Hydrogeology Journal

, Volume 17, Issue 1, pp 61–75 | Cite as

Using subsurface metazoan fauna to indicate groundwater–surface water interactions in the Nakdong River floodplain, South Korea

  • Jörg Bork
  • Sven E. Berkhoff
  • Sabine Bork
  • Hans Jürgen Hahn
Paper

Abstract

Hydrological interactions between surface water and groundwater (GW) can be described using hydrochemical and biological methods. Surface water–groundwater interactions and their effects on groundwater invertebrate communities were studied in the Nakdong River floodplain in South Korea. Furthermore, the GW-Fauna-Index, a promising new index for assessing the strength of surface-water influence on groundwater, was tested. The influence of surface water on groundwater decreased with increasing depth and distance from the river. While hydrochemistry prevailingly reflected the origin of the waters in the study area (i.e. whether alluvial or from adjacent rock), faunal communities seemed to display an affinity to surface-water intrusion. Fauna reacted quickly to changes in hydrology, and temporal changes in faunal community structure were significantly linked to the hydrological situation in the floodplain. The metazoan faunal community and the GW-Fauna-Index allow a distinction between surface and subsurface waters with varying degrees of exchange. The results indicate that hydrological conditions are reflected by faunal assemblages on a high spatiotemporal resolution, and that surface-water intrusion can be estimated using the GW-Fauna-Index.

Keywords

Groundwater/surface-water relations Groundwater monitoring Ecology GW-Fauna-Index South Korea 

Caractérisation des relations eaux souterraines-eaux de surface de la plaine d’inondation de la rivière du Nakdong (Corée du Sud) à l’aide de la faune métazoaire de sub-surface

Résumé

Les relations hydrologiques entre les eaux de surface et les eaux souterraines (ES) peuvent être décrites à l’aide de méthodes hydrochimiques et biologiques. Les interactions eaux de surface - eaux souterraines ont été étudiées par l’intermédiaire de leurs effets sur la microfaune des invertébrés des eaux souterraines, au niveau de la plaine d’inondation de la rivière du Nakdong, en Corée du Sud. De plus, un nouvel indice concernant la faune des eaux souterraines, par ailleurs très prometteur pour évaluer l’influence des eaux de surface sur les eaux souterraines, a été testé. L’influence des eaux de surface sur les eaux souterraines diminuait avec l’augmentation de la profondeur ainsi qu’avec l’éloignement de la rivière. Bien que l’hydrochimie permettait sans aucun doute de caractériser l’origine des eaux de la zone d’étude (distinction des signatures de l’eau alluviale des eaux d’aquifère adjacent), les communautés fauniques semblaient montrer une signature liée à une intrusion d’eau de surface. La faune réagissait rapidement à des changements hydrologiques; des changements dans la structure de la communauté faunique avec le temps étaient liés de manière significative avec le contexte hydrologique de la plaine d’inondation. La communauté faunique métazoaire ainsi que l’indice de la faune des eaux souterraines permet de faire une distinction entre les eaux de surface et les eaux souterraines et de caractériser différents degrés d’échange entre les eaux de surface et les eaux souterraines. Les résultats indiquent que les conditions hydrologiques sont le reflet des assemblages fauniques caractérisés par une très bonne résolution spatio-temporelle, et que l’intrusion d’eau de surface peut être estimée à partir de l’indice de la faune des eaux souterraines.

Erfassung von Grundwasser–Oberflächenwasser-Interaktionen mittels Meiofauna im Talgrundwasser des Nakdongs, Korea

Zusammenfassung

Hydrologische Interaktionen zwischen Oberflächenwasser und Grundwasser (GW) können nicht nur durch hydrochemische, sondern auch mit Hilfe biologischer Methoden beschrieben werden. Grundwasser-Oberflächenwasser-Interaktionen und ihr Einfluss auf Lebensgemeinschaften im Grundwasser wurden im Uferbereich des Nakdongs, Südkorea, untersucht. Ferner wurde der GW-Fauna-Index auf seine Anwendbarkeit geprüft. Hierbei handelt es sich um einen neuen und vielversprechenden Index zur Abschätzung der Stärke des Einflusses von Oberflächenwasser auf das Grundwasser. Die Stärke des Oberflächenwassereinflusses auf das Grundwasser nahm mit zunehmender Tiefe und Distanz vom Fluss ab. Während die Hydrochemie vorwiegend die Herkunft des Wassers am Untersuchungsstandort anzeigte (alluviales oder landseitiges GW), konnte die Fauna die Intensität des Eintrags von Oberflächenwasser widerspiegeln. Die Fauna reagierte dabei rasch auf wechselnde hydrologische Verhältnisse. Zeitliche Veränderungen in der Zusammensetzung der Lebensgemeinschaften standen in Zusammenhang mit den sich verändernden hydrologischen Bedingungen in der Aue. Metazoen sowie der GW-Fauna-Index erlauben eine Differenzierung zwischen Oberflächenwasser und Grundwasser mit variierendem hydrologischen Austausch. Die Ergebnisse zeigen, dass hydrologische Gegebenheiten durch die Fauna mit einer hohen raum-zeitlichen Auflösung reflektiert werden und der Oberflächenwassereinfluss mithilfe des GW-Fauna-Index abgeschätzt werden kann.

El uso de la fauna de metazoos subsuperficial para indicar las interacciones entre agua subterránea–superficial en la planicie de inundación del Nakdong River, Corea del Sur

Resumen

Las interacciones hidrológicas entre agua superficial y agua subterránea pueden ser descriptas usando métodos hidroquímicos y biológicos. Las interacciones entre agua superficial y agua subterránea y sus efectos en comunidades de invertebrados en las aguas subterráneas fueron estudiadas en la planicie de inundación del Río Nakdong en Corea del Sur. Por otra parte, el índice aguas subterráneas - fauna fue probado que es un nuevo índice para evaluar el grado de influencia del agua superficial sobre el agua subterránea. La influencia del agua superficial sobre el agua subterránea decreció con el incremento de la profundidad y distancia desde el río. Mientras la hidroquímica reflejó el origen predominante de las aguas en el área de estudio (es decir, si son aluviales o de rocas adyacentes), las comunidades faunísticas parecieron mostrar una afinidad con la intrusión de agua superficial. La fauna reaccionó rápidamente a cambios en la hidrología y los cambios temporales de la estructura de la comunidad faunística estuvieron significativamente relacionados a la situación hidrológica en la planicie de inundación. La comunidad de la fauna de metazoos y el índice aguas subterráneas - fauna permite una diferenciación entre aguas superficiales y subsuperficiales con variables grados de intercambio. Los resultados indican que las condiciones hidrológicas están reflejadas por asociaciones faunísticas en una alta resolución espacio temporal, y que la intrusión de agua superficial puede ser estimada usando el índice aguas subterráneas - fauna.

利用地下后生动物群研究韩国Nakdong河冲积平原地下水-地表水相互作用

摘要

地表水-地下水水力相互作用可以用水化学和生物学方法描述。本文研究了韩国Nakdong河冲积平原的地下水-地表水相互作用及其对水无脊椎动物群落的影响。验证了地下水-动物群指数-一种新的很有前景的评估地表水对地下水影响程度的指数。地表水对地下水的影响随深度及距河流距离的增加而减弱。水化学主要反映研究区地下水的起源 (河流的还是来自相邻的岩石) , 动物群落表现出与地表水入侵密切相关性。动物群对水文条件的改变反应迅速, 群落结构的时间变化与冲积平原的水文条件明显相关。综合利用无脊椎动物群落和地下水-动物群指数, 可将发生不同交换程度的地表水和地下水区分开。结果表明, 水文条件可为动物群落的组合所反映, 且具有较高的时空精度, 地表水入侵可由地下水-动物群指数估算。

지하 미소 동물 생태를 이용한 한국 낙동강 범람 충적층의 지하수-지표수 상호연결성 인지

요약

지표수와 지하수의 수리적 연결성은 수리화학적 방법과 생물학적 방법을 통해 설명될 수 있다. 한국 낙동강 범람 충적층 지역의 지표수-지하수 상호연결성과 이 연결성이 지하수 무척추 동물군에 미치는 영향이 연구되었다. 또한 지표수가 지하수에 미치는 영향을 평가하는데 있어 각광받을 수 있는 새로운 기법인 지하수 동물군 지수 방식이 시험되었다. 지표로부터 깊어지고 강에서 멀어질수록 지표수가 지하수에 미치는 영향은 감소되었다. 수리화학적 자료는 연구 지역 물의 성인(다시 말해, 그것이 충적층 기원 지하수 인지 혹은 결정암 기원 지하수 이던)을 주로 반영하고 있는데 반해, 동물군은 지표수 침투의 정도를 주로 보여주고 있는 것으로 여겨졌다. 동물군 생태는 수리 특성 변화에 즉각적으로 반응하였으며, 동물군 생태 구조의 시간적 변화는 범람 충적층의 수리학적 상황과 심히 연계되어있었다. 지하 미소 동물 생태와 지하수 동물군 지수는 지표수와 지하수의 변화 정도 구분을 분명하게 보여준다. 이러한 결과는 지하 동물군 집단은 높은 시공간적 해상도의 지하 수리 조건을 반영하며, 지표수의 지하 침투 현상은 지하수 동물군 지수에 의해 평가될 수 있음을 지시한다.

Uso da fauna de metazoários de subsuperfície como indicador das interacções águas subterrâneas–águas superficiais na planície aluvial do Rio Nakdong, Coreia do Sul

Resumo

As interacções hidrológicas entre as águas superficiais e as águas subterrâneas podem ser descritas através da utilização de métodos hidroquímicos e biológicos. As interacções entre as águas superficiais e as águas subterrâneas e os seus efeitos na comunidade de invertebrados das águas subterrâneas foram estudadas na planície aluvial do Rio Nakdong, na Coreia do Sul. Para além disso, o Índice-Fauna-Águas Subterrâneas, um novo e promissor índice para testar a importância da influência da água superficial na água subterrânea foi testado. A influência da água superficial na água subterrânea decresce com o incremento da profundidade e da distância ao rio. Enquanto a hidroquímica prevalecente reflecte a origem das águas na área em estudo (i.e. quando são aluviais ou da rocha adjacente), as comunidades faunísticas parecem apresentar uma afinidade com a intrusão de águas superficiais. A fauna reage rapidamente a alterações na hidrologia, e alterações temporais na estrutura da comunidade faunística foram significativamente ligadas à situação hidrológica na planície aluvial. A comunidade faunística de metazoários e o Índice-Água Subterrânea-Fauna permitem a distinção entre as águas superficiais e sub-superficiais com graus variáveis de mistura. Os resultados indicam que as condições hidrológicas são reflectidas pelas associações faunísticas numa resolução espaço-temporal elevada, e que a intrusão de água superficial pode ser estimada usando o Índice Água Subterrânea-Fauna.

References

  1. Bakalowicz M (1994) Water geochemistry: water quality and dynamics. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, New YorkGoogle Scholar
  2. Berkhoff SE, Bork J, Hahn HJ (2008) Faunistische und hydrochemische Untersuchungen zu Oberflächenwasser–Grundwasser-Interaktionen im Bereich einer Uferfiltrationsanlage [Faunistical and hydrochemical studies on surface water–groundwater interactions at a bank filtration site]. In: Deutsche Gesellschaft für Limnologie (DGL) (ed) Tagungsbericht 2007. DGL, Werder, GermanyGoogle Scholar
  3. Bork J, Bork S, Berkhoff SE, Hahn HJ (2008) Testing unbaited stygofauna traps for sampling performance. Limnologica 38:105–115Google Scholar
  4. Boulton AJ (2000) The subsurface macrofauna. In: Jones JB, Mulholland PJ (eds) Streams and ground waters. Academic, San DiegoGoogle Scholar
  5. Boulton AJ, Stanley EH (1995) Hyporheic processes during flooding and drying in a Sonoran Desert stream. II. Faunal dynamics. Arch Hydrobiol 134:27–52Google Scholar
  6. Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM (1998) The functional significance of the hyporheic zone in streams and rivers. Annu Rev Ecol Syst 29:59–81CrossRefGoogle Scholar
  7. Bretschko G (1991) Bed sediments, groundwater and stream limnology. Verh Int Verein Limnol 24:1957–1960Google Scholar
  8. Bretschko G (1992) Differentiation between epigeic and hypogeic fauna in gravel streams. Regul River 7:17–22CrossRefGoogle Scholar
  9. Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33CrossRefGoogle Scholar
  10. Brunke M, Gonser T (1999) Hyporheic invertebrates: the clinal nature of interstitial communities structured by hydrological exchange and environment gradients. J N Am Benthol Soc 18:344–362CrossRefGoogle Scholar
  11. Bruno MC, Perry SA (2004) Exchanges of copepod fauna between surface- and ground-water in the Rocky Glades of Everglades National Park (Florida, USA). Arch Hydrobiol 159:489–510CrossRefGoogle Scholar
  12. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth, UKGoogle Scholar
  13. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth, UKGoogle Scholar
  14. Culver DC (1982) Cave life: evolution and ecology. Harvard University Press, CambridgeGoogle Scholar
  15. Danielopol DL (1980) Sur la biologie de quelques Ostracodes Candoninae èpigès et hypogés d’Europe [On the biology of epigean and hypogean Candoninae (Ostracoda) in Europe]. Bull Mus Natl Hist Nat Ser 4(2):471–506Google Scholar
  16. Danielopol DL, Creuzé des Châtteliers M, Mösslacher F, Pospisil P, Popa R (1994) Adaption of Crustacea to interstitial habitats: a practical agenda for ecological studies. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, New YorkGoogle Scholar
  17. Danielopol DL, Rouch R, Pospisil P, Torreiter P, Mösslacher F (1997) Ecotonal animal assemblages: their interest for groundwater studies. In: Gibert J, Mathieu J, Fournier F (eds) Groundwater/surface water ecotones. Cambridge University Press, CambridgeGoogle Scholar
  18. Datry T, Malard F, Gibert J (2005) Response of invertebrate assemblages to increased groundwater recharge rates in a phreatic aquifer. J N Am Benthol Soc 24:461–477Google Scholar
  19. Dege E (1992) Korea: Eine landeskundliche Einführung [Korea: a geographical introduction]. KielGoogle Scholar
  20. Dole-Olivier MJ (1998) Surface water–groundwater exchanges in three dimensions on a backwater of the Rôhne River. Freshw Biol 40:87–92CrossRefGoogle Scholar
  21. Dole-Olivier MJ, Marmonier P (1992) Patch distribution of interstitial communities: prevailing factors. Freshw Biol 27:177–191CrossRefGoogle Scholar
  22. Dole-Olivier MJ, Creuzé des Châtelliers M, Marmonier P (1993) Repeated gradients in subterranean landscape: example of the stygofauna in the alluvial floodplain of the Rhône River (France). Arch Hydrobiol 127:151–171Google Scholar
  23. Dreher JE, Pospisil P, Danielopol DL (1997) The role of hydrology in defining a groundwater ecosystem. In: Gibert J, Mathieu J, Fournier F (eds) Groundwater/surface water ecotones. Cambridge University Press, CambridgeGoogle Scholar
  24. Dumas P, Fontanini G (2001) Sampling fauna in aquifers: a comparison of net-sampling and pumping. Arch Hydrobiol 150:661–676Google Scholar
  25. Dumas P, Lescher-Moutoué F (2001) Cyclopoid distribution in an agriculturally impacted alluvial aquifer. Arch Hydrobiol 150:511–528Google Scholar
  26. Dumas P, Bou C, Gibert J (2001) Groundwater Macrocrustaceans as natural indicators of the Ariége Alluvial Aquifer. Int Rev Hydrobiol 86:619–633CrossRefGoogle Scholar
  27. Eckert P, Irmscher R (2006) Over 130 years of experience with riverbank filtration in Duesseldorf, Germany. Water SRT Aqua 55:283–291Google Scholar
  28. Foster SSD, Chilton PJ (2003) Groundwater: the processes and global significance of aquifer degradation. Phil Trans R Soc Land B 358:1957–1972CrossRefGoogle Scholar
  29. Fuchs A (2007) Erhebung und Beschreibung der Grundwasserfauna in Baden-Württemberg [Characterisation and description of the groundwater fauna of Baden-Wuerttemberg, Germany]. PhD Thesis, Universität Koblenz-Landau, Landau, GermanyGoogle Scholar
  30. Gogu RC, Hallet V, Dassargues A (2003) Comparison of aquifer vulnerability assessment techniques: application to the Néblon River Basin (Belgium). Environ Geol 44:881–892CrossRefGoogle Scholar
  31. Griebler C (2003) Physikalisch-chemische Eigenschaften des Grundwassers und biogeochemische Stoffkreisläufe [Physicochemical characteristics of groundwater and biogeochemical cycle]. In: Griebler C, Mösslacher F (eds) Grundwasser-Ökologie. Facultas, ViennaGoogle Scholar
  32. Griebler C, Mösslacher F (2003) Grundwasser: eine ökosystemare Betrachtung [Groundwater: an ecological approach]. In: Griebler C, Mösslacher F (eds) Grundwasser-Ökologie. Facultas, ViennaGoogle Scholar
  33. Grischek T, Dehnert J, Nestler W, Neitzel P, Trettin R (1995) Groundwater flow and quality in an alluvial aquifer recharged from river bank infiltration, Torgau Basin, Germany. In: Brown AG (ed) Geomorphology and groundwater. Wiley, Chichester, UKGoogle Scholar
  34. Hahn HJ (2002) Methods and difficulties of sampling stygofauna: an overview. In: Breh W, Gottlieb J, Hötzl H, Kern F, Liesch T, Niessner R (eds) Proceedings of the 2nd International Conference and Industrial Exhibition “Field Screening Europe 2001”. Dordrecht, The NetherlandsGoogle Scholar
  35. Hahn HJ (2005) Unbaited phreatic traps: a new method of sampling stygofauna. Limnologica 35:248–261Google Scholar
  36. Hahn HJ (2006a) The GW-fauna-index: a first approach to a quantitative ecological assessment of groundwater habitats. Limnologica 36:119–137Google Scholar
  37. Hahn HJ (2006b) Detecting groundwater–surface water-interactions in RBF systems using biological methods. International Symposium on Artificial Recharge of Groundwater, K-Water, Seoul, pp 57–63Google Scholar
  38. Hahn HJ, Friedrich E (1999) Brauchen wir ein faunistisch begründetes Grundwassermonitoring und was kann es leisten [Is a faunistical based groundwater monitoring required: and what can it deliver]? Grundwasser 4:147–154CrossRefGoogle Scholar
  39. Hahn HJ, Matzke D (2005) A comparison of stygofauna communities inside and outside groundwater bores. Limnologica 35:31–44Google Scholar
  40. Hahn HJ, Preuß G (2005) Anwendungsmöglichkeiten grundwasserökologischer Forschung [Potential practices of groundwater ecological research]. GWF Wasser Abwasser 146:568–572Google Scholar
  41. Hakenkamp CC, Palmer MA (2000) The ecology of hyporheic meiofauna. In: Jones JB, Mulholland PJ (eds) Streams and ground waters. Academic, San DiegoGoogle Scholar
  42. Hamm SY, Kim HS, Cheong JY, Ryu SM, Kim MJ (2003) Hydrogeological properties of bank storage area in Changwon city, Korea. Geophys Res Abstr 5:03044Google Scholar
  43. Hancock PJ (2006) The response of hyporheic invertebrate communities to a large flood in the Hunter River, New South Wales. Hydrobiologia 568:255–262CrossRefGoogle Scholar
  44. Hiscock KM, Grischek T (2002) Attenuation of groundwater pollution by bank filtration. J Hydrol 266:139–144CrossRefGoogle Scholar
  45. Hölting B (1996) Hydrogeologie: Einführung in die Allgemeine und Angewandte Hydrogeologie [Hydrogeology: introduction into general and applied hydrogeology], 5th edn. Enke, Stuttgart, GermanyGoogle Scholar
  46. Hüppop K (1985) The role of metabolism in the evolution of cave animals. NSS Bull 47:136–146Google Scholar
  47. Hunt RJ, Strand M, Walker JF (2006) Measuring groundwater–surface water interaction and its effect on wetland stream benthic productivity, Trout Lake watershed, northern Wisconsin, USA. J Hydrol 320:370–384CrossRefGoogle Scholar
  48. Janssen J, Laatz W (2005) Statistische Datenanalyse mit SPSS für Windows [Statistical data analysis using SPSS for windows]. Springer, BerlinGoogle Scholar
  49. Jeevanandam M, Kannan R, Srinivasalu S, Rammohan V (2007) Hydrochemistry and groundwater quality assessment of lower part of the Ponnaiyar River Basin, Cuddalore District, South India. Environ Monit Assess 132:263–274CrossRefGoogle Scholar
  50. Koeninger P, Leibundgut C (2001) Study of river water impacts on groundwater during flood events in a dry flood plain of the Upper Rhine Valley. In: Griebler C, Danielopol DL, Gibert J, Nachtnebel HP, Notenboom J (eds) Groundwater ecology. Office for official publications of European Communities, LuxembourgGoogle Scholar
  51. Kuehn W, Mueller U (2000) Riverbank filtration: an overview. J AWWA 92:60–69Google Scholar
  52. K-Water (Korea Water Resources Corporation) (ed) (2003) Sustainable groundwater development and artificial recharge. Interim Report KIWE-DRC-03–1. KOWACO, Daejon, KoreaGoogle Scholar
  53. Malard F (2001) Groundwater contamination and ecological monitoring in a Mediterranean karst ecosystem in southern France. In: Griebler C, Danielopol DL, Gibert J, Nachtnebel HP, Notenboom J (eds) Groundwater ecology. Office for official publications of European Communities, LuxembourgGoogle Scholar
  54. Malard F, Hervant F (1999) Oxygen supply and the adaptations of animals in groundwater. Freshw Biol 41:1–30CrossRefGoogle Scholar
  55. Malard F, Reygrobellet JL, Mathieu J, Lafont M (1994) The use of invertebrate communities to describe groundwater flow and contaminant transport in a fractured rock aquifer. Arch Hydrobiol 131:93–110Google Scholar
  56. Malard F, Plénet S, Gibert J (1996) The use of invertebrates in ground water monitoring: a rising research field. GWMR 16:103–116Google Scholar
  57. Malard F, Tockner K, Dole-Olivier MJ, Ward JV (2002) A landscape perspective of surface-subsurface hydrological exchanges in river corridors. Freshw Biol 47:621–640CrossRefGoogle Scholar
  58. Malard F, Ferreira D, Dolédec S, Ward JV (2003) Influence of groundwater upwelling on the distribution of the hyporheos in a headwater river flood plain. Arch Hydrobiol 157:86–116CrossRefGoogle Scholar
  59. Marmonier P, Dole MJ (1986) Les amphipodes des sédiments d’un bras court-circuité du Rhône. Logique de répartition et réaction aux crues [Amphipodes of sediments at a shorted-circuit arm of the Rhône: logic of dispersion and response to flood]. Sci léau 5:461–486Google Scholar
  60. Matzke D (2006) Untersuchungen zum Verhalten von Grundwasserfauna in Altlastenflächen mit vorangegangenem Vergleich unterschiedlicher Sammeltechniken [Studies on groundwater fauna at contaminated sites and a comparison of different sampling techniques]. PhD Thesis, Universität Koblenz-Landau, Landau, GermanyGoogle Scholar
  61. Mauclaire L, Gibert J (1998) Effects of pumping and floods on groundwater quality: a case study of the Grand Gravier well field (Rhône, France). Hydrobiologia 389:141–151CrossRefGoogle Scholar
  62. McGarigal K, Cushman S, Stafford S (2000) Multivariate statistics for wildlife and ecology research. Springer, New YorkGoogle Scholar
  63. Min JH, Yun ST, Kim K, Kim HS, Kim DJ (2003) Geologic controls on the chemical behaviour of nitrate in riverside alluvial aquifers, Korea. Hydrol Process 17:1197–1211CrossRefGoogle Scholar
  64. Mösslacher F (1997) Ein Vorschlag für die zusätzliche Verwendung von Crustaceen zur Qualitätskontrolle von Grundwässern [Recommendation for using crustaceans for groundwater quality assurance]. In: International Association for Danube Research (IAD) (ed) Proceedings of the 32nd Conference of the IAD. IAD, ViennaGoogle Scholar
  65. Mösslacher F (1998) Subsurface dwelling crustaceans as indicators of hydrological conditions, oxygen concentrations, and sediment structure in an alluvial aquifer. Int Rev Hydrobiol 83:349–364CrossRefGoogle Scholar
  66. Mösslacher F (2000) Advantages and disadvantages of groundwater organisms for biomonitoring. Verh Internat Verein Limnol 27:2725–2728Google Scholar
  67. Mösslacher F, Creuzé des Châtelliers M (1996) Physiological and behavioural adaptations of an epigean and a hypogean dwelling population of Asellus aquaticus (L.) (Crustacea, Isopoda). Arch Hydrobiol 138:187–198Google Scholar
  68. Mösslacher F, Notenboom J (1999) Groundwater biomonitoring. In: Gerhardt A (ed) Biomonitoring of polluted water. TransTech, ZurichGoogle Scholar
  69. Mösslacher F, Pospisil P, Dreher J (1996) A groundwater ecosystem study in the “Lobau” wetland (Vienna), reflecting the interactions between surface water and groundwater. Arch Hydrobiol Suppl 113:451–455Google Scholar
  70. Park SO, Ryu KB, Lee JM (1995) Geography of Korea. Korean Educational Development Institute, SeoulGoogle Scholar
  71. Park YH, Lee KS, Lee HY, Son I, Lee JR (2003) Atlas of Korea. Sung Ji Mun Hwa, SeoulGoogle Scholar
  72. Plénet S, Gibert J, Marmonier P (1995) Biotic and abiotic interactions between surface and interstitial systems in rivers. Ecography 18:296–309CrossRefGoogle Scholar
  73. Pospisil P (1994) The groundwater fauna of a Danube Aquifer in the “Lobau” Wetland in Vienna, Austria. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, New YorkGoogle Scholar
  74. Ray C, Soong TW, Lian YQ, Roadcap GS (2002a) Effect of flood-induced chemical load on filtrate quality at bank filtration sites. J Hydrol 266:235–258CrossRefGoogle Scholar
  75. Ray C, Schubert J, Linsky RB, Melin G (2002b) Riverbank filtration: introduction. In: Ray C, Melin G, Linsky RB (eds) Riverbank filtration: improving source-water quality. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  76. Schmidt SI, Hahn HJ, Hatton TJ, Humphreys WF (2007a) Do faunal assemblages reflect the exchange intensity in groundwater zones? Hydrobiologia 583:1–19CrossRefGoogle Scholar
  77. Schmidt SI, Hellweg J, Hahn HJ, Hatton TJ, Humphreys WF (2007b) Does groundwater influence the sediment fauna beneath a small, sandy stream? Limnologica 37:208–225Google Scholar
  78. Schöpfer C, Zipfel K (2001) Assessment of changes of river infiltration zones on riverbank filtration. IAWR Rhein-Themen 4:33–39Google Scholar
  79. Schubert J (2002) Water-quality improvements with riverbank filtration at Düsseldorf waterworks in Germany. In: Ray C, Melin G, Linsky RB (eds) Riverbank filtration: improving source-water quality. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  80. Sophocleous M (2002) Interactions between groundwater and surface water: the state of science. Hydrogeol J 10:52–67CrossRefGoogle Scholar
  81. Stanford JA, Ward JV (1988) The hyporheic habitat of river ecosystems. Nature 6185:64–66CrossRefGoogle Scholar
  82. Stanford JA, Ward JV (1993) An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor. J N Am Benthol Soc 12:48–60CrossRefGoogle Scholar
  83. Stigter TY, Ribeiro L, Carvalho Dill AMM (2006) Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol J 14:79–99CrossRefGoogle Scholar
  84. Strayer DL (1994) Limits to biological distributions in groundwater. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, New YorkGoogle Scholar
  85. Strayer DL, May SE, Nielsen P, Wollheim W, Hausam S (1997) Oxygen, organic matter, and sediment granulometry as controls on hyporheic animal communities. Arch Hydrobiol 140:131–144Google Scholar
  86. Suárez-Morales E, Gutiérrez-Aguirre MA, Torres JL, Hernández F (2005) The Asian Mesocyclops pehpeiensis Hu, 1943 (Crustacea, Copepoda, Cyclopidae) in Southeast Mexico with comments on the distribution of the species. Zoosystema 27:245–256Google Scholar
  87. Vanek V (1997) Heterogeneity of groundwater–surface water ecotones. In: Gibert J, Mathieu J, Fournier F (eds) Groundwater/surface water ecotones. Cambridge University Press, CambridgeGoogle Scholar
  88. Venugopal T, Giridharan L, Jayaprakash M (2008a) Groundwater quality assessment using chemometric analysis in the Adyar River, South India. Arch Environ Contam Toxicol 55(2):180–190Google Scholar
  89. Venugopal T, Giridharan L, Jayaprakash M, Periakali P (2008b) Environmental impact assessment and seasonal variation study of the groundwater in the vicinity of River Adyar, Chennai, India. Environ Monit Assess (in press). doi:10.1007/s10661-008-0185-x
  90. Ward JV, Palmer MA (1994) Distribution patterns of interstitial freshwater meiofauna over a range of spatial scales, with emphasis on alluvial river-aquifer systems. Hydrobiologia 287:147–156CrossRefGoogle Scholar
  91. Ward JV, Voelz NJ (1997) Interstitial fauna along an epigean-hypogean gradient in a Rocky Mountain river. In: Gibert J, Mathieu J, Fournier F (eds) Groundwater/surface water ecotones. Cambridge University Press, CambridgeGoogle Scholar
  92. Wett B, Jarosch H, Ingerle K (2002) Flood induced infiltration effecting a bank filtrate well at the River Enns, Austria. J Hydrol 266:222–234CrossRefGoogle Scholar
  93. Wu Y, Hui L, Wang H, Li Y, Zeng R (2007) Effectiveness of riverbank filtration for removal of nitrogen from heavily polluted rivers: a case study of Kuihe River, Xuzhou, Kiangsu, China. Environ Geol 52:19–25CrossRefGoogle Scholar
  94. Yoon B, Woo H (2000) Sediment problems in Korea. J Hydraul Eng 126:486–491CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jörg Bork
    • 1
  • Sven E. Berkhoff
    • 1
  • Sabine Bork
    • 1
  • Hans Jürgen Hahn
    • 1
  1. 1.Department of BiologyUniversity of Koblenz-Landau/Campus LandauLandauGermany

Personalised recommendations