Hydrogeology Journal

, Volume 17, Issue 1, pp 229–246 | Cite as

A framework for understanding the hydroecology of impacted wet meadows in the Sierra Nevada and Cascade Ranges, California, USA

  • Steven P. LoheideII
  • Richard S. Deitchman
  • David J. Cooper
  • Evan C. Wolf
  • Christopher T. Hammersmark
  • Jessica D. Lundquist
Paper

Abstract

Meadows of the Sierra Nevada and Cascade mountains of California, USA, support diverse and highly productive wet-meadow vegetation dominated by sedges, rushes, grasses, and other herbaceous species. These groundwater–dependent ecosystems rely on the persistence of a shallow water table throughout the dry summer. Case studies of Bear Creek, Last Chance, and Tuolumne meadow ecosystems are used to create a conceptual framework describing groundwater–ecosystem connections in this environment. The water requirements for wet-meadow vegetation at each site are represented as a water-table-depth hydrograph; however, these hydrographs were found to vary among sites. Causes of this variation include (1) differences in soil texture, which govern capillary effects and availability of vadose water and (2) elevation-controlled differences in climate that affect the phenology of the vegetation. The field observations show that spatial variation of water-table depth exerts strong control on vegetation composition and spatial patterning. Groundwater-flow modeling demonstrates that lower hydraulic-conductivity meadow sediments, higher groundwater-inflow rates, and a higher ratio of lateral to basal-groundwater inflow all encourage the persistence of a high water table and wet-meadow vegetation, particularly at the margin of the meadow, even in cases with moderate stream incision.

Keywords

Ecohydrology Groundwater dependent ecosystem USA Water table Wetland 

Schéma pour la compréhension de l’hydroécologie d’une prairie humide impactée dans la Sierra Nevada et Cascade Range, Californie, USA

Résumé

Les prairies de la Sierra Nevada et la chaîne des Cascades en Californie, USA, support une végétation de prairie humide variée et très productive dominée par la laîche, butomes, herbes et autres espèces herbacées. Ces écosystèmes dépendant des aquifères nécessitent la persistance d’eau souterraine peu profonde tout au long de l’été. Le cas d’étude des écosystèmes de prairies de Bear Creek, Last Chance et Tuolumne ont été utilisés pour définir un schéma conceptuel permettant de décrire les connections eau souterraine-écosystèmes. Les besoins en eau de la végétation de prairie humide à chaque site sont représentés par un hydrographe de la profondeur du niveau d’eau. Ces hydrographes sont toutefois variables d’un site à l’autre. Les raisons de cette variation sont (1) différences dans la texture des sols, qui gouverne les effets de capillarité et la disponibilité en eau vadose et (2) les différences climatiques dues aux effets d’altitude et qui affecte la phénologie de la végétation. Le champ d’observations montre que la variation spatiale de la profondeur de la nappe exerce un contrôle fort sur la composition de la végétation et son agencement spatiale. La modélisation des flux souterrains démontre que des conductivités hydrauliques faibles des sédiments de prairies, des flux d’eau souterraine importants et des flux latéraux dominants sont des facteurs permettant la persistance d’un niveau de nappe élevé et de la végétation de prairies humides même si les incisions de cours d’eau sont de faible importance.

Un marco para la comprensión de la hidroecología de praderas húmedas impactadas en Sierra Nevada y Cascade Ranges, California, EEUU

Resumen

Las praderas de la Sierra Nevada y Cascade Ranges de California, EEUU, sostienen a la vegetación de la pradera húmeda, que es diversa y altamente productiva y está dominada por ciperáceas, juncos, gramíneas y otras especies herbáceas. Estos ecosistemas dependientes de las aguas subterráneas se basan en la persistencia de la presencia de un nivel freático somero durante el verano seco. Se usaron los ecosistemas de las praderas de Bear Creek, Last Chance y Tuolumne como casos de estudio para crear un marco conceptual que describa la relación entre aguas subterráneas y ecosistema en este ambiente. Los requerimientos de agua para la vegetación de las praderas húmedas en cada sitio son representados como un hidrograma de profundidad de la capa freática. Sin embargo, se encontró que estos hidrogramas varían entre los distintos sitios. Las causas de estas variaciones incluyen (1) las diferencias en la textura del suelo, la cual gobierna los efectos capilares y la disponibilidad de agua vadosa y (2) las diferencias de elevación controlada por las condiciones prevalentes que afectan a la fenología de la vegetación. Las observaciones de campo indican que las variaciones espaciales de la profundidad de la capa freática ejerce un fuerte control sobre la vegetación y su esquema de distribución espacial. El modelado del flujo de agua subterránea demuestra que la baja conductividad hidráulica de los sedimentos de la pradera, los altos ritmos de caudales de ingresos de aguas subterráneas y el alto cociente de flujo lateral a basal favorecen a la persistencia de un nivel freático alto y a la vegetación de la pradera húmeda, en particular en las márgenes de la pradera, aún en casos con una moderada incisión de la corriente fluvial.

认识美国加利福尼亚州谢拉内华达和阶梯山脉中受影响沼泽化草甸水文生态的一种框架

摘要

美国加利福尼亚州谢拉内华达 (Sierra Nevada) 和阶梯 (Cascade) 山脉中的草甸, 维持着多种高产草甸植被, 主要有莎草、灯心草、禾草及其它草本植物。在整个干旱的夏季, 这些依赖于地下水的生态系统依靠持续的较浅的地下水位来维持。基于Bear Creek、Last Chance和Tuolumne草甸生态系统的个案研究, 构建了一种描述这种环境下地下水-生态系统联系的概念性框架。各地点草甸植被的需水量以水位埋深过程线表示, 但发现这些过程线因地点不同而异。造成变化的原因包括 : 1) 控制毛管力效应和获得包气带水能力的土壤结构不同, 2) 由海拔高度控制的影响着植被物候的气候不同。野外观测表明, 埋深的空间变化对植被组成及其空间分布格局具有很强的控制作用。地下水流模拟显示, 草甸沉积物渗透系数越低、地下水入流流量越高, 侧向与垂向地下水入流之比越高, 越利于持续的高地下水位和沼泽化草甸植被的维系, 尤其是在草甸边缘。即便是在河流切割程度不高的情况下, 也是如此。

Um quadro para compreender a hidroecologia de prados húmidos afectados nas Cordilheiras da Serra Nevada e das Cascatas, Califórnia, EUA

Resumo

Os prados das montanhas da Serra Nevada e das Cascatas, na Califórnia, EUA, suportam uma vegetação diversa e altamente produtiva dos prados húmidos, dominada por ciperáceas, juncos, gramíneas e outras espécies herbáceas. Estes ecossistemas dependentes de água subterrânea necessitam da permanência de um nível freático pouco profundo ao longo do verão seco. Utilizam-se os casos de estudo dos ecossistemas dos prados de Bear Creek, Last Chance e Tuolumne para criar um quadro conceptual que descreve as conexões água subterrânea-ecossistema neste ambiente. As necessidades de água para a vegetação dos prados húmidos em cada local são representadas como um hidrograma da profundidade do nível freático; no entanto, observou-se que estes hidrogramas variam entre locais. As causas destas variações incluem (1) diferenças na textura do solo, que governam os efeitos capilares e a disponibilidade de água vadosa e (2) as diferenças no clima, controladas pela altitude, que afectam a fenologia da vegetação. As observações de campo mostram que a variação espacial da profundidade do nível freático exerce um forte controle na composição da vegetação e na padronização espacial. A modelação do fluxo de água subterrânea demonstra que factores como a condutividade hidráulica mais baixa dos sedimentos do prado, taxas de entrada de água subterrânea mais elevadas, e proporções de entrada laterais em relação a entradas pela base mais elevadas, incentivam a permanência de um nível freático mais elevado e da uma vegetação de prados húmidos, particularmente nas margens do prado, mesmo em casos de incisão fluvial moderada.

Notes

Acknowledgements

The current work was primarily supported by the National Science Foundation under grant No. CBET-0729838; however, research at all the sites has been ongoing and has been supported by grants from the National Science Foundation under grant No. EAR-0337393, the National Park Service, University of California-Center for Water Resources (grant No. WR995), USDA US Geologic Survey (grant No. 06HQGR0074), the David and Lucile Packard Foundation (grant No. 2001–16376), University of California-John Muir Institute of the Environment-Environmental Fellows Program, the Cantara Trust, and the Peter and Nora Stent Fund at the Peninsula Community Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies. We would like to thank those who contributed to the extensive data collection and/or analysis including: J. Mount, M. Rains, S. Gorelick, A. Abeles, C. Avila, B. Ebel, C. Heppner, E.-L. Hinckley, N. Martin, K. Moffett, K. Rockett, M. Ronayne, B. Loheide, B. Mirus, J. Sydnor, S. Violette, E. Booth, J. Baccei, F. Lott, J. Roche, B. Huggett, H. Roop, A. Wickland, M. Bibbo, and D. Grauer. Finally, we would like to thank the reviewers of this manuscript for their helpful comments and suggestions, which improved the quality of this article.

References

  1. Allen-Diaz B (1991) Water-table and plant species relationships in Sierra Nevada Meadows. Am Midl Nat 126:30–43CrossRefGoogle Scholar
  2. Atekwana EA, Richardson DA (2004) Geochemical and isotopic evidence of a groundwater source in the Corral Canyon meadow complex, central Nevada, USA. Hydrol Proc 18(15):2801–2815CrossRefGoogle Scholar
  3. Baird KJ, Stromberg JC, Maddock T (2005) Linking riparian dynamics and groundwater: an ecohydrologic approach to modeling groundwater and riparian vegetation. Environ Manage 36:1–15CrossRefGoogle Scholar
  4. Bear J (1972) Dynamics of fluids in porous materials. Dover, New YorkGoogle Scholar
  5. Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New YorkGoogle Scholar
  6. Belsky AJ, Matzke A, Uselman S (1999) Survey of livestock influences on stream and riparian ecosystems in the western United States. J Soil Water Cons 51:419–431Google Scholar
  7. Benoit T, Wilcox J (1997) Applying a fluvial geomorphic classification system to watershed restoration. Stream notes. USDA Forest Service Stream Sys. Tech. Center, Fort Collins, COGoogle Scholar
  8. Berlow EL, D’Antonio CM, Reynolds SA (2002) Shrub expansion in montane meadows: the interaction of local-scale disturbance and site aridity. Ecol Appl 12:1103–1118CrossRefGoogle Scholar
  9. Bernhardt ES, Palmer MA, Allan JD, Alexander G, Barnas K, Brooks S, Carr J, Clayton S, Dahm C, Follstad-Shah J, Galat D, Gloss S, Goodwin P, Hart D, Hassett B, Jenkinson R, Katz S, Kondolf GM, Lake PS, Lave R, Meyer JL, O’Donnell TK, Pagano L, Powell B, Sudduth E (2005) Synthesizing US river restoration efforts. Science 308:636–637CrossRefGoogle Scholar
  10. Bond BJ, Jones JA, Moore G, Phillips N, Post D, McDonnell J (2002) The zone of vegetation influence on baseflow revealed by diel patterns of streamflow and vegetation water use in a headwater basin. Hydrol Proc 16:1671–1677CrossRefGoogle Scholar
  11. Boulton AJ (2005) Chances and challenges in the conservation of groundwater and their dependent ecosystems. Aquat Conserv: Mar Freshw Ecosyst 15:319–323CrossRefGoogle Scholar
  12. Butler JJ Jr, Kluitenberg GJ, Whittemore DO, Loheide SP II, Jin W, Billinger MA, Zhan X (2007) A field investigation of phreatophyte-induced fluctuations in the water table. Water Resour Res 43, W02404. doi: 10.1029/2005WR004627
  13. Cardenas MB, Wilson JL (2007) Exchange across a sediment-water interface with ambient groundwater discharge. J Hydrol 346:3–4. doi: 10Ð1016/j.jhydrol.2007Ð08Ð019, 69-80CrossRefGoogle Scholar
  14. Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24(5):755–769CrossRefGoogle Scholar
  15. Carter V (1986) An overview of hydrologic concerns related to wetlands in the United States. Can J Bot 64:364–374CrossRefGoogle Scholar
  16. Castelli RM, Chambers JC, Tausch RJ (2000) Soil-plant relations along a soil-water gradient in Great Basin riparian meadows. Wetlands 20(2):251–266CrossRefGoogle Scholar
  17. Chambers JC, Blank RR, Zamudio DC, Tausch RJ (1999) Central Nevada riparian areas: physical and chemical properties of meadow soils. J Range Manage 52:92–99CrossRefGoogle Scholar
  18. Clary WP, Webster BF (1990) Riparian grazing guidelines for the Intermountain Region. AGRIS, FAO, RomeGoogle Scholar
  19. Comsol (2005) COMSOL Multiphysics v.3.2. COMSOL AB, Stockholm, SwedenGoogle Scholar
  20. Cooper DJ, Lundquist JD, King J, Flint A, Flint L, Wolf E, Lott FC (2006) Effects of the Tioga Road on hydrologic processes and Lodgepole Pine invasion into Tuolumne Meadows, Yosemite National Park, Report prepared for Yosemite National Park. Available via DIALOG. http://faculty.washington.edu/jdlund/home/FINAL.pdf. 3 January 2008
  21. Cunha SF (1992) Invasion of Tuolumne Meadows by Pinus murrayana, Yosemite National Park, California, final report on cooperative research with the National Park Service, Technical report no. 45, NPS, Oakland, CAGoogle Scholar
  22. Darrouzet-Nardi A, D’Antonia CM, Dawson TE (2006) Depth of water acquisition by invading shrubs and resident herbs in a Sierra Nevada meadow. Plant Soil 28(5):31–43CrossRefGoogle Scholar
  23. Dull RA (1999) Palynological evidence for 19th century grazing-induced vegetation change in southern Sierra Nevada, California, USA. J Biogeogr 26:899–912CrossRefGoogle Scholar
  24. Durrell C (1987) Geologic history of the Feather River Country, California. University of California Press, Berkely, CAGoogle Scholar
  25. Dwire KA, Kauffman JB, Brooksite ENJ, Baham JE (2004) Plant biomass and species composition along an environmental gradient in montane riparian meadows. Oecologia 139:309–317CrossRefGoogle Scholar
  26. Dwire KA, Kauffman JB, Baham JE (2006) Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows. Wetlands 26(1):131–146CrossRefGoogle Scholar
  27. Elmore AJ, Mustard JF, Manning SJ (2003) Regional patterns of plant community response to changes in water: Owens Valley, California. Ecol Appl 13(2):443–460CrossRefGoogle Scholar
  28. Environmental Laboratory (1987) Corps of Engineers wetlands delineation manual. Technical Report Y-87-1. US Army Engineer Waterways Experiment Station, Vicksburg, MI. http://www.wetlands.com/coe/87manp1a.htm. 25 December 2007
  29. Ernst EF (1949) The 1948 saddle and pack stock grazing situation of Yosemite National Park. Report by the Park Forester to Yosemite National Park, NPS, Oakland, CAGoogle Scholar
  30. Feather River Coordinated Resources Management (2004) In: Last Chance Watershed Restoration Project CalFed Agreement #no. 2000-EO1 final report. Available via DIALOG. http://www.feather-river-crm.org/projects/last_chance/CalfedFinalReportMainBody.pdf. 2 January 2008
  31. Franklin J, Mitchell RG (1967) Successional status of subalpine fir in the Cascade Range. Research paper PNW-46, USDA Forest Service, Washington, DCGoogle Scholar
  32. Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Upper Saddle River, NJ, USAGoogle Scholar
  33. Gauch HG Jr (1982) Multivariate analysis in community ecology. Cambridge University Press, New YorkGoogle Scholar
  34. Gerla PJ (1992) The relationship of water-table changes to the capillary fringe, evapotranspiration, and precipitation in intermittent wetlands. Wetlands 12(2):91–98Google Scholar
  35. Germanoski D, Miller JR (2004) Basin sensitivity to channel incision and response to natural and anthropogenic disturbance. In: Chambers JC, Miller JR (eds) Great basin riparian ecosystems: ecology, management and restoration. Restoration Island, Covelo, CA, USA, pp 88–123Google Scholar
  36. Grose TLT (1996) Preliminary report: geologic mapping in the Fall River Valley region, northern California, USA. Fall River Resource Conservation District, McArthur, CA, USAGoogle Scholar
  37. Haitjema HM (1995) Analytic element modeling of groundwater flow. Academic Press, San Diego, CAGoogle Scholar
  38. Haitjema HM, Mitchell-Bruker S (2005) Are water tables a subdued replica of the topography? Ground Water 43(6):781–786Google Scholar
  39. Hammersmark CT (2008) Assessing the hydroecological effects of stream restoration. PhD Thesis, University of California, Davis, USAGoogle Scholar
  40. Hammersmark CT, Rains MC, Mount JF (2008) Quantifying the hydrological effects of stream restoration in a montane meadow, northern California, USA. River Res Appl 24(6):735–753. doi: 10.1002/rra.1077 CrossRefGoogle Scholar
  41. Heliotis FD, DeWitt CB (1987) Rapid water table responses to rainfall in a northern peatland ecosystem. Water Resour Bull 23:1011–1016Google Scholar
  42. Henszey RJ, Pfeiffer K, Keough JR (2004) Linking surface- and ground-water levels to riparian grassland species along the Platte River in Central Nebraska, USA. Wetlands 24:665–687Google Scholar
  43. Hill MO (1979) TWINSPAN: a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of individuals and attributes. Cornell University, Ithaca, NY, USAGoogle Scholar
  44. Houghton RA, Hackler JL, Lawrence KT (1999) The US carbon budget: contributions from land use change. Science 285:574–578. doi: 10.1126/science.285.5427.574 CrossRefGoogle Scholar
  45. Hunt RJ, Krabbenhoft DP, Anderson MP (1996) Groundwater inflow measurements in wetland systems. Water Resour Res 32(3):495–507CrossRefGoogle Scholar
  46. Hunt RJ, Krabbenhoft DP, Anderson MP (1997) Assessing hydrogeochemical heterogeneity in natural and constructed wetlands. Biogeochemistry 39:271–293CrossRefGoogle Scholar
  47. Hunt RJ, Bullen TD, Krabbenhoft DP, Kendall C (1998) Using stable isotopes of water and strontium to investigate the hydrology of a natural and a constructed wetland. Ground Water 36(3):434–443CrossRefGoogle Scholar
  48. Hunt RJ, Walker JF, Krabbenhoft DP (1999) Characterizing hydrology and the importance of ground-water discharge in natural and constructed wetlands. Wetlands 19(2):458–472Google Scholar
  49. Huth AK, Leydecker A, Sickman JO, Bales RC (2004) A two-component hydrograph separation for three high-elevation catchments in the Sierra Nevada, California. Hydrol Proc 18:1721–1733CrossRefGoogle Scholar
  50. Huxman TE, Wilcox BP, Breshears DD, Scott RL, Snyder KA, Small EE, Hultine K, Pockman WT, Jackson RB (2005) Ecohydrological implications of woody plant encroachment. Ecology 86(2):308–319CrossRefGoogle Scholar
  51. Kluse JS, Allen-Diaz BH (2005) Importance of soil moisture and its interaction with competition and clipping for two montane meadow grasses. Plant Ecol 176:87–99CrossRefGoogle Scholar
  52. Komor SC (1994) Geochemistry and hydrology of a calcareous fen within the savage fen wetland complex, Minnesota, USA. Geochim Cosmochim Acta 58(4):3353–3367CrossRefGoogle Scholar
  53. Loheide SP II (2008) A method for estimating subdaily evapotranspiration of shallow groundwater using diurnal water table fluctuations. Ecohydrology 1:59–66. doi: 10.1002/eco.7 CrossRefGoogle Scholar
  54. Loheide SP, Gorelick SM (2005) A high-resolution evapotranspiration mapping algorithm (ETMA) with hydroecological applications at riparian restoration sites. Rem Sens Environ 98(2–3):182–200. doi: 10.1016/j.rse.2005.07.003 CrossRefGoogle Scholar
  55. Loheide SP, Gorelick SM (2006) Quantifying stream-aquifer interactions through the analysis of remotely sensed thermographic profiles and in situ temperature histories. Environ Sci Technol 40(10):3336–3341. doi: 10.1021/es0522074 Google Scholar
  56. Loheide SP, Gorelick SM (2007) Riparian hydroecology: a coupled model of the observed interactions between groundwater flow and meadow vegetation patterning. Water Resour Res 43, W07414. doi: 10.1029/2006WR005233 CrossRefGoogle Scholar
  57. Loheide SP, Butler JJ, Gorelick SM (2005) Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: a saturated-unsaturated flow assessment. Water Resour Res 41(7):1–14. doi: 10.1029/2005WR003942 CrossRefGoogle Scholar
  58. Lott RB, Hunt RJ (2001) Estimating evapotranspiration in natural and constructed wetlands. Wetlands 21(4):614–628CrossRefGoogle Scholar
  59. Lundquist J, Dettinger M, Cayan D (2005) Snow-fed streamflow timing at different basin scales: case study of the Tuolumne River above Hetch Hetchy, Yosemite, California. Water Resour Res 41:W07005. doi: 10.1029/2004WR003933 CrossRefGoogle Scholar
  60. Lundquist JD, Stewart I, Dettinger MD, Cayan DC (2007) Variability and trends in spring runoff in the western United States. In: Wagner F (ed) (2007) Climate warming in western North America: evidence and environmental effects. University of Utah Press, Salt Lake City, UT, USAGoogle Scholar
  61. Lydon PA, Gay TE, Jennings CW (1960) Geologic map of California: Westwood Sheet. United States Army Corps of Engineers and US Geological Survey, Reston, VAGoogle Scholar
  62. Martin DW, Chambers JC (2001) Effects of water table, clipping, and species interactions on Carex nebrascensis and Poa pratensis in riparian meadows. Wetlands 21:422–430CrossRefGoogle Scholar
  63. Martin DW, Chambers JC (2002) Restoration of riparian meadows degraded by livestock grazing: above- and belowground responses. Plant Ecol 163:77–91CrossRefGoogle Scholar
  64. Matheney RK, Gerla PJ (1996) Environmental isotopic evidence for the origins of ground and surface water in a prairie discharge wetland. Wetlands 16(2):109–120CrossRefGoogle Scholar
  65. McCune B, Mefford MJ (1999) PC-ORD: multivariate analysis of ecological data. MJM Software, Gleneden Beach, OR, USAGoogle Scholar
  66. McKinstry MC, Hubert WA, Anderson SH (2004) Wetland and riparian areas across the intermountain west: Ecology and management. University of Texas Press, Austin, TX, USAGoogle Scholar
  67. Meinzer OE (1927) Large springs in the United States. US Geol Surv Water Suppl Pap 557Google Scholar
  68. Meyboom P (1967) Groundwater studies in the Assiniboine River drainage basin: II. hydrologic characteristics of phreatophytic vegetation in south-central Saskatchewan. Geol Surv Canada Bull 139:1–64Google Scholar
  69. Millar CI, Woolfenden, WB (1999) Sierra Nevada Forests: Where did they come from? Where are they going? What does it mean? In: McCabe R, Loos S (eds) Natural resource management: perceptions and realities. Transactions of the 64th North American wildlife and Natural Resources Conference, San Francisco, 26–30 March 1999, Wildlife Managment Institute, Washington, DC, pp 206-236Google Scholar
  70. Murray BR, Zeppel M, Hose GC, Eamus D (2003) Groundwater dependent ecosystems in Australia: it’s more than just water for rivers. Ecol Manage Restor 4:110–113CrossRefGoogle Scholar
  71. NRCS (2003) Soil survey of intermountain area, California, parts of Lassen, Modoc, Shasta and Siskiyou Counties. NRCS, USDA, Washington, DCGoogle Scholar
  72. Owen CR (1995) Water budget and flow patterns in an urban wetland. J Hydrol 169:171–187CrossRefGoogle Scholar
  73. Klein LR, Clayton SR, Alldredre JR, Goodwin P (2007) Long-term monitoring and evaluation of the Lower Red River Meadow restoration project, Idaho, USA. Restor Ecol 15(2):223–239CrossRefGoogle Scholar
  74. Palmer MA, Bernhardt ES (2006) Hydroecology and river restoration: ripe for research and synthesis. Water Resour Res 42, W03S7. doi: 10.1029/2005WR004354 CrossRefGoogle Scholar
  75. Patten D (1963) Light and temperature influence on Engelmann spruce seed germination and subalpine forest advance. Ecology 44:817–818CrossRefGoogle Scholar
  76. Patterson L, Cooper DJ (2007) The use of hydrologic and ecological indicators for the restoration of drainage ditches and water diversions in mountain fen, Cascade Range, California. Wetlands 27(2):290–304CrossRefGoogle Scholar
  77. Peterson DH, Smith RE, Dettinger MD, Cayan DR, Riddle L (2000) An organized signal in snowmelt runoff in the western United States. J Am Water Resour Assoc 36:421–432CrossRefGoogle Scholar
  78. Poore R (2003) Floodplain and channel reconnection: channel responses in the Bear Creek meadow restoration project. In: Faber PM (ed) California riparian systems: processes and floodplain management, ecology and restoration, 2001 Riparian Habitat and Floodplains Conference Proceedings, Riparian Habitat Joint Venture, Sacramento, CA, USA, pp 253–262Google Scholar
  79. Rains MC, Mount JF (2002) Origin of shallow ground water in an alluvial aquifer as determined by isotopic and chemical procedures. Ground Water 40:552–563CrossRefGoogle Scholar
  80. Rains MC, Mount JF, Larsen EW (2004) Simulated changes in shallow groundwater and vegetation distributions under different reservoir operations scenarios. Ecol Appl 14:192–207CrossRefGoogle Scholar
  81. Ratliff RD (1982) A meadow site classification for the Sierra Nevada, California, USA. Gen. Tech. Rep. PSW-60, USDA Forest Service, Berkeley, CAGoogle Scholar
  82. Ratliff RD (1983) Nebraska sedge (Carex nebraskensis Dewey): observations on shoot life history and management. J Range Manage 36:29–430CrossRefGoogle Scholar
  83. Ratliff RD (1985) Meadows in the Sierra Nevada of California: state of knowledge. Gen. Tech. Rep. PSW-84, USDA Forest Service, Berkeley, CAGoogle Scholar
  84. Ratliff RD, Harding EE (1993) Soil acidity, temperature, and water relationships of four clovers in Sierra Nevada meadows. Research note PSW-RN-413, Pacific Southwest Research Station. USDA Forest Service, Oakland, CAGoogle Scholar
  85. Rose TP, Davisson ML, Criss RE (1996) Isotope hydrology of voluminous cold springs in fractured rock from an active volcanic region, northeastern California, USA. J Hydrol 179:207–236CrossRefGoogle Scholar
  86. Rosgen DL (1996) Applied river morphology. Wildland Hydrology, Pagosa Springs, CO, USAGoogle Scholar
  87. Rosgen DL (1997) A geomorphical approach to restoration of incised rivers. In: Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision, University of Mississippi, Oxford, MI, USAGoogle Scholar
  88. Sala A, Nowak RS (1997) Ecophysiological responses to three riparian graminoids to changes in the soil water table. Int J Plant Sci 158:835–843CrossRefGoogle Scholar
  89. Schimel DS et al (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172CrossRefGoogle Scholar
  90. SAS Institute (2004) JMP 5.1. SAS Institute, Cary, NC, USAGoogle Scholar
  91. SNEP (1996) Status of the Sierra Nevada. Sierra Nevada ecosystem project final report to Congress report no. 37–40, SNEP, CERES, Sacramento, CAGoogle Scholar
  92. Spencer DF, Ksander GG (2002) Sedimentation disrupts natural regeneration of Zannichellia palustris in Fall River, California. Aquat Bot 73:137–147CrossRefGoogle Scholar
  93. Springer AE, Wright JM, Shafroth PB, Stromberg JC, Patten DT (1999) Coupling ground-water and riparian vegetation models to simulate riparian vegetation changes due to a reservoir release. Water Resour Res 35:3621–3630CrossRefGoogle Scholar
  94. Steed JE, DeWald LE (2003) Transplanting sedges (Carex spp.) in south-western riparian meadows. Restor Ecol 11(2):247–256CrossRefGoogle Scholar
  95. Stringham TK, Krueger WC, Thomas DR (2001) Application of non-equilibrium ecology to rangeland riparian zones. J Range Manage 54:210–217CrossRefGoogle Scholar
  96. Stromberg JC, Tiller R, Richter B (1996) Effects of groundwater decline on riparian vegetation of semiarid region: The San Pedro River, Arizona. Ecol Appl 6:113–131CrossRefGoogle Scholar
  97. Trimble SW, Mendel AC (1995) The cow as a geomorphic agent: a critical review. Geomorphology 13:233–253CrossRefGoogle Scholar
  98. USDA National Agriculture Imagery Program (2007). http://165.221.201.14/NAIP.html
  99. USDA Natural Resources Conservation Service (2001) Stream corridor restoration: Principals, processes, and practices, National Engineering Handbook, USDA, Washington, DC, 653 ppGoogle Scholar
  100. Vale TR (1978) Tree invasion of Cinnabar Park in Wyoming. Am Midl Nat 100:277–284CrossRefGoogle Scholar
  101. Vale TR (1981a) Age of invasive trees in Dana Meadows, Yosemite National Park, California. Madrono 28:45–69Google Scholar
  102. Vale TR (1981b) Tree invasion in montane meadows in Oregon. Am Midl Nat 105:61–69CrossRefGoogle Scholar
  103. van Genuchten M (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am Proc 44:892–898Google Scholar
  104. Vankat JL, Major J (1978) Vegetation changes in Sequoia National Park, California. J Biogeogr 5:377–402CrossRefGoogle Scholar
  105. Wakabayashi J, Sawyer TL (2001) Stream incision, tectonics, uplift, and evolution of topography of the Sierra Nevada, California. J Geol 109(5):539–562CrossRefGoogle Scholar
  106. Wheeler BD, Gowing DJG, Shaw SC, Mountford JO, Money RP (2004) In: Brooks AW, Jose PV, Whiteman MI (eds) Ecohydrological guidelines for lowland wetland plant communities. Environment Agency (Anglian Region), Peterborough, UKGoogle Scholar
  107. White WN (1932) A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: results of investigations in Escalante Valley, Utah. USGS Water-Supply Paper 659-A, United States Department of the Interior, Washington, DCGoogle Scholar
  108. Wilcox G (2005) Water management implications of restoring meso-scale watershed features. International Conference on Headwater Control VI: Hydrology, Ecology and Water Resources in Headwaters, Bergen, Norway, 20–23 JuneGoogle Scholar
  109. Wright JM, Chambers JC (2002) Restoring riparian meadows currently dominated by Artmesia using alternative state concepts: above-ground vegetation response. Appl Veg Sci 5:237–246CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Steven P. LoheideII
    • 1
    • 2
  • Richard S. Deitchman
    • 2
  • David J. Cooper
    • 3
  • Evan C. Wolf
    • 3
  • Christopher T. Hammersmark
    • 4
  • Jessica D. Lundquist
    • 5
  1. 1.Department of Civil and Environmental EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Nelson Institute for Environmental StudiesUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Forest, Rangeland, and Watershed StewardshipColorado State UniversityFort CollinsUSA
  4. 4.Center for Watershed SciencesUniversity of California-DavisDavisUSA
  5. 5.Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations