Hydrogeology Journal

, Volume 17, Issue 1, pp 215–228 | Cite as

Relating groundwater to seasonal wetlands in southeastern Wisconsin, USA

  • John D. Skalbeck
  • Donald M. Reed
  • Randall J. Hunt
  • Jamie D. Lambert
Paper

Abstract

Historically, drier types of wetlands have been difficult to characterize and are not well researched. Nonetheless, they are considered to reflect the precipitation history with little, if any, regard for possible relation to groundwater. Two seasonal coastal wetland types (wet prairie, sedge meadow) were investigated during three growing seasons at three sites in the Lake Michigan Basin, Wisconsin, USA. The six seasonal wetlands were characterized using standard soil and vegetation techniques and groundwater measurements from the shallow and deep systems. They all met wetland hydrology criteria (e.g., water within 30 cm of land surface for 5% of the growing season) during the early portion of the growing season despite the lack of appreciable regional groundwater discharge into the wetland root zones. Although root-zone duration analyses did not fit a lognormal distribution previously noted in groundwater-dominated wetlands, they were able to discriminate between the plant communities and showed that wet prairie communities had shorter durations of continuous soil saturation than sedge meadow communities. These results demonstrate that the relative rates of groundwater outflows can be important for wetland hydrology and resulting wetland type. Thus, regional stresses to the shallow groundwater system such as pumping or low Great Lake levels can be expected to affect even drier wetland types.

Keywords

Groundwater/surface-water relations Groundwater monitoring General hydrogeology 

Mise en relation des eaux souterraines avec les zone humides saisonnières dans le Sud du Wisconsin, USA

Résumé

Les zones humides les plus sèches ont toujours été les plus difficiles à caractériser et restent peu documentées. Il est toutefois admis qu’elles rendent compte de l’histoire des précipitations, avec quelquefois de possibles relations avec les eaux souterraines. Deux types de zones humides saisonnières côtières (prairies humides et marais à laîches) ont été étudiés au cours de trois saisons de croissance au droit de trois sites du bassin du lac Michigan (Wisconsin, USA). Les six sites ont été caractérisés au moyen des techniques standards d’étude des sols et de la végétation et des mesures sur les eaux souterraines des systèmes superficiels et profonds. Ils satisfont tous aux critères hydrologiques des zones humides (par exemple, un niveau d’eau à moins de 30 cm du sol pendant plus de 5% de la durée de la saison de croissance) au cours du début de la saison de croissance malgré l’absence d’une alimentation significative des zones racinaires à partir d’un flux régional d’eaux souterraines. Même si l’examen des durées sur les zones racinaires ne montre pas une distribution log-normale telle que précédemment notée pour les zones humides soumises aux régimes des eaux souterraines, cet examen a permis de différencier les colonies végétales et a montré que les colonies des prairies humides présentent des durées de saturation continue du sol plus courtes que celles des marais à laîches. Ces résultats démontrent que les flux relatifs d’alimentation par les eaux souterraines peuvent être importants pour l’hydrologie des zones humides et le type de zone humide qui en résulte. En conséquence, il faut s’attendre à ce qu’un stress régional sur les systèmes aquifères les plus superficiels, tel que les pompages ou un bas niveau du Gand Lac, affecte même les types de zones humides les plus sèches.

Relaciones entre aguas subterráneas y humedales estacionales en el sudeste de Wisconsin, USA

Resumen

Históricamente, ha sido dificultoso caracterizar a los tipos más secos de humedales, que no están bien investigados. Sin embargo, se considera que reflejan la historia de las lluvias con pequeñas o nulas consideraciones a su posible relación con aguas subterráneas. Se han investigado dos tipos de humedales costeros (pradera húmeda, pradera con juncos) durante tres estaciones de crecimiento en tres sitios de la cuenca del Lago Michigan, Wisconsin, USA. Los seis humedales estacionales se caracterizaron usando técnicas convencionales de suelo y vegetación, y mediciones de aguas subterráneas de los sistemas someros y profundos. Todos los sitios cumplen con los criterios hidrológicos de humedales (por ejemplo, agua a 30 cm de la superficie del terreno durante 5% de la estación de crecimiento) durante el período temprano de la estación de crecimiento, a pesar de la ausencia de una descarga relevante de aguas subterráneas en las zonas de raíces del humedal. Aunque el análisis de la duración en la zona de raíces no se ajustó a la distribución lognormal que ha sido identificada en humedales alimentados por aguas subterráneas, se logró la discriminación de las comunidades vegetales: las comunidades de las praderas húmedas tienen una duración menor en condiciones de saturación continua del suelo con respecto a las comunidades de praderas con juncos. Estos resultados demuestran que la tasa de flujos subterráneos de salida es importante para la hidrología de los humedales y el tipo resultante de humedal. De esta forma, los requerimientos regionales sobre los sistemas subterráneos someros, tal como el bombeo o los bajos niveles de los Grandes Lagos, se supone que afectan aún a los tipos más secos de humedales.

美国威斯康辛东南部地下水与季节性湿地的联系

Resumen

摘要 长期以来, 由于较干旱类型湿地的特征难于描述, 研究程度有限。然而, 有观点认为这种湿地可以反映降水历史, 但很少考虑与地下水之间可能具有的联系。本文在美国威斯康辛密歇根湖盆地三个地点、三个期中对两种季节性滨海湿地类 (湿草地、莎草草甸) 进行了研究。通过标准的土壤和植物技术, 以及浅部和深部地下水系统的测量, 对这六个季节性湿地进行描述。虽然根区缺少适宜的区域地下水排泄的补给, 这些湿地在生长期早期都符合湿地水文标准 (例如, 5%生长季节内, 水距地表30 cm以浅) 。尽管根区含水时程分析并不符合先前注意到的地下水主导型湿地的对数正态分布, 但可以区分这两种植物群落, 并表明湿草地群落的土壤连续饱和时程较莎草草甸群落为短。这些结果说明地下水径流流出量的相对比例对湿地水文可以很重要, 并决定了实地类型。因此, 对浅部地下水系统的区域胁迫, 如抽水或五大湖低水位, 会对更为干旱的湿地类型产生影响。

Relacionamento de águas subterrâneas com zonas húmidas sazonais na zona sudeste de Wisconsin, EUA

Resumo

Historicamente, os tipos mais secos de zonas húmidas têm sido difíceis de caracterizar e não têm sido bem investigados. Contudo, considera-se que reflectem a história da precipitação, com pouca, ou nenhuma, ligação com a possível relação com as águas subterrâneas. Estudaram-se dois tipos de zonas húmidas costeiras sazonais (pradaria húmida, prado de carriços – em inglês: wet prairie, sedge meadow) durante três épocas de crescimento em três locais da Bacia do Lago de Michigan, Wisconsin, EUA. As seis zonas húmidas sazonais foram caracterizadas utilizando técnicas padronizadas de solos e de vegetação e medições de águas subterrâneas de sistemas subsuperficiais e profundos. Todas as zonas obedeceram a critérios hidrológicos de zonas húmidas (e.g., água dentro de 30 cm da superfície do terreno durante 5% da época de crescimento) durante o período inicial da época de crescimento, apesar da falta de descarga regional apreciável de águas subterrâneas para as raízes das plantas das zonas húmidas. Apesar das análises da duração da zona das raízes não se ajustarem a uma distribuição lognormal, anteriormente notada em zonas húmidas dominadas por águas subterrâneas, elas puderam discriminar as comunidades de plantas e mostraram que as comunidades das pradarias húmidas apresentaram durações menores de saturação do solo contínuas do que as comunidades do prado de carriços. Estes resultados demonstram que as taxas relativas de descarga de águas subterrâneas podem ser importantes para a hidrologia das zonas húmidas e para o tipo de zona húmida resultante. Assim, as pressões regionais sobre o sistema de água subterrânea subsuperficial, tais como o bombeamento ou os níveis baixos do Grande Lago, podem afectar também os tipos mais secos de zonas húmidas.

References

  1. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  2. Carter V (1986) An overview of the hydrologic concerns related to wetlands in the United States. Can J Botany 64:364–374CrossRefGoogle Scholar
  3. Cherkauer DS (2004) Quantifying ground-water recharge at multiple scales using PRMS and GIS. Ground Water 42(1):97–110CrossRefGoogle Scholar
  4. Chrzastowski MJ (2001) Geology of the Zion Beach-Ridge plain: field trip guidebook. Illnois State Geological Survey, Champaign, IL, 60 ppGoogle Scholar
  5. Erwin KL (1989) Wetland evaluation for restoration and creation, In: Kusler JA, Kentula ME (eds) Wetland creation and restoration: the status of the science, vol 1. USEPA EPA 600/3–89/038b, USEPA, Washington, DC, pp 239–254Google Scholar
  6. Good RE, Whigham DF, Simpson RL (1978) Freshwater wetlands. Academic, San Diego, CAGoogle Scholar
  7. Greeson PE, Clark JR, Clark JE (1979) Wetland functions and values: the state of our understanding. American Water Resources Association, Middleburg, VAGoogle Scholar
  8. Henszey RJ, Pfeiffer K, Keough JR (2004) Linking surface- and ground-water levels to riparian grassland species along the Platte River in Central Nebraska, USA. Wetlands 24(3):665–687CrossRefGoogle Scholar
  9. Hunt RJ (1996) Do created wetlands replace wetlands that are destroyed? USGS Fact Sheet FS-246–96, US Geological Survey, Reston, VA, 4 ppGoogle Scholar
  10. Hunt RJ, Krabbenhoft DP, Anderson MP (1996) Groundwater inflow measurements in wetland systems. Water Resour Res 32(3):495–507CrossRefGoogle Scholar
  11. Hunt RJ, Krabbenhoft DP, Anderson MP (1997) Assessing hydrogeochemical heterogeneity in natural and constructed wetlands. Biogeochemistry 39:271–293CrossRefGoogle Scholar
  12. Hunt RJ, Bullen TD, Krabbenhoft DP, Kendall C (1998) Using stable isotopes of water and strontium to investigate the hydrology of a natural and a constructed wetland. Ground Water 36(3):434–443CrossRefGoogle Scholar
  13. Hunt RJ, Walker JF, Krabbenhoft DP (1999) Characterizing hydrology and the importance of ground-water discharge in natural and constructed wetlands. Wetlands 19(2):458–472CrossRefGoogle Scholar
  14. Ivanov KE (1981) Water movement in Wetlands. Academic, San Diego, CAGoogle Scholar
  15. Link EG, Demo OR (1970) Soil survey of Kenosha and Racine Counties, Wisconsin. U.S. Department of Agriculture, Soil Conservation Service. US Government Printing Office, Washington, DC, 233 ppGoogle Scholar
  16. MacBeth Division of Kollmorgen Instruments Corporation (2000) Munsell soil color chart, 2000 edn. MacBeth, Baltimore, MDGoogle Scholar
  17. McCune B, Medford MJ (1995) PC-ORD multivariate analysis of ecological data, Version 3.0. MjM Software Design, Gleneden Beach, OR, USAGoogle Scholar
  18. Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New York, 920 ppGoogle Scholar
  19. National Cooperative Highway Research Program (1996) Guidelines for the development of wetland replacement areas. NCHRP Report 379 National Academy Press, Washington, DCGoogle Scholar
  20. NRCS (National Water and Climate Center) (1995) Climate analysis for wetlands (WETS). WETS table documentation, National Water and Climate Center, Portland, OR. http://www.wcc.nrcs.usda.gov/climate/wets_doc.html. Cited 29 Jan 2007
  21. NRCS (National Water and Climate Center) (2007) Climate Analysis for Wetlands from 1971–2000, WETS Station: Kenosha, WI4174, National Water and Climate Data Center, Portland, OR. Online source. ftp://ftp.wcc.nrcs.usda.gov/support/climate/wetlands/wi/55059.txt. Cited 29 Jan 2007
  22. NRCS (Natural Resources Conservation Service) (2006) Field indicators of hydric soils in the United States: Guide for identifying and delineating hydric soils, Version 6.0, Natural Resources Conservation Service, Washington, DCGoogle Scholar
  23. National Research Council (1995) Wetlands: characteristics and boundaries. National Academy Press, Washington, DCGoogle Scholar
  24. Reed DM (2002) Environmental correlates of vegetation types in southeastern Wisconsin fens. PhD Thesis, University of Wisconsin, USA, 75 ppGoogle Scholar
  25. Schneider AF (1983) Wisconsin stratigraphy and glacial sequence in southeastern Wisconsin. Geosci Wisconsin 7:59–85Google Scholar
  26. SEWRPC (2004) Identifying and delineating problem wetlands in the Lake Michigan Basin using an integrated approach: a case study of two seasonal wetland types, Kenosha, Wisconsin, Memorandum Report No. 142, Southeastern Wisconsin Region Planning Commision, Waukesha, WI, 77 ppGoogle Scholar
  27. USACE (1987) Corps of engineers wetlands delineation manual, Wetlands Research Program, Technical Report Y-87–1, US Army Corps of Engineers, 147 ppGoogle Scholar
  28. US Department of Agriculture (1985) Hydric soils of the United States. USDA-SCS National Bulletin No. 430–5–9, USDA, Washington, DCGoogle Scholar
  29. US Department of Interior (1970) National atlas of the United States. US Geological Survey, US Government Printing Office, Washington, DC, pp 110–111Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • John D. Skalbeck
    • 1
  • Donald M. Reed
    • 2
  • Randall J. Hunt
    • 3
  • Jamie D. Lambert
    • 4
  1. 1.Department of GeosciencesUniversity of Wisconsin-ParksideKenoshaUSA
  2. 2.Southeastern Wisconsin Regional Planning CommissionWaukeshaUSA
  3. 3.US Geological Survey – Wisconsin Water Science CenterMiddletonUSA
  4. 4.Wisconsin Department of Natural ResourcesWaukeshaUSA

Personalised recommendations