Hydrogeology Journal

, Volume 17, Issue 1, pp 5–21 | Cite as

Hydrogeology and groundwater ecology: Does each inform the other?

Paper

Abstract

The known, perceived and potential relationships between hydrogeology and groundwater ecology are explored, along with the spatial and temporal scale of these relations, the limit of knowledge and areas in need of research. Issues concerned with the subterranean part of the water cycle are considered from the perspective of the biology of those invertebrate animals that live, of necessity, in groundwater and the microbiological milieu essential for their survival. Groundwater ecosystems are placed in a hydrogeological context including the groundwater evolution along a flowpath, the significance of the biodiversity and of the ecosystem services potentially provided. This is considered against a background of three major components essential to the functioning of groundwater ecosystems, each of which can be affected by activities over which hydrogeologists often have control, and each, in turn, may have implications for groundwater management; these are, a place to live, oxygen and food (energy). New techniques and increasing awareness amongst hydrogeologists of the diversity and broad distribution of groundwater ecosystems offer new opportunities to develop cross disciplinary work between hydrogeologists and groundwater ecologists, already demonstrated to be a field for collaboration with broad benefits.

Keywords

Biologic conditions Ecology Microbial processes Salt-water/fresh-water relations Biogeochemical dynamics 

Hydrogéologie et écologie des eaux souterraines: quelles informations réciproques?

Résumé

Les relations reconnues, perçues et potentielles entre l’hydrogéologie et l’écologie des eaux souterraines sont discutées, plus particulièrement en considérant les échelles spatiales et temporelles, la limite des connaissances ainsi que les besoins en recherche. Les questions concernant la portion souterraine du cycle de l’eau sont abordées du point de vue de la biologie des invertébrés qui vivent par nécessité dans les eaux souterraines et du milieu microbiologique essentiel à leur survie. Les écosystèmes des eaux souterraines sont replacés dans leur contexte hydrogéologique prenant en considération la notion des écoulements souterrains, l’importance de la biodiversité et des apports potentiellement fournis par ceux-ci. Trois composants essentiels au fonctionnement des écosystèmes des eaux souterraines sont considérés. Ces derniers peuvent être perturbés par les activités anthropiques sur lesquelles les hydrogéologues peuvent souvent contrôler, et par la même intervenir dans la gestion des eaux souterraines; ce sont l’habitat, l’oxygène et les éléments nutritifs (énergie). De nouvelles techniques ainsi qu’une prise de conscience en croissance au sein de la communauté des hydrogéologues sont favorables au développement d’actions de recherche pluridisciplinaire entre les hydrogéologues et les écologues des eaux souterraines. Ces actions s’inscrivent dans un champ de collaboration qui a déjà fourni des résultats importants.

Hidrogeología y ecología de aguas subterráneas: ¿Cada parte informa a la otra?

Resumen

Se exploran las relaciones conocidas, percibidas y potenciales entre la hidrogeología y la ecología de aguas subterráneas, junto con las escalas espacial y temporal de dichas relaciones, los límites del conocimiento y las áreas que requieren de investigación. Se consideran los temas relacionados con la parte subterránea del ciclo del agua desde la perspectiva de la biología de los animales invertebrados -que viven por necesidad en el agua subterránea- y los medios microbiológicos esenciales para su supervivencia. Los ecosistemas de aguas subterráneas se sitúan en un contexto hidrogeológico que incluye la evolución del agua subterránea a lo largo de los caminos del flujo, el significado de la biodiversidad y los servicios ecosistémicos que potencialmente proveen. Las consideraciones toman en cuenta un fondo de tres componentes mayores que son esenciales para el funcionamiento de los ecosistemas de aguas subterráneas, cada uno de los cuales puede ser afectado por actividades que los hidrogeólogos controlan, y que, a su vez, pueden tener consecuencias en la gestión de las aguas subterráneas. Los componentes son: un sitio para vivir, oxígeno y alimento (energía). Las nuevas técnicas y la creciente conciencia entre los hidrogeólogos de la diversidad y la amplia distribución de los ecosistemas de aguas subterráneas ofrecen nuevas oportunidades para desarrollar un trabajo disciplinario transversal entre hidrogeólogos y ecólogos de aguas subterráneas, que ya ha demostrado ser un campo de cooperación con amplios beneficios.

水文地质与地下水生态 : 相互关联吗 ?

摘要

本文探究了水文地质与地下水生态那种已知的、能预测的和潜在的关系, 连同这种关系的时空尺度和需要研究的问题和知识的局限性。从必须生存在地下水和微生物环境中的无脊椎动物的生物学角度考虑了与水循环地下部分相关的问题。将地下水生态系统置于水文地质的关系中, 包括地下水沿着水流路径的演化, 生物多样性和可能提供的生态系统支撑条件的重要性。这种考虑基于三个决定地下水生态系统功能的本质组分, 其中每一个组分都受水文地质学家能够控制的活动影响, 每一个组分可能隐含对地下水管理有用的信息。这三个组分即有地方居住, 有氧气, 有食物 (能源) 。随着新技术的应用和水文地质学家对地下水生态系统的差异性及分布的广度理解的加深, 将为发展水文地质学家和地下水生态学家跨学科的合作提供新的机遇, 这已经在一些广泛受益、合作的领域的中有所表现。

Hidrogeologia e ecologia das águas subterrâneas: cada conceito informa sobre o outro?

Resumo

As relações conhecidas, entendidas e potenciais, entre a hidrogeologia e a ecologia das águas subterrâneas são exploradas, conjuntamente com a escala espacial e temporal destas relações, o limite dos conhecimentos e áreas que necessitam de investigação. Questões relacionadas com a parte subterrânea do ciclo da água são consideradas do ponto de vista da biologia dos animais invertebrados que vivem, por necessidade, nas águas subterrâneas e do meio microbiológico essencial para a sua sobrevivência. Os ecossistemas das águas subterrâneas são colocados num contexto hidrogeológico, incluindo a evolução das águas subterrâneas ao longo de uma linha de fluxo, a importância da biodiversidade e dos serviços ecossistémicos potencialmente prestados. Isto é considerado num contexto de três grandes componentes essenciais ao funcionamento dos ecossistemas de águas subterrâneas, cada um dos quais pode ser afectado por actividades sobre as quais, muitas vezes, os hidrogeólogos têm controle, e, por seu turno, podem ter implicações para a gestão das águas subterrâneas; estas componentes são: um local para viver, oxigénio e alimento (energia). Novas técnicas e o incremento da sensibilização entre os hidrogeólogos sobre a diversidade e a ampla distribuição dos ecossistemas de águas subterrâneas oferecem novas oportunidades para desenvolvimento transversal de trabalhos disciplinares entre hidrogeólogos e ecologistas de águas subterrâneas, já demonstrado ser um amplo campo de colaboração com grandes benefícios para todos.

References

  1. Amend JP, Teske AA (2004) Expanding frontiers in deep subsurface microbiology. Paleogeogr Paleoclim Paleoecol 219:131–155Google Scholar
  2. Anderson RT, Lovley DR (1997) Ecology and Biogeochemistry of in situ groundwater bioremediation. Adv Microb Ecol 15:289–350Google Scholar
  3. Arakel AV (1986) Evolution of calcrete in palaeodrainages of the Lake Napperby area, Central Australia. Paleogeogr Paleoclim Paleoecol 54:283–303Google Scholar
  4. Arthington AH, King JM, O’Keefe JH et al (1992) Development of an holistic approach for assessing environmental flow requirements of riverine ecosystems. In: Pigram JJ, Hooper BP (eds) Proc Int Semin Workshop on water allocation for the environment. Centre for Water Policy Research, University of New England, Armidale, Australia, pp 69–76Google Scholar
  5. Ash C, Hanson B, Norman C (2002) Earth, air, fire, and water. Science 296:1055Google Scholar
  6. Baker MA, Valett HM, Dahm CN (2000) Organic carbon supply and metabolism in a shallow groundwater ecosystem. Ecology 81:3133–3148Google Scholar
  7. Bärlocher F, Murdoch LH (1989) Hyporheic biofilms: a potential food source for interstitial animals. Hydrobiologia 184:61–67Google Scholar
  8. Barnett JC, Commander DP (1985) Hydrogeology of the western Fortescue Valley, Pilbara Region, Western Australia. Geol Surv Rec 1986/8. West Aust Geol Surv, Perth, AustraliaGoogle Scholar
  9. Bjarni K, Kristjánsson BK, Svavarsson J (2007) Subglacial refugia in Iceland enabled groundwater amphipods to survive glaciations. Am Nat 170:292–296Google Scholar
  10. Bou C, Rouch R (1967) Un nouveau champ de recherches sur la faune aquatique souterraine [A new research field on subterranean aquatic fauna]. C R Sci Ser III Sci Vie Acad Sci Paris 265D:369–370Google Scholar
  11. Boulton AJ (2000a) River ecosystem health down under: assessing ecological condition in riverine groundwater zones in Australia. Ecosyst Health 6:108–118Google Scholar
  12. Boulton AJ (2000b) The subsurface macrofauna. In: Jones J, Mulholland P (eds) Streams and ground waters. Academic, New York, pp 337–361Google Scholar
  13. Boulton AJ (2001) ‘Twixt two worlds: taxonomic and function biodiversity at the surface water/groundwater interface. Rec West Aust Mus Supp 64:1–13Google Scholar
  14. Boulton AJ (2005) Chances and challenges in the conservation of groundwaters and their dependent ecosystems. Aquat Conserv Mar Freshw Ecosys 15:319–323Google Scholar
  15. Boulton AJ, Hakenkamp C, Palmer M et al (2002) Freshwater meiofauna and surface water-sediment linkages: a conceptual framework for cross-system comparisons. In: Rundle SD, Robertson AL, Schmid-Araya JM (eds) Freshwater meiofauna biology and ecology. Backhuys, Leiden, The Netherlands, pp 241–259Google Scholar
  16. Boulton AJ, Fenwick GD, Hancock PJ et al (2008) Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebr Syst 22:103–116Google Scholar
  17. Bournaud M, Amoros C (1984) Des indicateurs biologiques aux descripteurs de fontionnement: quelques exemples dans un système fluvial [Biological indicators with a description of function: some examples in a river system]. Bull Soc Ecol 15:57–66Google Scholar
  18. Boutin C (1993) Biogéographie historique des crustacés isopodes Cirolanidae stygobies du groupe Typhocirolana dans le bassin méditerranéen. C R Sci Ser III Sci Vie Acad Sci Paris 316:1505–1510Google Scholar
  19. Boutin C, Coineau N, Messouli M (1997) Biodiversity and biogeography in subterranean aquatic crustacean Metacrangonyctidae (Amphipoda). Proc. 12 Int. Congr. Speleology, vol 3, August 1997, La Chaux-de-Fonds, Switzerland, 350 ppGoogle Scholar
  20. Brad T (2007) Subsurface landfill leachate: home to complex and dynamic eukaryotic communities. PhD Thesis, Vrije Universiteit, AmsterdamGoogle Scholar
  21. Bradbury JH (2000) Western Australian stygobiont amphipods (Crustacea: Paramelitidae) from Mt Newman and Millstream regions. Rec West Aust Mus Suppl 60:1–102Google Scholar
  22. Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33Google Scholar
  23. Buhay JE, Moni G, Mann N, Crandall KA (2006) Molecular taxonomy in the dark: evolutionary history, phylogeography, and diversity of cave crayfish in the subgenus Aviticambarus, genus Cambarus. Mol Phylogen Evol 42:435–448Google Scholar
  24. Bunn SE, Arthington AH (2004) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manage 30:492–507Google Scholar
  25. Burnett WC, Aggarwal PK et al (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367:498–543Google Scholar
  26. Burns A, Walker KF (2000) Biofilms as food for decapods (Atyidae, Paleomonidae) in the River Murray, South Australia. Hydrobiologia 437:83–90Google Scholar
  27. Buttrick D (2005) Case study #15: hazard assessment on dolomite at Simunye, South Africa. In: Waltham T, Bell F, Culshaw MG (eds) Sinkholes and subsidence: karst and cavernous rocks in engineering and construction. Springer, Berlin, pp 341–346Google Scholar
  28. Caccone A, Milinkovitch MC, Sbordoni V et al (1994) Molecular biogeography: using the Corsica-Sardinia microplate disjunction to calibrate mitochondrial rDNA evolutionary rates in mountain newts (Euproctus). J Evol Biol 7:227–245Google Scholar
  29. Chapelle FH (2001) Ground-water microbiology and geochemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  30. Chappuis PA (1927) Die Tierwelt der Unterirdischen Gewässer. Binnengewässer 3:1–175Google Scholar
  31. Charette M (2001) Submarine groundwater discharge creates “Iron Curtain". Woods Hole Oceanogr Inst Ann Rep 2001:23–24Google Scholar
  32. Charette MA, Sholkovitz ER (2002) Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay. Geophys Res Lett 29:10Google Scholar
  33. Chilton C (1894) The subterranean Crustacea of New Zealand, with some general remarks on the fauna of caves and wells. Trans Linn Soc Lond Ser 2 Zool 6:16–23Google Scholar
  34. Cho J-L, Humphreys WF, Lee S-D (2006) Phylogenetic relationships within the genus Atopobathynella Schminke, 1973 (Bathynellacea, Parabathynellidae): with the description of six new species from Western Australia. Invertebr Syst 20:9–41Google Scholar
  35. Chow VT (ed)(1964) Handbook of applied hydrology. Oxford University Press, OxfordGoogle Scholar
  36. Coineau N (2000) Adaptations to interstitial groundwater life. In: Wilkens, H, Culver, DC, Humphreys, WF (eds) Ecosystems of the world, vol. 30: subterranean ecosystems. Elsevier, Amsterdam, pp 189–210Google Scholar
  37. Commander DC (2004) Exploitation of groundwater systems in arid Australia. In: Ho G, Kuruvilla M (eds) Sustainability of water resources international conference, Western Australia, November 2002. IWA, London, pp 111–120Google Scholar
  38. Committee on Animals as Monitors of Environmental Hazards of the US National Research Council (1991) Animals as sentinels of environmental health hazards. National Academy Press, Washington, DCGoogle Scholar
  39. Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1977–1978Google Scholar
  40. Cooper SJB, Bradbury JH, Saint KM et al (2007) Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Mol Ecol 16:1533–1544Google Scholar
  41. Cooper SJB, Saint KM, Taiti S et al (2008) Subterranean archipelago II: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia. Invertebr Syst 22:195–203Google Scholar
  42. Council of Europe (1992) Convention on the conservation of the wildlife and natural environment of Europe Criteria for the selection of subterranean habitat of biological interest. Recommendation no 36 (1992) on the conservation of subterranean habitats Annexe 1 to the recommendation. Council of Europe, BruxellesGoogle Scholar
  43. Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Caves Karst Stud 62:11–17Google Scholar
  44. Culver DC, Jones WK, Holsinger JR (1992) Biological and hydrological investigations of the Cedars, Lee County, Virginia: an ecologically significant and threatened karst area. In: Stanford JA, Simons JJ (eds) Proc First Int Conf Groundw Ecol. Am Water Resour Assoc Bethesda, MD, USA, pp 281–290Google Scholar
  45. Culver DC, Kane TC, Fong DW (1995) Adaptation and natural selection in caves: the evolution of Gammarus minus. Harvard University Press, Cambridge, MAGoogle Scholar
  46. Danielopol DL (1989) Groundwater fauna associated with riverine aquifers. J N Am Benthol Soc 8:18–35Google Scholar
  47. Danielopol DL, Pospisil P (2001) Hidden biodiversity in the groundwater of the Danube Flood Plain National Park (Austria). Biodivers Conserv 10:1711–1721Google Scholar
  48. Danielopol DL, Pospisil P, Rouch R (2000) Biodiversity in groundwater: a large-scale view. Trends Ecol Evol 15:223–224Google Scholar
  49. Danielopol DL, Gibert J, Griebler C et al (2004) Incorporating ecological perspectives in European groundwater management policy. Environ Conserv 31:185–189Google Scholar
  50. Danielopol DL, Griebler C, Gunatilaka A et al (2007) Incorporation of groundwater ecology in environmental policy. In: Quevauviller P (eds) Groundwater science and policy. Royal Society of Chemistry, London, pp 671–689Google Scholar
  51. Danovaro R, Dell’Anno A, Fabiano M (2001) Bioavailability of organic matter in the sediments of the Porcupine Abyssal Plain, northeastern Atlantic. Mar Ecol Progr Ser 220:25–32Google Scholar
  52. Datry T, Malard F, Gibert J (2005) Response of invertebrate assemblages to increased groundwater recharge rates in a phreatic aquifer. J N Am Benthol Soc 24:461–477Google Scholar
  53. Delamare Deboutteville C (1960) Biologie des eaux souterraines littorales et continentales [Biology of littoral and continental subterranean water]. Hermann, ParisGoogle Scholar
  54. Department of Environment and Conservation (2008) Threatened species and ecological communities. Department of Environment and Conservation, Perth, Australia. http://www.naturebase.net/content/view/273/1208/. Cited 13 May 2008
  55. Department of the Environment, Water, Heritage and the Arts (2008) EPBC Act List of Threatened Fauna. Department of the Environment, Water, Heritage and the Arts, Perth, Australia. http://www.environment.gov.au/cgi-bin/sprat/public/publicthreatenedlist.pl?wanted=fauna. Cited 13 May 2008
  56. Dole MJ, Chessel D (1986) Stabilité physique et biologique des mileaux interstitiels: cas de deux stations du Haut Rhône [Physical and biological stability of the interstitial habitat: the case of two stations of the Upper Rhone]. Ann Limnol 22:69–81Google Scholar
  57. Dole-Olivier M-J, Marmonier P, Creuzé des Châtelliers M, Martin D (1994) Interstitial fauna associated with the alluvial floodplains of the Rhône Rover (France). In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, London, pp 313–346Google Scholar
  58. Dove PM, Rimstidt JD (1994) Silica-water interactions. Rev Mineral 29:259–308Google Scholar
  59. Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182Google Scholar
  60. Dunlap WJ, McNabb JF, Scalf MR et al (1977) Sampling for organic chemicals and microorganisms in the subsurface. EPA-600/2–77–176, US Environment Protection Agency, Ada, OK, 27 ppGoogle Scholar
  61. Eamus D, Farrer SL (eds) (2006) Groundwater dependent ecosystems. Austral J Bot 54:91–237Google Scholar
  62. Eberhard SM (1995) Impact of a limestone quarry on aquatic cave fauna at Ida Bay in Tasmania In: ‘Proc 11 Austr Cave and Karst Manage Assoc. Conf., Tasmania, May 1995, pp 125–137Google Scholar
  63. Eberhard SM (1999) Cave fauna management and monitoring at Ida Bay Tasmania. Nature Conserv Rep 99/1, Parks and Wildlife Service, Tasmania, pp 1–37Google Scholar
  64. El Adnani M, Ait Boughrous A, Khebiza MY et al (2007) Impact of mining wastes on the physicochemical and biological characteristics of groundwater in a mining area in Marrakech (Morocco). Environ Tech 28:71–82Google Scholar
  65. English P, Spooner NA, Chappell J et al (2001) Lake Lewis basin, central Australia: environmental evolution and OSL chronology. Quat Int 83–85:81–101Google Scholar
  66. EPA (2003)Subterranean fauna: guidance for the assessment of environmental factors (in accordance with the Environmental Protection Act 1986) Consideration of subterranean fauna in groundwater and caves during environmental impact assessment in Western Australia. Guidance Statement No. 54, Environmental Protection Authority, Perth, AustraliaGoogle Scholar
  67. Essafi K, Mathieu J, Berrady I et al (1998) Qualité de l’eau et de la faune au niveau de forages artésiens dans la Plaine de Fès et la Plaine des Beni-Sadde: premiers résultats [Water quality and fauna from artesian bores in the Plain of Fès and the Plain of Blessed-Sadden]. Mém Biospéol 25:157–166Google Scholar
  68. Eugster HP, Jones BF (1979) Behaviour of major solutes during closed-basin brine evolution. Am J Sci 279:609–631Google Scholar
  69. European Groundwater Directive (2006) Directive 2006/118/ECEU GWD, of the European Parliament and of the Council of 12 December 2006. Off J Eur Comm L372:(19)Google Scholar
  70. Farnleitner AH, Wilhartitz I, Ryzinska G et al (2005) Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities. Env Microbiol 7:1248–1259Google Scholar
  71. Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, OxfordGoogle Scholar
  72. Fenwick GD, Thorpe HR, White PA (2004) Groundwater systems. In: Harding J, Mosely P, Pearson C, Sorrell B (eds) Freshwaters of New Zealand. New Zealand Hydrological Society and New Zealand Limnological Society, Christchurch, New Zealand, pp 29.1–29.18Google Scholar
  73. Finlay JB, Buhay JE, Crandall KA (2006) Surface to subsurface freshwater connections: phylogeographic and habitat analyses of Cambarus tenebrosus, a facultative cave-dwelling crayfish. Anim Conserv 9:375–387Google Scholar
  74. Finston TL, Johnson MS, Humphreys WF et al (2007) Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Mol Ecol 16:355–365Google Scholar
  75. Fisher SG, Likens GE (1973) Energy flow in Bear Brook New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–439Google Scholar
  76. Ford DC, Williams P (2007) Karst hydrology and geomorphology. Wiley, Chichester, UKGoogle Scholar
  77. Gebruk AV, Galkin SV, Vereshchaka AL et al (1997) Ecology and biogeography of the hydrothermal vent fauna of the Mid-Atlantic Ridge. Adv Mar Biol 32:93–130Google Scholar
  78. Gerritse RG (1998) Biogeochemical changes in aquifers from injected waste water: contribution to Peter Dillon’s ASR feasibility study. Report No 16/98, CSIRO Land and Water, Perth, AustraliaGoogle Scholar
  79. Gibert J, Deharveng L (2002) Subterranean ecosystems: a truncated functional biodiversity. Bioscience 52:473–481Google Scholar
  80. Gibert J, Danielopol DL, Stanford JA (eds)(1994a) Groundwater ecology. Academic, LondonGoogle Scholar
  81. Gibert J, Standford JA, Dole-Olivier M-J et al (1994b) Basic attributes of groundwater ecosystems and prospects for research. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, London, pp 7–40Google Scholar
  82. Griebler C, Lueders T (2008) Microbial biodiversity in groundwater ecosystems. Freshw Biol (in press). doi:10.1111/j.1365–2427.2008.02013.x
  83. Guzik MT, Cooper SJB, Humphreys WF et al (2008) Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia. Invertebr Syst 22:205–216Google Scholar
  84. Haack SK, Bekins BA (2000) Microbial populations in contaminant plumes. Hydrogeol J 8:63–76Google Scholar
  85. Hahn HJ (2002) Distribution of the aquatic meiofauna of the Marbling Brook catchment (Western Australia) with reference to landuse and hydrogeological features. Arch Hydrobiol Suppl 139:237–263Google Scholar
  86. Hahn HJ (2005) Unbaited phreatic traps: a new method of sampling stygofauna. Limnologica 35:248–261Google Scholar
  87. Hahn HJ (2006) The GW-fauna-index: a first approach to a quantitative ecological assessment of groundwater habitats. Limnologia 36:119–139Google Scholar
  88. Hahn HJ (2007) Ökologische Bewertungsansätze für ein faunistisch begründetes Grundwassermonitoring: Bedeutung des hydrologischen Austauschs [Preliminary ecological evaluation for faunistically justified groundwater monitoring: Interpreting the hydrologic exchange]. Proc. DWA Seminar “Grundwasserökologie: Praxis und Forschung” Fulda, Germany, November 2007Google Scholar
  89. Hahn HJ, Matzke D (2005) A comparison of stygofauna communities inside and outside groundwater bores. Limnologica 35:31–44Google Scholar
  90. Hamilton-Smith E, Eberhard S (2000) Conservation of cave communities in Australia. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol. 30: subterranean ecosystems. Elsevier, Amsterdam, pp 647–664Google Scholar
  91. Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater: the future of hydrogeology. Hydrogeol J 13:98–111Google Scholar
  92. Hardie LA, Eugster HP (1970) The evolution of closed basin brines. Mineral Soc Am Spec Publ 3:273–290Google Scholar
  93. Harter T (2003) Groundwater sampling and monitoring. FWQP Reference Sheet 11.4, Agriculture and Natural Resources Publication 8085, University of California, Davis, CAGoogle Scholar
  94. Hatton T (2001) Land use and catchment water balance. CSIRO Land and Water Tech Rep 18/01, Canberra, AustraliaGoogle Scholar
  95. Hatton T, Evans R (1998) Dependence of ecosystems on groundwater and its significance to Australia. Land and Water Resour Res Dev Corp Occ Pap 12/98, LWRRDC, Canberra, AustraliaGoogle Scholar
  96. Hayashi M, Rosenberry DD (2002) Effects of ground water exchange on the hydrology and ecology of surface water. Ground Water 40:309–316Google Scholar
  97. Heim JA, Vasconcelos PM, Shuster DL et al (2006) Dating paleochannel iron ore by (U-Th)/He analysis of supergene goethe, Hamersley province, Australia. Geology 34:173–176Google Scholar
  98. Hesse PP, Magee JW, van der Kaars S (2004) Late quaternary climates of the Australian arid zone: a review. Quat Int 118–119:87–102Google Scholar
  99. Hiscock KM, Rivett MO, Davison RM (eds)(2002) Sustainable groundwater development. Geol Soc Lond Spec Pub 193:1–352Google Scholar
  100. Humphreys WF (1999a) Relict stygofaunas living in sea salt, karst and calcrete habitats in arid northwestern Australia contain many ancient lineages. In: Ponder W, Lunney D (eds) The other 99%: the conservation and biodiversity of invertebrates. Trans R Zool Soc New South Wales, Sydney, pp 219–227Google Scholar
  101. Humphreys WF (1999b) Physico-chemical profile and energy fixation in Bundera Sinkhole: an anchialine remiped habitat in north-western Australia. J Roy Soc West Aust 82:89–98Google Scholar
  102. Humphreys WF (2000) First in, last out: Should aquifer ecosystems be at the vanguard of remediation assessment? In: Johnston CD (eds) Contaminated site remediation: from source zones to ecosystems, vol 1. Centre for Groundwater Studies, Wembley, Australia, pp 275–282Google Scholar
  103. Humphreys WF (2001) Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity. In: Humphreys WF, Harvey MS (eds) Subterranean biology in Australia 2000. Rec West Aust Mus Supp 64:63–83Google Scholar
  104. Humphreys WF (2002) Keynote address: groundwater ecosystems in Australia: an emerging understanding. Proceedings of the International Groundwater Conference, Balancing the Groundwater Budget. Int Assoc Hydrogeol, Darwin, Australia, 12–17 May 2002, CD-ROMGoogle Scholar
  105. Humphreys WF (2006a) Aquifers: the ultimate groundwater dependent ecosystems. In: Eamus SL Farrer D (eds) Special edition on groundwater dependent ecosystems. Aust J Bot 54:115–132Google Scholar
  106. Humphreys WF (2006b) Groundwater fauna. Paper, 2006 Australian State of the Environment Committee, Department of the Environment and Heritage, Canberra. http://www.environment.gov.au/soe/2006/publications/emerging/fauna/pubs/fauna.pdf. Cited July 2008
  107. Humphreys WF (2008) Rising from down under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective. Invert Syst 22(Spec pub):85–101Google Scholar
  108. Huws SA, McBain AJ, Gilbert P (2005) Protozoan grazing and its impact upon population dynamics in biofilm communities. J Appl Microbiol 98:238–244Google Scholar
  109. Iliffe TM (2000) Anchialine cave ecology. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30: subterranean ecosystems. Elsevier, Amsterdam, pp 59–76Google Scholar
  110. Iliffe TM, Jickells TD, Brewer MS (1984) Organic pollution of an inland marine cave from Bermuda. Mar Environ Res 12:173–189Google Scholar
  111. Jackson CR, Churchill PF, Roden EE (2001) Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology 82:555–566Google Scholar
  112. Jacobson G, Arakel AV (1986) Calcrete aquifers in the Australian arid zone. Proc Int Conf Groundwater Systems Under Stress, Austr Water Resour Counc, Brisbane, pp 515–523Google Scholar
  113. Jasinska EJ (1995) Water requirements for cave dwelling fauna in the Yanchep area: proposed changes to environmental conditions. Gnangara Mound Groundwater Resources, Section 46. Appendix 3. Western Australian Water Authority, Perth, pp 113–119Google Scholar
  114. Jaume D, Boxshall GA, Humphreys WF (2001) New stygobiont copepods (Calanoida; Misophrioida) from Bundera sinkhole, an anchialine cenote on north-western Australia. Zool J Linn Soc Lond 133:1–24Google Scholar
  115. Jones B, Mulholland PJ (2000) Streams and ground waters. Academic, San Diego, CAGoogle Scholar
  116. Karanovic I (2004) Towards a revision of Candoninae (Crustacea, Ostracoda): on the genus Candonopsis Vavra, with description of new taxa. Subterranean Biol 2:91–108Google Scholar
  117. Karanovic T (2006) Subterranean copepods (Crustacea, Copepoda) from the Pilbara region in Western Australia. Rec West Aust Mus Suppl 70:1–239Google Scholar
  118. Karanovic I (2007) Candoninae Ostracodes from the Pilbara Region in Western Australia. Crustac Monogr 7:1–432Google Scholar
  119. Kinkle BK, Kane TC (2000) Chemolithoautotrophic micro-organisms and their potential role in subsurface environments. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30: subterranean ecosystems. Elsevier, Amsterdam, pp 309–318Google Scholar
  120. Kinsey J, Cooney TJ, Simon KS (2007) A comparison of the leaf shredding ability and influence on microbial films of surface and cave forms of Gammarus minus Say. Hydrobiologia 589:199–205Google Scholar
  121. Kota S, Borden RC, Barlaz MA (1999) Influence of protozoan grazing on contaminant biodegradation. FEMS Microbiol Ecol 29:179–189Google Scholar
  122. Krige WG (2006) Hydrological/chemical aspects of the Upper Wonderfonteinspruit, with special reference to the impact water, pumped from the Western Basin Mine void, will have on this system. Revison 10. African Environmental Development, Sterkfontein, South Africa. Harmony, Randfontein, South AfricaGoogle Scholar
  123. Krumholz LR (2000) Microbial communities in the deep subsurface. Hydrogeol J 8:4–10Google Scholar
  124. Lake PS (2000) Disturbance, patchiness, and diversity in streams. J N Am Benthol Soc 19:573–592Google Scholar
  125. Lefébure T, Douady CJ, Gouy M et al (2006) Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Mol Ecol 15:1797–1806Google Scholar
  126. Leys R, Watts CHS, Cooper SJB et al (2003) Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57:2819–2834Google Scholar
  127. Loftus WF, Johnson RA, Anderson GH (1992) Ecological impacts of the reduction of groundwater levels in short-hydroperiod marshes in the Everglades. In: Stanford JA, Simons JJ (eds) Proc First Int Conf Groundwater ecology. Am Water Resour Assn, Bethesda, MD, pp 199–208Google Scholar
  128. Longley G (1992) The subterranean aquatic ecosystem of the Balcones Fault Zone Edwards Aquifer in Texas: threats from overpumping. In: Stanford JA, Simons JJ (eds) Proc First Int Conf groundwater ecology. Am Water Resour Assn, Bethesda, MD, pp 291–300Google Scholar
  129. Lovley DR, Goodwin S (1988) Hydrogen concentrations as an indicator of the predominnat terminal electron-accepting reactions in aquatic sediments. Geochim Cosmochim Acta 52:2993–3003Google Scholar
  130. MacDonald TR, Kitanidis PK, McCarty PL et al (1999) Mass transfer limitations for macroscale bioremediation modeling and implications on aquifer clogging. Ground Water 4:523–531Google Scholar
  131. Malard F (1995) Contribution à l’étude biologique de la qualité des eaux souterraines karstiques: application à un site atelier Nord-Montpelliérain (bassin de la source du Lez) [Contribution to the biological study of water quality of subterranean karstic waters: application to a study site at North-Montpellier (basin at the source of Lez)]. PhD Thesis, Université Claude Bernard, FranceGoogle Scholar
  132. Malard F, Hervant F (1999) Oxygen supply and the adaptations of animals in groundwater. Freshw Biol 41:1–30Google Scholar
  133. Malard F, Reygrobellet J-L, Mathieu J et al (1994) The use of invertebrate communities to describe groundwater flow and contaminant transport in a fractured rock aquifer. Arch Hydrobiol 131:93–110Google Scholar
  134. Malard F, Plénet S, Gibert J (1996a) The use of invertebrates in ground water monitoring: a rising research field. Groundw Monitor Remediat 16:103–113Google Scholar
  135. Malard F, Mathieu J, Reygrobellet JL et al (1996b) Biomonitoring groundwater contamination: application to a karst area in southern France. Aquat Sci 28:158–187Google Scholar
  136. Malard F, Datry T, Gibert J (2005) Subsurface sediment contamination during borehole drilling with an air-actuated down-hole hammer. J Contam Hydrol 79:156–164Google Scholar
  137. Mangin A (1975) Contribution à l’étude hydrodynamique des aquifères karstiques [Contribution to the hydrodynamic study of karstic aquifers]. Annls Spéléol 30:21–124Google Scholar
  138. Mann AW, Deutscher RL (1978) Hydrogeochemistry of a calcrete-containing aquifer near Lake Way, Western Australia. J Hydrol 38:357–377Google Scholar
  139. Margat J (1994) Groundwater operations and management. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, London, pp 505–522Google Scholar
  140. Marshall MC, Hall RO (2004) Hyporheic invertebrates affect N cycling and respiration in stream sediment microcosms. J N Am Benthol Soc 23:416–428Google Scholar
  141. Mattison RG, Harayama S (2005) The soil flagellate Heteromita globosa accelerates bacterial degradation of alkylbenzenes through grazing and acetate excretion in batch culture. Microb Ecol 49:142–150Google Scholar
  142. Mattison RG, Taki H, Harayama S (2002) The bacterivorous soil flagellate Heteromita globosa reduces bacterial clogging under denitrifying conditions in sand-filled aquifer columns. App Environ Microbiol 68:4539–4545Google Scholar
  143. McCrea AF, Balakumar B (2004) Sustainability of irrigation in semi-arid and arid zones of Western Australia. In: Ho G, Kuruvilla M (eds) Sustainability of water resources international conference, Western Australia, November 2002. IWA, London, pp 71–79Google Scholar
  144. McDonald RJ, Russill NRW, Miliorizos M et al (1998) A geophysical investigation of saline intrusion and geological structure beneath areas of tidal coastal wetland at Langstone Harbour, Hampshire, UK. In: Robbins NS (ed) Groundwater pollution: aquifer recharge and vulnerability. Geol Soc Lond Spec Pub 130:77–94Google Scholar
  145. Mermillod-Blondin F, Nogaro G, Datry T et al (2005) Do tubificid worms influence the fate of organic matter and pollutants in stormwater sediments? Environ Pollut 134:57–69Google Scholar
  146. Messouli M (2006) What can karstic organisms tell us about groundwater functioning and water quality? BALWOIS 2006 Conference on water observation and information system for decision support, 23–26 May 2006, Ohrid, MoroccoGoogle Scholar
  147. Miller SW, Wooster D, Li J (2007) Resistance and resilience of macroinvertebrates to irrigation water withdrawals. Freshw Biol 55(12):2494–2510. doi:10.1111/j.1365–2427.2007.01850.x Google Scholar
  148. Moore WS (1999) The subterranean estuary: a reaction zone of ground water and sea water. Mar Chem 65:111–125Google Scholar
  149. Morgan KH (1993) Development, sedimentation and economic potential of palaeoriver systems of the Yilgarn Craton of Western Australia. Sediment Geol 85:637–656Google Scholar
  150. Mösslacher F, Griebler C, Notenboom J (2001) Biomonitoring of groundwater systems: methods, applications and possible indicators among the groundwater biota. In: Griebler C, Danielopol DL, Gibert J et al (eds) Groundwater ecology: a tool for management of water resources. Office for Official Publications of the European Communities, Luxembourg, pp 173–182Google Scholar
  151. MPR (2002) Guidelines for the protection of surface and groundwater resources during exploration drilling. Department of Minerals and Energy, Perth, AustraliaGoogle Scholar
  152. Mudd GM (2004) Critical review of acid in situ leach uranium mining: 1. USA and Australia. Environ Geol 41:390–403Google Scholar
  153. Mühlherr IH, Hiscock KM, Dennis PF et al (1998) Changes in groundwater chemistry due to rising groundwater levels in the London Basin between 1963 and 1994. In: Robbins NS (ed) Groundwater pollution: aquifer recharge and vulnerability. Geol Soc Lond Spec Pub 130:47–62Google Scholar
  154. Mylroie JE, Carew JL (1995) Karst development on carbonate islands. In: Budd DA, Saller AH, Harris PA (eds) Unconformities in carbonate strata: their recognition and the significance of associated porosity. AAPG Memoir 63, AAPG, Tulsa, OK, pp 55–76Google Scholar
  155. Nachtnebel HP, Kovar K (1991) Hydrological basis of ecological sound management of soil and groundwater. International Association of Hydrological Sciences Publication 202, Wallingford, UKGoogle Scholar
  156. Naiman RJ, Bunn SE, Nilsson C et al (2002) Legitimizing fluvial ecosystems as users of water: an overview. Environ Manage 30:455–467Google Scholar
  157. Nield SP, Townley LR, Barr AD (1994) A framework for quantitative analysis of surface water–groundwater interaction: flow geometry in a vertical section. Water Resour Res 30:2461–2475Google Scholar
  158. Nogaro G, Mermillod-Blondin F, Francois-Carcaillet F et al (2006) Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using infiltration sediment columns. Freshw Biol 51:1458–1473Google Scholar
  159. Notenboom J, Plénet S, Turquin M-J (1994) Groundwater contamination and its impact on groundwater animals and ecosystems. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, London, pp 477–504Google Scholar
  160. Novarino G, Warren A, Butler H et al (1997) Protistan communities in aquifers: a review. Microbiol Rev 20:261–275Google Scholar
  161. Packard AS (1871) On the crustaceans and insects. Am Nat 5:744–761Google Scholar
  162. Pérez del Villar L, Garralón A, Delgado A et al (2004) Hydrogeochemical evolution and C isotope study of groundwaters from “Mina Fe” U deposit (Salamanca, Spain): implications for processes in radwaste disposal. App Geochem 20(3):465–485. doi:10.1016/j.apgeochem.2004.09.015
  163. Perfit MR, Cann JR, Fornari DJ et al (2003) Interaction of sea water and lava during submarine eruptions at mid-ocean ridges. Nature 426:62–65Google Scholar
  164. Pipan T, Culver D (2007a) Epikarst communities: biodiversity hotspots and potential water tracers. Environ Geol 53:265–269Google Scholar
  165. Pipan T, Culver D (2007b) Copepod distribution as an indicator of epikarst system connectivity. Hydrogeol J 15:817–822Google Scholar
  166. Playford PE (2001) Subterranean biotas in Western Australia. Report for the Environmental Protection Authority, Perth, AustraliaGoogle Scholar
  167. Plénet S, Marmonier P, Gibert J, Stanford JA, Bodergat A-M, Schmidt CM (1992) Groundwater hazard evaluation: a perspective for the use of interstitial and benthic invertebrates as sentinels of aquifer metallic contamination. In: Stanford JA, Simons JJ (eds) Proc. First Int. Conf. groundwater ecology. Am Water Resour Assn, Bethesda, MD, pp 319–329Google Scholar
  168. Pohlman JW, Iliffe TM, Cifuentes LA (1997) A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Mar Ecol Prog Ser 155:17–27Google Scholar
  169. Pohlman JW, Cifuentes LA, Iliffe TM (2000) Food web dynamics and biogeochemistry of anchialine caves: a stable isotope approach. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30: subterranean ecosystems. Elsevier, Amsterdam, pp 345–357Google Scholar
  170. Por FD (2007) Ophel: a groundwater biome based on chemoautotrophic resources: the global significance of the Ayyalon cave finds, Israel. Hydrobiologia 592:1–10Google Scholar
  171. Pora EA (1969) L’importance du facteur rhopique (équilibre ionique) pour la vie aquatique [The importance of the rhopic factor (ionic balance) for the aquatic life]. Ver Int Verein Theor Ang Limnol 7:970–986Google Scholar
  172. Pospisil P (1994) The groundwater fauna of a Danube aquifer in the “Lobau” wetland in Vienna Austria. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, London, pp 347–366Google Scholar
  173. Poulson TL, Lavoie KH (2000) The trophic basis of subsurface ecosystems. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30: subterranean ecosystems. Elsevier, Amsterdam, pp 231–249Google Scholar
  174. Pyle GG, Mirza RS (2007) Copper-impaired chemosensory function and behavior in aquatic animals. Hum Ecol Risk Assess 13:492–505Google Scholar
  175. Racovitza EG (1907) Essai sur les problèmes biospéologiques [Essay on biospeleological problems]. Biospéologica 1. Arch Zool Exp Gén 4:371–488Google Scholar
  176. Radke L (2000) Solute divides and chemical facies in south-eastern Australian salt lakes and the response of ostracods in time (Holocene) and space. PhD Thesis. Australian National University, CanberraGoogle Scholar
  177. Radke L, Juggins S, Halse SA et al (2003) Chemical diversity in south-eastern Australian saline lakes II: biotic implications. Mar Freshw Res 54:895–912Google Scholar
  178. Reeves J, Deckker P, Halse S (2007) Groundwater Ostracods from the arid Pilbara region of northwestern Australia: distribution and water chemistry. Hydrobiologia 585:99–118Google Scholar
  179. Reilly TE (1993) Analysis of ground-water systems in freshwater-saltwater environments. In: Alley WM (eds) Regional ground-water quality. Van Nostrand, New York, pp 443–469Google Scholar
  180. Robins NS (ed) (1998) Groundwater pollution, aquifer recharge and vulnerability. Geol Soc Lond Spec Pub 130:1–224Google Scholar
  181. Rockhold ML, Yarwood RR, Niemet MR et al (2002) Considerations for modeling bacterial-induced changes in hydraulic properties of variably saturated porous media. Adv Water Res 25:477–495Google Scholar
  182. Ronen D, Magaritz M, Levy I (1986) A multi-layer sampler for the study of detailed hydrochemical profiles in groundwater. Water Res 20:311–315Google Scholar
  183. Ronen D, Magaritz M, Almon E et al (1987a) Anthropogenic anoxification (‘Eutrophication’) of the water table in a deep phreatic aquifer. Water Resour Res 23:1554–1560Google Scholar
  184. Ronen D, Magaritz M, Gvirtzman H et al (1987b) Microscale chemical heterogeneity in groundwater. J Hydrol 92:173–178Google Scholar
  185. Rouch R (1977) Considerations sur l’écosystème karstique [Considerations on the karstic ecosystem]. CR Acad Sci Paris, Série D 284:1101–1103Google Scholar
  186. Rouch R (1986) Sur l’écologie des eaux souterraines dans le karst [On the ecology of subterranean water in karst]. Stygologia 2:352–398Google Scholar
  187. Rouch R, Pitzalis A, Descouens A (1993) Effets d’un pompage à gros dèbit sur le peuplement des Crustacès d’un aquifére karstique [The effect of large flow pumping on the population of crustaceans in a karstic aquifer]. Annal Limnol 29:15–29CrossRefGoogle Scholar
  188. Rutherford J, Roy V, Johnson SL (2005) The hydrogeology of groundwater dependent ecosystems in the Northern Perth Basin, Department of Environment, Hydrogeological Record Series, HG11, Perth, AustraliaGoogle Scholar
  189. Sarbu SM (2000) Movile Cave: a chemoautotrophically based groundwater ecosystem. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30: subterranean ecosystems. Elsevier, Amsterdam, pp 319–343Google Scholar
  190. Sarbu SM, Galdenzi S, Menichetti M et al (2000) Geology and biology of Frasassi Caves in Central Italy: an ecological multidisciplinary study of a hypogenic underground karst system. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30: subterranean ecosystems. Elsevier, Amsterdam, pp 359–378Google Scholar
  191. Scarsbrook MR, Fenwick GD (2003) A preliminary assessment of crustacean distribution patterns in New Zealand groundwater aquifers. NZ J Mar Freshw Res 37:405–413CrossRefGoogle Scholar
  192. Schmidt SI, Hahn HJ, Hatton TJ et al (2007a) Do faunal assemblages reflect the exchange intensity in groundwater zones? Hydrobiologia 583:1–19Google Scholar
  193. Schmidt SI, Hellweg J, Hahn HJ et al (2007b) Does groundwater influence the sediment fauna beneath a small, sandy stream? Limnologica 37:208–225. doi:10.1016/j.limno.2006.12.002 Google Scholar
  194. Schminke HK (1974) Mesozoic intercontinental relationships as evidenced by bathynellid crustacea (Syncarida: Malacostraca). Syst Zool 23:157–164Google Scholar
  195. Seymour JR, Humphreys WF, Mitchell JG (2007) Stratification of the microbial community inhabiting an anchialine sinkhole. Aquatic Micro Ecol 50:11–24Google Scholar
  196. Simon KS, Buikema AL (1997) Effects of organic pollution on an Appalachian cave: changes in macroinvertebrate populations and food supplies. Am Midl Natur 138:387–401Google Scholar
  197. Simon KS, Benfield EF, Macko SA (2003) Food web structure and the role of epilithic biofilms in cave streams. Ecology 84:2395–2406Google Scholar
  198. Sinclair JL, Kampbell DH, Cook ML et al (1993) Protozoa in subsurface sediments from sites contaminated with aviation gasoline or jet fuel. App Environ Microbiol 59:467–472Google Scholar
  199. Sinton LW (1984) The macroinvertebrates in a sewage-polluted aquifer. Hydrobiologia 119:161–169Google Scholar
  200. Sket B (1986) Ecology of the mixohaline hypogean fauna along the Yugoslav coast. Stygologia 2:317–338Google Scholar
  201. Sket B (1996) The ecology of anchihaline caves. Trends Ecol Evol 1:221–255Google Scholar
  202. Sket B (1999) The nature of biodiversity in hypogean waters and how it is endangered. Biodivers Conserv 8:1319–1338Google Scholar
  203. Stanford JA, Ward JV, Ellis BK (1994) Ecology of the alluvial aquifers of the Flathead River, Montana. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, London, pp 367–389Google Scholar
  204. Stocker ZSJ, Williams DD (1972) A freeze core method for describing the vertical distribution of sediments in a stream bed. Limnol Oceanogr 17:136–138CrossRefGoogle Scholar
  205. Testa JM, Charette MA, Sholkovitz ER et al (2002) Dissolved iron cycling in the subterranean estuary of a coastal bay: Waquoit Bay, Massachusetts. Biol Bull 203:255–256Google Scholar
  206. Tomlinson M, Boulton AJ, Hancock PJ, Cook PG (2007) Deliberate omission or unfortunate oversight: should stygofaunal surveys be included in routine groundwater monitoring programs? Hydrogeol J 15:1317–1320Google Scholar
  207. Turguin MJ (1981) La pollution des eaux souterraines: incidence sur les biocénoses souterraines [The pollution of subterranean water: incidence in underground biocenoses]. In: Actes Colloq Nat Prot Eaux Souterraines 1(1980):341–347Google Scholar
  208. Tyrrel SF, Howsam P (1997) Aspects of the occurrence and behaviour of iron bacteria in boreholes and aquifers. Q J Eng Geol Hydrogeol 30:161–169Google Scholar
  209. Tyson RV, Pearson TH (1991) Modern and ancient continental shelf anoxia: an overview. Geol Soc Lond Spec Pub 58:1–24Google Scholar
  210. US Fish and Wildlife Service (2002) Notice of availability of the approved recovery plan for the Illinois Cave Amphipod (Gammarus acherondytes). US Fish and Wildlife Service, Washington, DC, Available Online. http://www.fws.gov/policy/library/02fr63442.html. Cited 13 May 2008
  211. Vengosh A, Keren R (1996) Chemical modifications of groundwater contaminated by recharge of treated sewage effluent. J Contamin Hydrol 23:347–360Google Scholar
  212. Vermeulen J, Whitten T (1999) Biodiversity and cultural property in the management of limestone resources: lessons from East Asia. The World Bank, Washington, DCGoogle Scholar
  213. Walker G (1999) Lake of dreams. New Scientist 4 Dec 1999:34–37Google Scholar
  214. Wanty RB Schoen R (1991) A review of the chemical processes affecting the mobility of radionuclides in natural waters, with applications. In: Gundersen LCS, Wanty RB (eds) Field studies of radon in rocks, soils, and water. US Geol Surv Bull 1971:183–194Google Scholar
  215. Watts CHS, Humphreys WF (1999) Three new genera and five new species of Dytiscidae (Coleoptera) from underground waters in Australia. Rec S Aust Mus 32:121–142Google Scholar
  216. Watts CHS, Humphreys WF (2004) Thirteen new Dytiscidae (Coleoptera) of the genera Boongurrus Larson, Tjirtudessus Watts & Humphreys and Nirripirti Watts and Humphreys, from underground waters in Australia. Tran R Soc S Aust 128:99–129Google Scholar
  217. White WB, White EL (2003) Gypsum wedging and cavern breakdown: studies in the Mammoth Cave System, Kentucky. J Cave Karst Stud 65:43–52Google Scholar
  218. Wilkens H, Culver DC, Humphreys WF (eds) (2000) Ecosystems of the world, vol 30: subterranean ecosystems. Elsevier, AmsterdamGoogle Scholar
  219. Williams WD, Boulton AJ, Taaffe RG (1990) Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia 197:257–266Google Scholar
  220. Wilson GDF (2007) Global diversity of isopod crustaceans (Crustacea; Isopoda). Hydrobiologia 595:231–240. doi:10.1007/s10750–007–9019-z Google Scholar
  221. Wilson GDF (2008) Groundwater Gondwana: subterranean connections of Australian phreatoicidean isopods to India and New Zealand. Invertebr Syst 22:301–310Google Scholar
  222. Winde F (2006) Long-term impacts of gold and uranium mining on water quality in Dolomitic Regions: examples from the Wonderfonteinspruit catchment in South Africa. In: Broder JM, Hasche-Berger A (eds) Uranium in the environment: mining impact and consequences. Springer, Berlin, pp 807–816Google Scholar
  223. Winter TC, Harvey JW, Franke OL et al (1998) Ground water and surface water: a single resource. Circular 1139, United States Geological Survey, Denver, COGoogle Scholar
  224. Wolff WJ (1973) The estuary as a habitat: an analysis of data on the soft-bottom macrofauna of the estuarine area of the rivers Rhine, Meuse, and Scheldt. Zool Verh 126:1–242Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Western Australian MuseumWelshpool DCAustralia

Personalised recommendations