Advertisement

Hydrogeology Journal

, 17:83 | Cite as

Spheres of discharge of springs

Paper

Abstract

Although springs have been recognized as important, rare, and globally threatened ecosystems, there is as yet no consistent and comprehensive classification system or common lexicon for springs. In this paper, 12 spheres of discharge of springs are defined, sketched, displayed with photographs, and described relative to their hydrogeology of occurrence, and the microhabitats and ecosystems they support. A few of the spheres of discharge have been previously recognized and used by hydrogeologists for over 80 years, but others have only recently been defined geomorphologically. A comparison of these spheres of discharge to classification systems for wetlands, groundwater dependent ecosystems, karst hydrogeology, running waters, and other systems is provided. With a common lexicon for springs, hydrogeologists can provide more consistent guidance for springs ecosystem conservation, management, and restoration. As additional comprehensive inventories of the physical, biological, and cultural characteristics are conducted and analyzed, it will eventually be possible to associate spheres of discharge with discrete vegetation and aquatic invertebrate assemblages, and better understand the habitat requirements of rare or unique springs species. Given the elevated productivity and biodiversity of springs, and their highly threatened status, identification of geomorphic similarities among spring types is essential for conservation of these important ecosystems.

Keywords

Springs classification General hydrogeology Ecology 

Sphères d’émergence des sources

Résumé

Bien que les sources aient été reconnues comme des écosystèmes importants, rares, et globalement menacés, il n’y a jusqu’ici aucun système de classification cohérent et complet ni un lexique commun pour les sources. Dans cet article, 12 types de sources sont définis, schématisés, illustrés avec des photographies, et décrits en fonction de leur contexte hydrogéologique, et des microhabitats et des écosystèmes qu’elles soutiennent. Quelques uns de ces types ont été précédemment identifiées et employées par des hydrogéologues pendant plus de 80 ans, mais d’autres ont seulement été définies récemment sur le plan géomorphologique. Une comparaison de cette typologie aux systèmes de classification pour les zones humides, les écosystèmes dépendants d’eaux souterraines, l’hydrogéologie des karsts, les eaux courantes, et d’autres systèmes est fournie. En utilisant un lexique commun pour les sources, les hydrogéologues amélioreront la cohérence de leurs avis pour la protection, la gestion, et la restauration de leurs écosystèmes. En conduisant et analysant de nouveaux inventaires complets des caractéristiques physiques, biologiques, et culturales il sera par la suite possible d’associer à cette typologie la végétation distincte et les communautés d’invertébrés aquatiques, et de mieux comprendre les conditions d’habitat des espèces rares ou uniques aux sources. Etant donné la productivité et la biodiversité élevée des sources, et leur état fortement menacé, l’identification des similitudes géomorphologiques parmi des types de sources est essentielle pour la conservation de ces écosystèmes importants.

Esferas de descarga de manantiales

Resumen

Aunque los manantiales han sido reconocidos como ecosistemas importantes, raros y globalmente amenazados, no existe aún un sistema de clasificación consistente y completo o un léxico común para manantiales. En este trabajo se definen, se bosquejan y se muestran fotografías de doce esferas de descarga de manantiales, descriptos con respecto a su ocurrencia hidrogeológica, sus micro-hábitats y los ecosistemas que sostienen. Unas pocas de tales esferas de descarga han sido previamente reconocidas y utilizadas por hidrogeólogos en los últimos ochenta años, y otras han sido recientemente definidas geomorfológicamente. Se presenta una comparación de estas esferas con respecto a humedales, ecosistemas que dependen de agua subterránea, hidrogeología cárstica, aguas corrientes y otros sistemas. Con un léxico común para manantiales, los hidrogeólogos pueden proveer guías más consistentes para la conservación de los ecosistemas, su gestión y su restauración. A medida que inventarios completos de las características físicas, biológicas y culturales sean recopilados y analizados, eventualmente será posible asociar a las esferas de descarga con colecciones discretas de vegetación e invertebrados acuáticos, y emergerá un mejor entendimiento de las especies raras o únicas de los manantiales. Debido a la elevada productividad y biodiversidad de los manantiales, y su estado altamente amenazado, la identificación de las similitudes geomórficas entre tipos de manantiales resulta esencial para la conservación de estos importantes ecosistemas.

摘要

泉域的分类

虽然泉已经被公认为是重要的、稀有的,而且在世界范围内到威胁的生态系统, 但至今仍没有一个统一的、全面的分类方法或一个公认的泉词典。 本文判别、勾画出了12种泉域, 并描绘在图和照片中, 还描述了它们赋存的水文地质结构, 以及它们所维持的微观生境和生态系统。少数几种泉域以前已经确定, 并且已经为水文地质工作者使用超过80年, 但其它的都是最近才从地貌上确定下来。 将这些泉域同湿地、依赖地下水的生态系统、岩溶水、地表水及其他系统的分类体系做了比较。 应用一个公认的泉词典, 水文地质工作者可以为泉生态系统的保护、管理及恢复提供更系统的指导。 通过对物理、生物学、以及耕作特征的全面补充统计分析, 最终将泉域同分散的植被和水生无脊椎动物群落联系起来, 更好地了解那些珍稀、独特的泉种群的生存条件。 基于泉的产能高、生物多样性好和它们受到高度威胁的现状, 确定泉类型的地貌相似性对于这些重要的生态系统的保护是非常必要的。

Formas de descarga de nascentes

Resumo

As nascentes são reconhecidas como ecossistemas importantes, raros e globalmente ameaçados. No entanto, ainda não existe um sistema consistente e compreensivo de classificação, ou um léxico comum para as nascentes. Neste artigo, definem-se 12 formas de descarga de nascentes, que são esquematizadas, ilustradas com fotografias, e descritas relativamente ao seu significado hidrogeológico. São também descritos os micro-habitats e os ecossistemas que dependem destas nascentes. Algumas das formas de descarga das nascentes já foram previamente identificadas e utilizadas por hidrogeólogos durante mais de 80 anos, mas outras apenas recentemente foram definidas e apenas do ponto de vista geomorfológico. Neste trabalho apresenta-se uma comparação dos modos de descarga das nascentes com sistemas de classificação das zonas húmidas, dos ecossistemas dependentes de água subterrânea, dos sistemas hidrogeológicos cársicos, das águas correntes e outros sistemas. Com um léxico comum para as nascentes, os hidrogeólogos poderão proporcionar linhas directrizes mais consistentes para a conservação, gestão e restauração dos ecossistemas associados às nascentes. À medida que forem sendo realizados e analisados inventários compreensíveis das características físicas, biológicas e culturais das nascentes, poderá ser possível relacionar as formas das nascentes com associações discretas de vegetação e grupos de invertebrados aquáticos e entender melhor as necessidades de habitat de espécies raras e únicas associadas às nascentes. Tendo em conta a elevada produtividade e biodiversidade das nascentes, bem como as ameaças a que estão sujeitas, torna-se fundamental identificar as semelhanças geomorfológicas entre tipos de nascentes, de modo a conservar estes importantes ecossistemas.

Notes

Acknowledgements

This manuscript was partially prepared while Dr. Springer was a Fulbright Visiting Chair at the University of Lethbridge, Alberta, Canada. Additional support from the National Park Service, Salt River Project, US Forest Service, Arizona Water Protection Fund, and Arizona Water Institute contributed to the data collection and analyses. Dr. Stevens work was supported, in part, by the Gordon Family Foundation, and his sketches of springs were skillfully rendered as finished drawings by V. Leshyk of Northern Arizona University Bilby Research Center.

References

  1. Alfaro C, Wallace M (1994) Origin and classification of springs and historical review with current applications. Environ Geol 24:112–124CrossRefGoogle Scholar
  2. Blinn DW (2008) The extreme environment, trophic structure, and ecosystem dynamics of a large fishless desert spring: Montezuma Well, Arizona. In: Stevens LE, Meretsky VJ (eds) Aridland springs in North America: ecology and conservation. University of Arizona Press, TucsonGoogle Scholar
  3. Borneuf D (1983) Springs of Alberta, Earth sciences report 82–3. Alberta Research Council, Edmonton, AB, CanadaGoogle Scholar
  4. Bornhauser K (1913) Die Tierwelt der Quellen in der Umgebung Basels [The fauna of the springs in the vicinity of Basel, Switzerland]. Int Revue ges Hydrobiol Hydrogr Suppl 5(3):1–90Google Scholar
  5. Botosaneanu L (1998) Studies in crenobiology: the biology of springs and springbrooks. Backhuys, Leiden, The NetherlandsGoogle Scholar
  6. Brock TD (1994) Life at high temperatures. Yellowstone Association for Natural Science, History and Education, Yellowstone National Park, WYGoogle Scholar
  7. Brune G (2002) Springs of Texas. Texas A&M University Press, College Station, TXGoogle Scholar
  8. Bryan K (1919) Classification of springs. J Geol 27:522–561CrossRefGoogle Scholar
  9. Bryan TS (1995) Geysers of Yellowstone. University Press of Colorado, Niwot, COGoogle Scholar
  10. Clarke FW (1924) Mineral wells and springs. In: The data of geochemistry. US Geological Survey, Reston, VA, pp 181–217Google Scholar
  11. Cordes EE, Carney SL, Hourdez S, Carney R, Brooks JM, Fisher CR (2007) Cold seeps of the deep Gulf of Mexico (1900 to 3300 m): community structure and biogeographic comparisons to Atlantic Equatorial Belt seep communities. Deep Sea Res, Part I 54:637–653CrossRefGoogle Scholar
  12. Crossey LJ, Karlstrom KE, Springer AE, Newell D, Hilton DR, Fischer T (2008) Degassing of mantle-derived CO2 and 3He from springs in the southern Colorado Plateau region: flux rates, neotectonic connections, and implications for groundwater systems. Geol Soc Am Bull (in press)Google Scholar
  13. Deacon JE, Williams CD (1991) Ash Meadows and the legacy of the Devils Hole pupfish. In: Minckley WL, Deacon JE (eds) Battle against extinction: native fish management in the American West. Univ. of Arizona Press, Tucson, AZ, pp 69–87Google Scholar
  14. Eamus D, Froend R (2006) Groundwater-dependent ecosystems: the where, what and why of GDEs. Aust J Bot 54:91–96CrossRefGoogle Scholar
  15. Elliott WR (2007) Zoogeography and biodiversity of Missouri caves and karst. J Cave Karst Stud 69:135–162Google Scholar
  16. Euliss NH, LaBaugh JW, Fredrickson LH, Mushet DM, Laubhan MK, Swanson GA, Winter TC, Rosenberry DO, Nelson RD (2004) The wetland continuum: a conceptual framework for interpreting biological studies. Wetlands 24:448–458CrossRefGoogle Scholar
  17. Flora SP (2004) Hydrogeological characterization and discharge variability of springs in the Middle Verde River watershed, Central Arizona. Northern Arizona University, Flagstaff, AZGoogle Scholar
  18. Ford DC, Williams PF (2007) Karst geomorphology and hydrology. Wiley, Hoboken, NJGoogle Scholar
  19. Fuller ML (1904) Underground waters of eastern United States. US Geol Surv Water Suppl Pap 114Google Scholar
  20. Glennon JA, Pfaff RM (2005) The operation and geography of carbon-dioxide-driven, cold-water geysers. GOSA Trans 9:184–192Google Scholar
  21. Grand Canyon Wildlands Council (GCWC) (2002) Inventory of 100 Arizona strip springs, seeps and natural ponds: final project report. Arizona Water Protection Fund, Phoenix, AZGoogle Scholar
  22. Grasby SE, Londry KL (2007) Biogeochemistry of hypersaline springs supporting a mid-continent marine ecosystem: an analogue for Martian Springs. Astrobiology 7:662–683CrossRefGoogle Scholar
  23. Griffiths RE, Springer AE, Anderson DE (2008) The morphology and hydrology of small spring-dominated channels. Geomorphology (in press)Google Scholar
  24. Gunn J (ed) (2004) Encyclopedia of caves and karst science. Fitzroy, New YorkGoogle Scholar
  25. Haney JA, Turner DS, Springer AE, Stromberg JC, Stevens LE, Pearthree PA, Supplee V (2008) Ecological implications of Verde River flows. Arizona Water Institute, The Nature Conservancy, and Verde River Basin Partnership, Tucson, AZ. http://www.azwaterinstitute.org/. Cited 5 May 2008.
  26. Haynes V (2008) Quaternary cauldron springs as paleoecological archives. In: Stevens LE, Meretsky VJ (eds) Aridland springs in North America: ecology and conservation. University of Arizona Press, Tucson, AZGoogle Scholar
  27. Hynes HBN (1970) The ecology of running waters. University of Toronto Press, TorontoGoogle Scholar
  28. Keilhack K (1912) Lehrbuch der Grundwasser und Quellenkunde [Textbook on the studies of groundwater and springs], 3rd edn. Borntraeger, BerlinGoogle Scholar
  29. Knott B, Jasinska EJ (1998) Mound springs of Australia. In: Botosaneanu L (ed) Studies in crenobiology: the biology of springs and springbrooks. Backhuys, Leiden, The NetherlandsGoogle Scholar
  30. McCabe DJ (1998) Biological communities in springbrooks. In: Botosaneanu L (ed) Studies in Crenobiology: The biology of springs and springbrooks. Backhuys, Leiden, The NetherlandsGoogle Scholar
  31. McKinney DC, Watkins DW Jr (1993) Management of the Edwards aquifer: a critical assessment. Technical Report CRWR 244. Center for Research in Water Resources, Bureau of Engineering Research. University of Texas, AustinGoogle Scholar
  32. Meinzer OE (1923) Outline of ground-water hydrology, with definitions. US Geol Surv Water Suppl Pap 114 494Google Scholar
  33. Minckley WL, and Deacon JE (eds) (1991) Battle against extinction: native fish management in the American west. University of Arizona Press, TucsonGoogle Scholar
  34. Odum HT (1957) Trophic structure and productivity of Silver Springs, Florida. Ecolog Monogr 27:55–112CrossRefGoogle Scholar
  35. Perla BS, Stevens LE (2008) Biodiversity and productivity at an undisturbed spring in comparison with adjacent grazed riparian and upland habitats. In: Stevens LE, Meretsky VJ (eds) Aridland springs in North America: ecology and conservation. University of Arizona Press, TucsonGoogle Scholar
  36. Rosgen D (1996) Applied river morphology. Wildland Hydrology, Pagosa Springs, COGoogle Scholar
  37. Sada DW, Vinyard GL (2002) Anthropogenic changes in historical biogeography of Great Basin aquatic biota. In: Great Basin aquatic systems history. Smithsonian Contributions to Earth Science 33, Smithsonian Institute, Washington, DC, pp 227–293Google Scholar
  38. Schmude KL (1999) Riffle beetles in genus Stenelmis (Coleoptera: Elmidae) from Warm Springs in southern Nevada: new species, new status and a key. Entomol News 110:1–12Google Scholar
  39. Scott TM, Means GH, Meegan RP, Means RC, Upchurch SB, Copeland RE, Jones J, Roberts T, Willet A (2004) Springs of Florida. Florida Geological Survey, Bulletin No. 66, Tallahassee, FLGoogle Scholar
  40. Spence JR (2008) Spring-supported vegetation along the Colorado River: Floristics, vegetation structure and environment. In: Stevens LE, Meretsky VJ (eds) Aridland springs in North America: ecology and conservation. University of Arizona Press, Tucson, AZGoogle Scholar
  41. Springer AE, Stevens LE, Anderson DE, Parnell RA, Kreamer DK, Levin L, Flora S (2008) A comprehensive springs classification system: integrating geomorphic, hydrogeochemical, and ecological critera. In: Stevens LE, Meretsky VJ (eds) Aridland springs in North America: ecology and conservation. University of Arizona Press, Tucson, AZGoogle Scholar
  42. Springer AE, Stevens LE, Harms R (2006) Inventory and classification of selected National Park Service Springs on the Colorado Plateau, Final Report. Northern and Southern Colorado Plateau NPS Inventory and Monitoring Networks, Flagstaff, AZGoogle Scholar
  43. Stevens L (2007) Water and biodiversity on the Colorado Plateau. Plateau J 4:48–55Google Scholar
  44. Stevens LE, Meretsky VJ (eds) (2008) Aridland springs in North America: ecology and conservation. University of Arizona Press, Tucson, AZGoogle Scholar
  45. Stevens LE, Springer AE (2004) A conceptual model of springs ecosystem ecology. National Park Service, Flagstaff, AZ. http://www1.nature.nps.gov/im/units/scpn/phase2.htm. July 2008
  46. Stevens LE, Stacey PB, Jones A, Duff D, Gourley C, Caitlin JC (2005) A protocol for rapid assessment of southwestern stream-riparian ecosystems. In: van Riper C III, Mattson DJ (eds) Fifth conference on research on the Colorado Plateau. University of Arizona Press, Tucson, AZ, pp 397–420Google Scholar
  47. Stiny J (1933) Springs: the geological foundations of springs for engineers of all disciplines, as well as students of natural sciences. Springer, ViennaGoogle Scholar
  48. Swanson SK, Bradbury KR, Hart DJ (2007) Assessing the ecological status and vulnerability of springs in Wisconsin, Wisconsin Dept. Natural Resources, Madison, WIGoogle Scholar
  49. Toth J (1966) Mapping and interpretation of field phenomena for groundwater reconnaissance in a prairie environment, Alberta, Canada. Bull Int Assoc Sci Hydrol 9:20–68Google Scholar
  50. US Fish and Wildlife Service (2002) Recovery plan for the Bruneau hot spring snail (Pyrgulopsis bruneauensis). Region I, US Fish and Wildlife Service, Portland, ORGoogle Scholar
  51. Vineyard JD, Feder GL (1982) Springs of Missouri, revised edn. WR29, Missouri Geological Survey and Water Resources, Jefferson City, MOGoogle Scholar
  52. Wallace MP, Alfaro C (2001) Geologic/hydrogeologic setting and classification of springs. In: LaMoreaux PE, Tanner JT (eds) Springs and bottled waters of the world: ancient history, source, occurrence, quality and use. Springer, BerlinGoogle Scholar
  53. Waltham AC, Fookes PG (2003) Engineering classification of karst ground conditions. Q J Eng Geol Hydrogeol 36:101–118Google Scholar
  54. Warner RE, Hendrix KM (1984) California riparian systems: ecology, conservation, and productive management. Univ. California Press, Berkeley, CAGoogle Scholar
  55. Welsh SL (1989) On the distribution of Utah’s hanging gardens. Great Basin Nat 49:1–30Google Scholar
  56. Welsh SL, Toft CA (1981) Biotic communities of hanging gardens in southeastern Utah. Nat Geogr Soc Res Rep 13:663–681Google Scholar
  57. Wong D (1999) Community analysis of hanging gardens at Zion National Park, Utah and the Colorado Plateau. Northern Arizona University, Flagstaff, AZGoogle Scholar
  58. Woodbury AM (1933) Biotic relationships in Zion Canyon, Utah with special reference to succession. Ecol Monogr 3:147–246CrossRefGoogle Scholar
  59. Zeidler W, Ponder WF (eds) (1989) Natural history of Dalhousie Springs. South Australian Museum, Adelaide, AustraliaGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of GeologyNorthern Arizona UniversityFlagstaffUSA
  2. 2.Curator of Ecology and ConservationMuseum of Northern ArizonaFlagstaffUSA

Personalised recommendations