Hydrogeology Journal

, Volume 17, Issue 1, pp 229–246

A framework for understanding the hydroecology of impacted wet meadows in the Sierra Nevada and Cascade Ranges, California, USA

  • Steven P. LoheideII
  • Richard S. Deitchman
  • David J. Cooper
  • Evan C. Wolf
  • Christopher T. Hammersmark
  • Jessica D. Lundquist
Paper

Abstract

Meadows of the Sierra Nevada and Cascade mountains of California, USA, support diverse and highly productive wet-meadow vegetation dominated by sedges, rushes, grasses, and other herbaceous species. These groundwater–dependent ecosystems rely on the persistence of a shallow water table throughout the dry summer. Case studies of Bear Creek, Last Chance, and Tuolumne meadow ecosystems are used to create a conceptual framework describing groundwater–ecosystem connections in this environment. The water requirements for wet-meadow vegetation at each site are represented as a water-table-depth hydrograph; however, these hydrographs were found to vary among sites. Causes of this variation include (1) differences in soil texture, which govern capillary effects and availability of vadose water and (2) elevation-controlled differences in climate that affect the phenology of the vegetation. The field observations show that spatial variation of water-table depth exerts strong control on vegetation composition and spatial patterning. Groundwater-flow modeling demonstrates that lower hydraulic-conductivity meadow sediments, higher groundwater-inflow rates, and a higher ratio of lateral to basal-groundwater inflow all encourage the persistence of a high water table and wet-meadow vegetation, particularly at the margin of the meadow, even in cases with moderate stream incision.

Keywords

Ecohydrology Groundwater dependent ecosystem USA Water table Wetland 

Schéma pour la compréhension de l’hydroécologie d’une prairie humide impactée dans la Sierra Nevada et Cascade Range, Californie, USA

Résumé

Les prairies de la Sierra Nevada et la chaîne des Cascades en Californie, USA, support une végétation de prairie humide variée et très productive dominée par la laîche, butomes, herbes et autres espèces herbacées. Ces écosystèmes dépendant des aquifères nécessitent la persistance d’eau souterraine peu profonde tout au long de l’été. Le cas d’étude des écosystèmes de prairies de Bear Creek, Last Chance et Tuolumne ont été utilisés pour définir un schéma conceptuel permettant de décrire les connections eau souterraine-écosystèmes. Les besoins en eau de la végétation de prairie humide à chaque site sont représentés par un hydrographe de la profondeur du niveau d’eau. Ces hydrographes sont toutefois variables d’un site à l’autre. Les raisons de cette variation sont (1) différences dans la texture des sols, qui gouverne les effets de capillarité et la disponibilité en eau vadose et (2) les différences climatiques dues aux effets d’altitude et qui affecte la phénologie de la végétation. Le champ d’observations montre que la variation spatiale de la profondeur de la nappe exerce un contrôle fort sur la composition de la végétation et son agencement spatiale. La modélisation des flux souterrains démontre que des conductivités hydrauliques faibles des sédiments de prairies, des flux d’eau souterraine importants et des flux latéraux dominants sont des facteurs permettant la persistance d’un niveau de nappe élevé et de la végétation de prairies humides même si les incisions de cours d’eau sont de faible importance.

Un marco para la comprensión de la hidroecología de praderas húmedas impactadas en Sierra Nevada y Cascade Ranges, California, EEUU

Resumen

Las praderas de la Sierra Nevada y Cascade Ranges de California, EEUU, sostienen a la vegetación de la pradera húmeda, que es diversa y altamente productiva y está dominada por ciperáceas, juncos, gramíneas y otras especies herbáceas. Estos ecosistemas dependientes de las aguas subterráneas se basan en la persistencia de la presencia de un nivel freático somero durante el verano seco. Se usaron los ecosistemas de las praderas de Bear Creek, Last Chance y Tuolumne como casos de estudio para crear un marco conceptual que describa la relación entre aguas subterráneas y ecosistema en este ambiente. Los requerimientos de agua para la vegetación de las praderas húmedas en cada sitio son representados como un hidrograma de profundidad de la capa freática. Sin embargo, se encontró que estos hidrogramas varían entre los distintos sitios. Las causas de estas variaciones incluyen (1) las diferencias en la textura del suelo, la cual gobierna los efectos capilares y la disponibilidad de agua vadosa y (2) las diferencias de elevación controlada por las condiciones prevalentes que afectan a la fenología de la vegetación. Las observaciones de campo indican que las variaciones espaciales de la profundidad de la capa freática ejerce un fuerte control sobre la vegetación y su esquema de distribución espacial. El modelado del flujo de agua subterránea demuestra que la baja conductividad hidráulica de los sedimentos de la pradera, los altos ritmos de caudales de ingresos de aguas subterráneas y el alto cociente de flujo lateral a basal favorecen a la persistencia de un nivel freático alto y a la vegetación de la pradera húmeda, en particular en las márgenes de la pradera, aún en casos con una moderada incisión de la corriente fluvial.

认识美国加利福尼亚州谢拉内华达和阶梯山脉中受影响沼泽化草甸水文生态的一种框架

摘要

美国加利福尼亚州谢拉内华达 (Sierra Nevada) 和阶梯 (Cascade) 山脉中的草甸, 维持着多种高产草甸植被, 主要有莎草、灯心草、禾草及其它草本植物。在整个干旱的夏季, 这些依赖于地下水的生态系统依靠持续的较浅的地下水位来维持。基于Bear Creek、Last Chance和Tuolumne草甸生态系统的个案研究, 构建了一种描述这种环境下地下水-生态系统联系的概念性框架。各地点草甸植被的需水量以水位埋深过程线表示, 但发现这些过程线因地点不同而异。造成变化的原因包括 : 1) 控制毛管力效应和获得包气带水能力的土壤结构不同, 2) 由海拔高度控制的影响着植被物候的气候不同。野外观测表明, 埋深的空间变化对植被组成及其空间分布格局具有很强的控制作用。地下水流模拟显示, 草甸沉积物渗透系数越低、地下水入流流量越高, 侧向与垂向地下水入流之比越高, 越利于持续的高地下水位和沼泽化草甸植被的维系, 尤其是在草甸边缘。即便是在河流切割程度不高的情况下, 也是如此。

Um quadro para compreender a hidroecologia de prados húmidos afectados nas Cordilheiras da Serra Nevada e das Cascatas, Califórnia, EUA

Resumo

Os prados das montanhas da Serra Nevada e das Cascatas, na Califórnia, EUA, suportam uma vegetação diversa e altamente produtiva dos prados húmidos, dominada por ciperáceas, juncos, gramíneas e outras espécies herbáceas. Estes ecossistemas dependentes de água subterrânea necessitam da permanência de um nível freático pouco profundo ao longo do verão seco. Utilizam-se os casos de estudo dos ecossistemas dos prados de Bear Creek, Last Chance e Tuolumne para criar um quadro conceptual que descreve as conexões água subterrânea-ecossistema neste ambiente. As necessidades de água para a vegetação dos prados húmidos em cada local são representadas como um hidrograma da profundidade do nível freático; no entanto, observou-se que estes hidrogramas variam entre locais. As causas destas variações incluem (1) diferenças na textura do solo, que governam os efeitos capilares e a disponibilidade de água vadosa e (2) as diferenças no clima, controladas pela altitude, que afectam a fenologia da vegetação. As observações de campo mostram que a variação espacial da profundidade do nível freático exerce um forte controle na composição da vegetação e na padronização espacial. A modelação do fluxo de água subterrânea demonstra que factores como a condutividade hidráulica mais baixa dos sedimentos do prado, taxas de entrada de água subterrânea mais elevadas, e proporções de entrada laterais em relação a entradas pela base mais elevadas, incentivam a permanência de um nível freático mais elevado e da uma vegetação de prados húmidos, particularmente nas margens do prado, mesmo em casos de incisão fluvial moderada.

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Steven P. LoheideII
    • 1
    • 2
  • Richard S. Deitchman
    • 2
  • David J. Cooper
    • 3
  • Evan C. Wolf
    • 3
  • Christopher T. Hammersmark
    • 4
  • Jessica D. Lundquist
    • 5
  1. 1.Department of Civil and Environmental EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Nelson Institute for Environmental StudiesUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Forest, Rangeland, and Watershed StewardshipColorado State UniversityFort CollinsUSA
  4. 4.Center for Watershed SciencesUniversity of California-DavisDavisUSA
  5. 5.Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations