema aquífero Floridan, EUA, mostra que as concentrações de cloreto actuais não se encontram em equilíbrio com o presente nível do mar e, em segundo lugar, que a configuração geométrica do aquífero tem um efeito significativo nas respostas do sistema. A modelação mostra que é o nível piezométrico que se equilibra em primeiro lugar, seguido das temperaturas e depois as concentrações de cloreto. O modelo foi construído utilizando uma versão modificada do SUTRA capaz de simular o transporte de calor e solutos multi-espécie e foi comparado a condições de pré-desenvolvimento utilizando os níveis piezométricos, as concentrações de cloreto e as temperaturas de 315 pontos de observação. Foram utilizadas três alterações hipotéticas sinusoidais do nível do mar ocorrendo durante 100 000 anos para avaliar como o aquífero simulado responde às alterações do nível do mar. Os resultados do modelo mostram que as respostas do nível piezométrico têm um atraso em relação às alterações do nível do mar apenas onde a unidade confinante miocénica de Hawthorn é espessa e representa uma restrição significativa ao escoamento. As temperaturas equilibram-se rapidamente excepto onde a unidade confinante de Hawthorn é espessa e a duração do evento do nível do mar é longa (superior a 30 000 anos). Os tempos de resposta para o equilíbrio das concentrações de cloreto são menores perto da linha de costa e onde o aquífero é livre; em contraste, as concentrações de cloreto não se alteram significativamente ao longo do período de simulação de 100 000 anos onde a unidade confinante de Hawthorn é espessa.

Notes

Acknowledgements

Partial support for this research was provided by the US Geological Survey Office of Ground Water. The primary author would like to thank D. Budd (University of Colorado), J. Hickey (US Geological Survey - retired), N. Sepúlveda (US Geological Survey), and T. M Scott (Florida Geological Survey) for their assistance, suggestions, comments, and reviews regarding the development of the hydrostratigraphic model and initial aquifer data. The authors would also like to thank C. Langevin (US Geological Survey) and A. Wilson (University of South Carolina) for reviewing an earlier version of the manuscript. Reviewers for Hydrogeology Journal (F. Larocque and anonymous reviewers) provided excellent suggestions that greatly improved the manuscript.

References

  1. Aucott WR (1988) Areal variation in recharge to and discharge from the floridan aquifer system in Florida. US Geol Surv Water Resour Invest Rep 88−4057Google Scholar
  2. Bennett MW (2004) Hydrogeologic investigation of the Floridan Aquifer System: Big Cypress Preserve Collier County, Florida. Technical publ. WS−18, South Florida Water Management District, West Palm Beach, FLGoogle Scholar
  3. Bennett MW, Richardson E1, Clark JF (2007) Timing and ground water circulation within the Floridan aquifer system of south Florida. Geol Soc Am Abstr 39(2):7Google Scholar
  4. Bidlake WR, Woodham WM, Lopez MA (1996) Evapotranspiration from areas of native vegetation in west-central Florida. US Geol Surv Water Suppl Pap 2430Google Scholar
  5. Birch F, Clark H (1940) The thermal conductivity of rocks and its dependence on temperature and composition. Am J Sci 238:529−558Google Scholar
  6. Budd DA, Vacher HL (2004) Matrix permeability of the confined Floridan Aquifer, Florida, USA. Hydrogeol J 12(5):531-549. doi: 10.1007/s10040-004-0341-5 Google Scholar
  7. Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants, vol 3. AGU reference shelf,American Geophysical Union, Washington, DC, pp 105−126Google Scholar
  8. Essaid HI (1990) A multilayered sharp interface model of coupled freshwater and saltwater flow in coastal systems: model development and application. Water Resour Res 26:1431–1454CrossRefGoogle Scholar
  9. Gelhar LW (1986) Stochastic subsurface hydrology from theory to applications. Water Resour Res 22:135S–145SCrossRefGoogle Scholar
  10. German ER (2000) Regional evaluation of evapotranspiration in the Everglades. US Geol Surv Water Resour Invest Rep 00-4217Google Scholar
  11. Griffin GM, Reel DA, Pratt RW (1977) Heat Flow in Florida oil test holes and implications of oceanic crust beneath the southern Florida–Bahamas Platform. In: Smith KL, Griffin GM (eds) The geothermal nature of the Floridan Plateau. Spec. Publ. 21, Florida Department of Natural Resources Bureau of Geology, Tallahassee, FL, pp 43–63Google Scholar
  12. Healy HG (1975) Terraces and shorelines of Florida. Map Series no. 71, 1 sheet, Florida Bureau of Geology, Tallahassee, FLGoogle Scholar
  13. Herrin ET, Clark SP (1956) Heat flow in West Texas and eastern New Mexico. Geophysics 20:1087–1099CrossRefGoogle Scholar
  14. Hine AC (1997) Structural and paleoceanographic evolution of the margins of the Florida Platform. In: Randazzo AF, Jones DS (eds) The geology of Florida. University Press of Florida, Gainesville, FL, pp 169–194Google Scholar
  15. Hughes JD, Sanford WE (2004) SUTRA-MS: a version of SUTRA modified to simulate heat and multiple-solute transport. US Geol Surv Open-File Rep 2004–1207Google Scholar
  16. Hughes JD, Sanford WE, Vacher HL (2005) Numerical simulation of double-diffusive finger convection. Water Resour Res 41(1):W01019. doi: 10.1029/2003WR002777
  17. Hughes JD, Vacher HL, Sanford WE (2007) Three-dimensional flow in the Florida Platform: theoretical analysis of Kohout convection at its type locality. Geology 35(7):663–666. doi: 10.1130/g23374a.1 Google Scholar
  18. Hutchinson CD (1992) Assessment of hydrogeologic conditions with emphasis on water quality and wastewater injection, southwest Sarasota and West Charlotte counties, Florida. US Geol Surv Water Suppl Pap 2371Google Scholar
  19. Jee JL (1993) Seismic stratigraphy of the Western Florida carbonate platform and history of Eocene strata. PhD Thesis, University of Florida, USAGoogle Scholar
  20. Johnston RH, Bush PW (1988) Summary of the hydrogeology of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama. US Geol Surv Water Suppl Pap 1403-AGoogle Scholar
  21. Johnston RH, Krause RE, Meyer FW, Ryder PD, Tibbals CH, Hunn JD (1980) Estimated potentiometric surface for the Tertiary limestone aquifer system, southeastern United States, prior to development. US Geol Surv Open-File Rep 80–406Google Scholar
  22. Kohout FA (1965) A hypothesis concerning cyclic flow of salt water related to geothermal heating in the Floridan aquifer. New York Acad Sci Trans 28(2):249–271Google Scholar
  23. Kohout FA, Henry HR, Banks JE (1977) Hydrogeology related to geothermal conditions of the Floridan Plateau. In: Smith KL, Griffin GM (eds) The geothermal nature of the Floridan Plateau. Spec. Publ. 21, Florida Department of Natural Resources Bureau of Geology, Tallahassee, FL, pp 1–41Google Scholar
  24. Lambeck K, Chappell (2001) Sea level change through the last glacial cycle. Science 292:679–686CrossRefGoogle Scholar
  25. Langevin CD (2001) Simulation of ground-water discharge to Biscayne Bay, southeastern Florida. US Geol Surv Water Resour Invest Rep 00–4251Google Scholar
  26. Lee TM, Swancar A (1997) Influence of evaporation, ground water, and uncertainty in the hydrologic budget of Lake Lucerne, a seepage lake in Polk County, Florida. US Geol Surv Water Suppl Pap 2439Google Scholar
  27. Meisler H, Leahy PP, Knobel LL (1984) Effect of eustatic sea-level changes on saltwater-freshwater in the northern Atlantic Coastal Plain. US Geol Surv Water Suppl Pap 2255Google Scholar
  28. Merritt ML (1997) Computation of the time-varying flow rate from an artesian well in central Dade County, Florida, by analytical and numerical simulation methods. US Geol Surv Water Suppl Pap 2491Google Scholar
  29. Meyer FW (1989a) Hydrogeology, ground water movement, and subsurface storage in the Floridan aquifer system in southern Florida. US Geol Surv Prof Pap 1403-GGoogle Scholar
  30. Meyer FW (1989b) Subsurface storage of liquids in the Floridan aquifer system in south Florida. US Geol Surv Open-File Rep 88-477Google Scholar
  31. Miller JA (1986) Hydrogeologic framework of the Floridan aquifer system in Florida and in parts of Georgia, Alabama, and South Carolina. US Geol Surv Prof Pap 1403-BGoogle Scholar
  32. Miller JA (1997) Hydrogeology of Florida. In: Randazzo AF, Jones DS (eds) The geology of Florida. University Press of Florida, Gainesville, FL, pp 69–88Google Scholar
  33. Mitchum RM (1978) Seismic stratigraphic investigation of west Florida slope, Gulf of Mexico. In: Bouma AH, Moore GT, Coleman JM (eds) Framework, facies, and oil-trapping characteristics of the upper continental margin. American Association of Petroleum Geologists Studies in Geology 7, AAPG, Tulsa, OK, pp 193–223Google Scholar
  34. Mullins HT, Gardulski AF, Hine AC, Melilli AJ, Wise SW Jr., Applegate J (1988) Three-dimensional sedimentary framework of the carbonate ramp slope of central west Florida: a sequential seismic stratigraphic perspective. Geol Soc Am Bull 100(4):514–533CrossRefGoogle Scholar
  35. Oude Essink GHP (1999) Impact of sea-level rise in The Netherlands. In: Bear J, Cheng AHD, Sorek S, Ouazar D, Herrera I (eds) Seawater intrusion in coastal aquifers: concepts, methods and practices. Kluwer, Dorcrecht, The Netherlands, pp 507–530Google Scholar
  36. Person M, Dugan B, Sewnson JB, Urbano L, Stott C, Taylor J, Willet M (2003) Pleistocene hydrogeology of the Atlantic continental shelf, New England. GSA Bull 115(11):1324–1343CrossRefGoogle Scholar
  37. Petuch EJ (2003) Cenozoic seas: the view from eastern North America. CRC, Boca Raton, FLGoogle Scholar
  38. Poeter EP, Hill MC (1998) Documentation of UCODE, a computer code for universal inverse modeling. US Geol Surv Water Resour Invest Rep 98-4080Google Scholar
  39. Post VEA (2005) Fresh and saline groundwater interaction in coastal aquifers: is our technology ready for the problems ahead? Hydrogeol J (13):120–123. doi: 10.1007/s10040-004-0417-2
  40. Post VEA, Kooi H (2003) Rates of salinization by free convection in high-permeability sediments: insights from numerical modeling and application to the Dutch coastal area. Hydrogeol J (11):549–559. doi: 10.1007/s10040-003-0271-7
  41. Post V, Kooi H, Simmons C (2007) Using hydraulic head measurements in variable-density ground water flow analyses. Ground Water 45(6):664–671. doi: 10.1111/j.1745-6584.207.00339.x CrossRefGoogle Scholar
  42. Puri HS, Winston GO (1974) Geologic framework of the high transmissivity zones in south Florida. Spec. Publ. 20, State of Florida Department of Natural Resources, Tallahassee, FLGoogle Scholar
  43. Randazzo AF (1997) The sedimentary platform of Florida. In: Randazzo AF, Jones DS (eds) The geology of Florida. University Press of Florida, Gainesville, FL, pp 39–56Google Scholar
  44. Reese RS (1994) Hydrogeology and the distribution and origin of salinity in the Florida aquifer system, southeastern Florida. US Geol Surv Water Resour Invest Rep 94-4010Google Scholar
  45. Reese RS (2000) Hydrogeology and the distribution of salinity in the Florida aquifer system, southwestern Florida. US Geol Surv Water Resour Invest Rep 98-4253Google Scholar
  46. Reese RS (2004) Hydrogeology, water quality, and distribution and sources of salinity in the Floridan aquifer system, Martin and St. Lucie counties, Florida. US Geol Surv Water Resour Invest Rep 03-4242Google Scholar
  47. Reese RS, Memberg SJ (2000) Hydrogeology and the distribution of salinity in the Florida aquifer system, Palm Beach County, Florida. US Geol Surv Water Resour Invest Rep 99-4061Google Scholar
  48. Reese RS, Richardson E (2004) Preliminary hydrogeologic framework, ASR regional study (draft version). South Florida Water Management District, West Palm Beach, FLGoogle Scholar
  49. Ryder PD (1985) Hydrology of the Floridan aquifer system in west-central Florida. US Geol Surv Prof Pap 1403-FGoogle Scholar
  50. Sass JH, Lachenbruch AH, Munroe RJ (1971) Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determination. J Geophys Res 76(14):3391–3401CrossRefGoogle Scholar
  51. Sepulveda N (2002) Simulation of ground-water flow in the Intermediate and Floridan aquifer systems in peninsular Florida. US Geol Surv Water Resour Invest Rep 02-4009Google Scholar
  52. Smith DL, Lord KM (1997) Tectonic evolution and geophysics of the Florida basement. In: Randazzo AF, Jones DS (eds) The geology of Florida. University Press of Florida, Gainesville, FL, pp 13–26Google Scholar
  53. Southeastern Geological Society (1986) Hydrogeologic units of Florida. Spec. Publ. 28, Florida Bureau of Geology, Tallahassee, FL, 9 ppGoogle Scholar
  54. Spechler RM, Halford KJ (2001) Hydrogeology, water quality, and simulated effects of ground-water withdrawals from the Floridan aquifer system, Seminole County and vicinity, Florida. US Geol Surv Water Resour Invest Rep 01-4182Google Scholar
  55. Sprinkle CL (1989) Geochemistry of the Floridan Aquifer System in Florida and in parts of Georgia, South Carolina, and Alabama. US Geol Surv Prof Pap 1403-IGoogle Scholar
  56. Sumner DM (1996) Evapotranspiration from successional vegetation in a deforested area of the Lake Wales Ridge, Florida. US Geol Surv Water Resour Invest Rep 96-4244Google Scholar
  57. Tibbals CH (1990) Hydrology of the Floridan aquifer system in east-central Florida. US Geol Surv Prof Pap 1403-EGoogle Scholar
  58. US Environmental Protection Agency (2003) Relative risk assessment of management options for treated wastewater in South Florida. US Environmental Protection Agency Report EPA 816-R-03-010, USEPA, Washington, DCGoogle Scholar
  59. Vacher HL, Hutchings WC, Budd DA (2006) Metaphors and models: the ASR bubble in the Floridan aquifer. Ground Water, pp 144–154. doi: 10.1111/j.1745-6584.2005.00114.x
  60. Voss CI, Andersson J (1993) Regional flow in the Baltic Shield during Holocene coastal regression. Ground Water 31:989–1006CrossRefGoogle Scholar
  61. Voss CI, Provost AP (2002) SUTRA: a model for saturated-unsaturated, variable-density ground-water flow with solute or energy transport. US Geol Surv Water Resour Invest Rep 02-42Google Scholar

Copyright information

© US Government 2008 2008

Authors and Affiliations

  • J. D. Hughes
    • 1
    • 3
    Email author
  • H. L. Vacher
    • 1
  • Ward E. Sanford
    • 2
  1. 1.Department of GeologyUniversity of South FloridaTampaUSA
  2. 2.US Geological SurveyRestonUSA
  3. 3.US Geological SurveyFlorida Integrated Science CenterTampaUSA

Personalised recommendations