Advertisement

Hydrogeology Journal

, Volume 16, Issue 7, pp 1299–1309 | Cite as

Determination of porosity and storage capacity of a calcareous aquifer (France) by correlation and spectral analyses of time series

  • Stephane Bernard
  • Frederick Delay
Report

Abstract

Time-series analyses were used to investigate the relationships between barometric pressure changes, earth tides, and water-level fluctuations in a confined aquifer. The method was applied to data from the fractured aquifer at the Hydrogeological Experimental Site in Poitiers (France) and used to yield estimates of the aquifer’s storage capacity, porosity and barometric efficiency. The aim is to address relevance of these analyses for an aquifer showing both fracture draining and confined karstic flow in thin strata. Cross-correlation and spectral analysis are used to compare water-level head and atmospheric-pressure fluctuations. Porosity and storage capacity are calculated using this method and compared to results from petrophysical measurements and hydraulic pumping tests, respectively. The storage coefficients calculated by the time-series analyses are in agreement with those obtained by interpretation of the interference pumping tests. Conversely, porosity values calculated by time-series analyses are underestimated compared to those obtained by other methods.

Keywords

Hydraulic properties Fractured rocks Stress/strain (barometric tidal effects) Time series France 

Détermination de la porosité et de la capacité d’emmagasinement d’un aquifère calcaire (France) par corrélation et analyses spectrales de séquences temporelles

Résumé

Les analyses de séquences temporelles ont été utilisées pour étudier les relations entre variations de pression barométrique, marées terrestres, et fluctuations du niveau de l’eau dans un aquifère captif. La méthode a été appliquée aux données provenant d’un aquifère fracturé du Site Hydrogéologique Expérimental à Poitiers (France) et utilisée pour fournir une estimation de la capacité d’emmagasinement de l’aquifère, de la porosité et de l’efficacité de la pression barométrique. Le but est d’appréhender la pertinence de ces analyses pour un aquifère présentant à la fois un drainage de fractures et un écoulement karstique captif dans des couches minces. La corrélation croisée et l’analyse spectrale sont utilisées pour comparer les fluctuations de niveau piézométrique et de pression atmosphérique. La porosité et la capacité de stockage sont calculées en utilisant cette méthode et comparées respectivement aux résultats de mesures pétrophysiques et d’essais hydrauliques de pompage. Les coefficients d’emmagasinement calculés à partir des analyses de séquences temporelles sont en accord avec ceux obtenus par interprétation des interférences lors d’essais de pompage. Réciproquement, les valeurs de porosité calculées à partir d’analyses de séquences temporelles sont sous-estimées en comparaison avec celles obtenues par d’autres méthodes.

Determinación de la porosidad y la capacidad de almacenamiento de un acuífero calcáreo (Francia) a través de correlaciones y análisis espectral de series de tiempo

Resumen

Se utilizaron análisis de series de tiempo para investigar las relaciones entre cambios de presión barométrica, mareas terrestres y fluctuaciones de nivel en un acuífero confinado. El método se aplicó a datos del acuífero fracturado en el Sitio Experimental Hidrogeológico de Poitiers (Francia) y se usó para estimar la capacidad de almacenamiento del acuífero, su porosidad y su eficiencia barométrica. El objetivo es demostrar la relevancia de los análisis en un acuífero con drenaje en fracturas y flujo confinado en estratos delgados en ambiente cárstico. Se utilizan correlación cruzada y análisis espectral para comparar los niveles de agua con las fluctuaciones de la presión atmosférica. La porosidad y la capacidad de almacenamiento se calculan usando esos métodos y se comparan con resultados de mediciones petrofísicas y ensayos de bombeo, respectivamente. Los coeficientes de almacenamiento calculados por medio del análisis de series de tiempo están de acuerdo con aquellos obtenidos de la interpretación de ensayos de bombeo con interferencias. De modo inverso, los valores de porosidad calculados por medio del análisis de series de tiempo son menores con respecto a aquellos obtenidos con otros métodos.

Notes

Acknowledgements

The authors are grateful to the French National Research Program in Hydrology and the “Poitou-Charentes” Water Research Program which partly funded this work. The authors thank Bernard Ducarme for his scientific support and helpful comments.

References

  1. Audouin O, Bodin J, Porel G, Bourbiaux B (2008) Flow-path structure in a limestone aquifer: Multi-borehole logging investigations at the hydrogeological experimental site of Poitiers (France). Hydrogeol J. DOI  10.1007/s10040-008-0275-4
  2. Arditty PC (1978) The earth tide’s effects on petroleum reservoir. PhD Thesis, Standford University, USA, 140 ppGoogle Scholar
  3. Becker MW, Shapiro AM (2003) Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configurations in fractured bedrocks. Water Resour Res 39(1):1024. DOI  10.1029/2001WR001190 CrossRefGoogle Scholar
  4. Bernard S, Delay F, Porel G (2006) A new method of data inversion for the identification of fractal characteristics and homogenization scale from hydraulic pumping tests in fractured rocks. J Hydrol 328:647–658. DOI  10.1016/j.jhydrol.2006.01.008 CrossRefGoogle Scholar
  5. Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis: forecasting and control, 3rd edn. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  6. Bredehoeft JD (1967) Response of well-aquifer systems to earth tides. J Geophys Res 72:3075–3087CrossRefGoogle Scholar
  7. Burbaud-Vergneaud M (1987) Fracturation et interactions socle-couverture: le Seuil du Poitou [Fractures and bedrock sedimentary cover interactions: Seuil du Poitou]. PhD Thesis, University of Poitiers, FranceGoogle Scholar
  8. Delay F, Porel G, Bernard S (2004) Analytical 2D model to invert hydraulic pumping tests in fractured rocks with fractal behavior. Geophys Res Lett 31(16), DOI  10.1029/2004GL020500
  9. Egermann P (2004) Petrophysical measurements from drill cuttings: an added value for the reservoir characterization process. Soc. Petrol. Eng. 88684, ATCE, San Antonio, TX, USAGoogle Scholar
  10. Egermann P, Lenormand R, Longeron D, Zarcone C (2002) A fast and direct method of permeability measurements on drill cuttings. Soc. Petrol. Eng. 77563, ATCE, San Antonio, TX, USAGoogle Scholar
  11. Fitts CR (2002) Groundwater science. Academic, San Diego, CA, 450 ppGoogle Scholar
  12. Huang W, Di Donato G, Blunt MJ (2004) Comparison of streamline-based and grid-based dual porosity simulations. Soc Petrol Eng J 43(2):129–137CrossRefGoogle Scholar
  13. Jacob CE (1940) On the flow of water in an artesian aquifer. Trans Am Geophys Union 2:574–786Google Scholar
  14. Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden, San Francisco, 525 ppGoogle Scholar
  15. Kaczmaryk A, Delay F (2007a) Interpretation of interference pumping test in fractured limestone by means of dual-medium approaches. J Hydrol 337:133–146. DOI  10.1016/j.jhydrol.2007.01.004 CrossRefGoogle Scholar
  16. Kaczmaryk A, Delay F (2007b) Improving dual-porosity-medium approaches to account for karstic flow in a fractured limestone: application to the automatic inversion of hydraulic interference tests. J Hydrol 347(3–4):391–403. DOI  10.1016/j.jhydrol.2007.09.037 Google Scholar
  17. Larocque M, Mangin A, Razack M, Banton O (1998) Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charentes, France). J Hydrol 205:217–231CrossRefGoogle Scholar
  18. Mangin A (1984) Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale [Toward a better knowledge of hydrologic systems by the use of correlation and spectral analyses]. J Hydrol 67:25–43CrossRefGoogle Scholar
  19. Matheron G (1965) Les variables régionalisées et leur estimation [Regionalized variables and their estimation]. Masson, Paris, 185 ppGoogle Scholar
  20. Melchior P (1978) The tides of the planet Earth. Pergamon, Paris, 609 ppGoogle Scholar
  21. Merritt ML (2004) Estimating hydraulic properties of the floridan aquifer system by analysis of earth-tide, ocean-tide and barometric effects: Collier and Hendry counties Florida. US Geol Surv Water Resour Invest Rep 03-4267, 70 ppGoogle Scholar
  22. Padilla A, Pulido-Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J Hydrol 168:73–89CrossRefGoogle Scholar
  23. Pinault JL, Amraoui N, Golaz C (2005) Groundwater induced flooding in macropore-dominated hydrological systems in the context of climate changes. Water Resour Res 41. DOI  10.1029/2004wr0031669-2005
  24. Pinault JL, Plagnes V, Aquelina L, Bakalowicz M (2001) Inverse modeling of the hydrological and hydrochemical behaviour of hydrosystems: characterization of karst system functioning. Water Resour Res 37:2191–2204CrossRefGoogle Scholar
  25. Van Camp M, Vauterin P (2005) Tsoft: graphical and interactive software for the analysis of time series and earth tides. Comput Geosci 31:631–640CrossRefGoogle Scholar
  26. Wenzel HG (1995) ETERNA package. http://www.eas.slu.edu/GGP/ETERNA. Cited 22 May 2008

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.UMR 6532, CNRSUniversity of PoitiersPoitiersFrance

Personalised recommendations