Advertisement

Hydrogeology Journal

, 16:1283 | Cite as

Beyond hydrogeologic evidence: challenging the current assumptions about salinity processes in the Corangamite region, Australia

  • P. G. DahlhausEmail author
  • J. W. Cox
  • C. T. Simmons
  • C. M. Smitt
Paper

Abstract

In keeping with the standard scientific methods, investigations of salinity processes focus on the collection and interpretation of contemporary scientific data. However, using multiple lines of evidence from non-hydrogeologic sources such as geomorphic, archaeological and historical records can substantially add value to the scientific investigations. By using such evidence, the validity of the assumptions about salinity processes in Australian landscapes is challenged, especially the assumption that the clearing of native vegetation has resulted in rising saline groundwater in all landscapes. In the Corangamite region of south-west Victoria, salinity has been an episodic feature of the landscapes throughout the Quaternary and was present at the time of the Aboriginal inhabitants and the first pastoral settlement by Europeans. Although surface-water salinity has increased in some waterways and the area of salinised land has expanded in some landscapes, there is no recorded evidence found which supports significant rises in groundwater following widespread land-use change. In many areas, salinity is an inherent component of the region’s landscapes, and sustains world-class environmental assets that require appropriate salinity levels for their ecological health. Managing salinity requires understanding the specific salinity processes in each landscape.

Keywords

Salinisation Saline wetlands Conceptual models Corangamite Australia 

Au delà des acquis hydrogéologiques : mise en question des hypothèses habituelles à propos de l’acquisition de la salinité dans la région de Corangamite, Australie

Résumé

En se conformant aux méthodes scientifiques standard, les études de l’acquisition de la salinité se concentrent sur la collecte et l’interprétation de données scientifiques contemporaines. Toutefois, l’utilisation de filières multiples de données provenant de sources non hydrogéologiques telles que des compilations géomorphologiques, archéologiques et historiques peut ajouter de façon substantielle de la valeur aux études scientifiques. En utilisant de telles données, la validité des hypothèses concernant l’acquisition de la salinité dans les espaces naturels Australiens est mise en question, en particulier l’hypothèse que le défrichement de la végétation indigène a entraîné une remontée d’eau souterraine saline dans toutes les espaces naturels. Dans la région de Corangamite du Sud Ouest du Victoria la salinité a été une caractéristique épisodique des espaces naturels pendant tout le Quaternaire et était présente du temps des habitants Aborigènes et des premiers peuplements pastoraux par les Européens. Bien que la salinité de l’eau de surface ait augmentée dans quelques cours d’eau et que la superficie de terres devenues salines se soit développée dans certaines régions, aucune preuve documentée n’a été trouvée qui confirme des remontées d’eau souterraine significatives à la suite de modifications extensives de l’utilisation du sol. Dans de nombreuses régions la salinité est une composante inhérente aux espaces naturels de la région, et entretiennent une richesse environnementale de niveau mondial qui exige des niveaux de salinité convenant à leur santé écologique. La gestion de la salinité exige la compréhension du développement spécifique de la salinité dans chaque espace naturel.

Más allá de la evidencia hidrogeológica: desafiando los supuestos actuales sobre procesos de salinización en la región Corangamite, Australia

Resumen

De acuerdo con los métodos científicos, las investigaciones de procesos de salinización se centran en la recolección e interpretación de datos científicos modernos. Sin embargo, el uso de líneas múltiples de evidencia de fuentes no hidrogeológicas –tales como registros geomórficos, arqueológicos e históricos-pueden agregar un valor sustancial a las investigaciones científicas. Mediante el uso de tales evidencias, se cuestiona la validez de las hipótesis sobre procesos de salinización en ambientes australianos, especialmente la noción que la eliminación de la vegetación nativa ha resultado en en la elevación de agua subterránea salina en los ambientes. En la región de Corangamite, al sudoeste de Victoria, la salinidad ha sido una característica episódica del paisaje durante el Cuarternario y estaba presente en tiempo de los habitantes aborígenes y de los primeros asentamientos pastoriles europeos. Aunque la salinidad de cuerpos de agua superficiales se ha incrementado y las tierras alinizadas se han expandidos en algunos ambientes, no se encontraron registros que sustenten que la elevación del agua subterránea fue la consecuencia de la generalización de cambios en el uso de la tierra. En muchas áreas, la salinidad es un componente inherente a la región, que posee “activos“ambientales que requieren de niveles apropiados de salinidad para su sanidad ecológica. La gestión de la salinidad supone una comprensión de los procesos de salidad en cada ambiente.

Notes

Acknowledgements

The Corangamite Catchment Management Authority provided the funding for this research. The work contributes towards PD’s PhD studies partly funded through an Australian Postgraduate Award. Thanks to Dr Erica Nathan who provided some of the historical references.

References

  1. Adler R, Lawrence CR (2004) The drying of the Red Rocks Lakes complex, Australia, and its implications for groundwater management. Groundwater Flow Understanding from Local to Regional Scales, Proceedings of the XXXIII Congress IAH and 7th Congress ALHSUD, Zacatecas, Mexico, October 2004 (extended abstract T1–54 on CD)Google Scholar
  2. Bann GR, Field JB (2006) Dryland salinity in south east Australia: Which scenario makes more sense? Extended Abstract, Australian Earth Sciences Convention 2006. GSA 18th Australian Geological Convention and AESC 18th International Geophysical Conference and Exhibition, Melbourne, 2–6 July 2006 (on CD)Google Scholar
  3. Blackam MJ (1999) Numerical modelling of groundwater flow systems in the Lake Corangamite- Barwon River region. Thesis, University of Ballarat, AustraliaGoogle Scholar
  4. Bonwick J (1858) Western Victoria, its geography, geology and social condition. In: Sayers CE (ed) 1967 edn., Heinemann, MelbourneGoogle Scholar
  5. Bowler JM (1983) Lunettes as indices of hydrologic change: a review of Australian evidence. Proc R Soc Vic 95:147–168Google Scholar
  6. Bride TF (1898) Letters from Victorian pioneers. In: Sayers CE (ed) 1967 edn., Heinemann, MelbourneGoogle Scholar
  7. Brough Smyth R (1869) The Gold Fields and Mineral Districts of Victoria. In: Blainey G (ed) 1980 edn., Queensberry Hill, Carlton, VictoriaGoogle Scholar
  8. CCMA (2003) Corangamite Regional Catchment Strategy 2003–2008. Corangamite Catchment Management Authority, Colac, Victoria, AustraliaGoogle Scholar
  9. Clark ID (1990) Aboriginal languages and clans: an historical atlas of western and central Victoria, 1800–1900. Monash Publ. in Geography No. 37. Monash University, Clayton, AustraliaGoogle Scholar
  10. Clark RM, Allan MJ (2005) The salinity monitoring site network in Victoria: standards and procedures. Report, Primary Industries Research, Victoria, AustraliaGoogle Scholar
  11. Clark RM, Hekmeijer P (2004) Victorian salinity monitoring: reassessment of six reference discharge monitoring sites in the Corangamite region. Centre for Land Protection Research Report 43, Primary Industries Research, VictoriaGoogle Scholar
  12. CoAG (2000) Our vital resources: a national action plan for salinity and water quality. Council of Australian Governments, 3rd November 2000. Commonwealth of Australia. Available online at: http://www.napswq.gov.au/. Cited 8 September 2006
  13. Cope F (1956) Salting in Victorian Catchments. MSc Thesis, The University of Melbourne, AustraliaGoogle Scholar
  14. Cope F (1958) Catchment Salting in Victoria. Soil Conservation Authority of Victoria, Kew, MelbourneGoogle Scholar
  15. Coram JE, Weaver TR, Lawrence CR (1998) Groundwater-surface water interactions around shallow lakes of the Western District Plains, Victoria, Australia. Groundwater: Sustainable Solutions, Proceedings of the International Groundwater Conference 1998, University of Melbourne, Melbourne, Australia, 8–13 February, 1998, IAH Australia, Perth, pp 119–124Google Scholar
  16. Dahlhaus PG (2004) Characterising groundwater flow systems for salinity management in the Corangamite Region, Australia. Groundwater Flow Understanding from Local to Regional Scales, Proceedings of the XXXIII Congress IAH and 7th Congress ALHSUD, Zacatecas, Mexico, October 2004 (extended abstract T1–30 on CD)Google Scholar
  17. Dahlhaus PG, MacEwan RJ (1997) Dryland salinity in south west Victoria: challenging the myth. In: McNally GH (ed) Collected case studies in engineering geology, hydrogeology and environmental geology, 3rd Series, Environmental, Engineering and Hydrogeology Specialist Group of Geological Society of Australia, Sydney, pp 165–180Google Scholar
  18. Dahlhaus PG, MacEwan RJ, Nathan EL, Morand VJ (2000) Salinity on the southeastern Dundas Tableland, Victoria. Aust J Earth Sci 47/1:3–11CrossRefGoogle Scholar
  19. Dahlhaus PG, Heislers DS, Dyson PR (2002) Groundwater flow systems. Consulting report CCMA 02/02, Corangamite Catchment Management Authority, Colac, VictoriaGoogle Scholar
  20. Dahlhaus PG, Smitt CM, Cox JW, Nicholson C (2005) Corangamite Salinity Action Plan: setting resource condition targets. Background report 9, Corangamite Salinity Action Plan, Corangamite Catchment Management Authority, Colac, VictoriaGoogle Scholar
  21. Dickinson CG (1995) Numerical modelling of groundwater systems around Lake Corangamite. BSc Thesis, University of Ballarat, AustraliaGoogle Scholar
  22. Dimmer LL (1992) Geology and evolution of lacustrine sediments within the Newer Volcanics, Beeac, Western Plains District, Victoria. BSc Thesis, Australian National University, AustraliaGoogle Scholar
  23. DNRE (2000) Victoria’s salinity management framework: restoring our catchments. August 2000. Department of Natural Resources and Environment, VictoriaGoogle Scholar
  24. DPI (2006) Salinity discharge mapping: across priority areas in the Surfcoast, Colac Otway, Golden Plains and Corangamite Shires. Department of Primary Industries, Victoria, May 2006Google Scholar
  25. DSE (2004) EVC benchmarks: Central Victorian Uplands bioregion. Department of Sustainability and Environment, Victoria. Available Online at http://www.dse.vic.gov.au/. Cited 26 September 2006
  26. Duff JS (1983) Soil salting in the Lake Corangamite region of south western Victoria. MSc Thesis, The University of Melbourne, AustraliaGoogle Scholar
  27. Dunn EJ (1888) Report on the Ballarat and Ballarat East Water Reserves. Reports of the Mining Registrars Quarter ended 30th June, 1888, Victorian Government, MelbourneGoogle Scholar
  28. Edwards J, Leonard JG, Pettifer GR, McDonald PA (1996) Colac 1:250 000 map geological report. Geological Survey Report 98, Department of Natural Resources and Environment, MelbourneGoogle Scholar
  29. Evans TJ (2006) Geology and groundwater flow systems in the West Moorabool River catchment and their relation to river salinity. MSc Thesis, University of Technology, SydneyGoogle Scholar
  30. Fawcett J (2004) Processes and implications of scald formation on the Eastern Dundas Tableland: a case study. PhD Thesis, The University of MelbourneGoogle Scholar
  31. Fleming J (1802) Journal of the Explorations of Charles Grimes. In: 1984 edn., Queensberry Hill, MelbourneGoogle Scholar
  32. Flinders M (1814) A voyage to Terra Australis. In: Flannery T (ed) Abridged 2000 edn., Text Publishing, Melbourne, AustraliaGoogle Scholar
  33. Gardiner B (2001) Salinity discharge mapping in the Corangamite region. Report, Department of Primary Industries, Colac, VictoriaGoogle Scholar
  34. George R, McFarlane D, Nulsen R (1997) Salinity threatens the viability of agriculture and ecosystems in Western Australia. Hydrogeol J 5/1:6–21CrossRefGoogle Scholar
  35. Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. UNSW, SydneyGoogle Scholar
  36. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, New YorkGoogle Scholar
  37. Hebb I (1888) The history of Colac and District. In: 1970 edn. Hawthorn, MelbourneGoogle Scholar
  38. Holmes L, Leeper G, Nicolls K (1939) Survey of the country around Berwick. Proc R Soc Vic (New series) 52/1:177–238Google Scholar
  39. Jenkin JJ (1983) Dryland salinity symposium: introduction. Proc R Soc Vic 95:101–102Google Scholar
  40. Jones RN (1995) Modelling hydrologic and climatic controls of closed lakes, Western Victoria. PhD Thesis, The University of Melbourne, AustraliaGoogle Scholar
  41. Jones RN, Bowler JM, MacMahon TA (1993) Modelling water budgets of closed lakes, western Victoria. Quat Australasia Pap 11:50–60Google Scholar
  42. Joyce EB, Webb JA, Dahlhaus PG, Grimes K, Hill SM, Kotsonis A, Martin J, Mitchell M, Neilson JL, Orr M, Peterson JA, Rosengren N, Rowan JN, Rowe RK, Sargeant I, Stone T, Smith BL, White S (with material by the late J.J. Jenkin) (2003) Geomorphology. In: Birch WD (ed) Geology of Victoria, Geological Society of Australia Special Publication 23. Geological Society of Australia, Victoria, pp 533–562Google Scholar
  43. Krause FM (1870, 1871) Geological survey of country in the parishes of Bungaree, Warrenheip and Dean. Map Sheets 1, 3, 4 and 5. Ballarat and Ballarat East Water Supply Committee, Ballarat, AustraliaGoogle Scholar
  44. Langtree CW (1887) Timber supply for the goldfields. Reports of the Mining Registrars for the Quarter Ended 30 June 1887, Appendix A, Department of Mines and Water Supply, Victoria, pp 69–70Google Scholar
  45. McNiven IJ (1998) Aboriginal settlement of the saline lake and volcanic landscapes of Corangamite Basin, western Victoria. Artefact 21:63–94Google Scholar
  46. Mooney SD (1997) A fine-resolution palaeoclimatic reconstruction of the last 2000 years, from Lake Keilambete, southeastern Australia. Holocene 7:139–149CrossRefGoogle Scholar
  47. Morgan J (1852) The life and adventures of William Buckley. In: Sayers CE (ed) 1967 edn., Heinemann, MelbourneGoogle Scholar
  48. Morton R (1997) Semi-parametric models for trends in stream salinity. Report Number CMIS 97/71 CSIRO Mathematical and Information Sciences, Canberra, AustraliaGoogle Scholar
  49. Mulvaney DJ, Kamminga J (1999) Prehistory of Australia. Allen and Unwin, St. Leonards, AustraliaGoogle Scholar
  50. Nathan EL (2000) Giving salt some history, and history some salt: dryland salinity and the Dundas Tableland. Aust Hist Stud 31/115:222–236CrossRefGoogle Scholar
  51. Nathan EL (2004) Lost waters of West Moorabool: a history of a community and its catchment. PhD Thesis, The University of Melbourne, AustraliaGoogle Scholar
  52. Nicholson C (2002) Review of the Corangamite salinity strategy “Restoring the balance”. Consulting report by Nicon Rural Services, Corangamite Catchment Management Authority, Colac, VictoriaGoogle Scholar
  53. Nicholson C, Straw W, Conroy F, MacEwan RJ (1992) Restoring the balance: dryland salinity strategy for the Corangamite Salinity Region. Corangamite Salinity Forum, Colac, VictoriaGoogle Scholar
  54. Nicholson C, Dahlhaus PG, Anderson G, Kelliher C, Stephens M (2006) Corangamite Salinity Action Plan 2005–2008. Corangamite Catchment Management Authority, Colac, VictoriaGoogle Scholar
  55. NLWRA (2001) Australian Dryland Salinity Assessment 2000. National Land and Water Resources Audit, January 2001, NLWRA, Canberra, ACT, AustraliaGoogle Scholar
  56. Peck AJ, Williamson DR (1987) Effects of forest clearing on groundwater. J Hydrol 94:47–65CrossRefGoogle Scholar
  57. Price RC, Nicholls IA, Gray CM (2003) Cainozoic igneous activity. In: Birch WD (ed) Geology of Victoria, Geological Society of Australia Special Publication 23, Geological Society of Australia, Victoria, pp 361–375Google Scholar
  58. Rosengren NJ (1973) Lake Connewarre and the Barwon Estuary: Victoria’s resources. September–November 1973, pp 19–22Google Scholar
  59. Rusden GW (1872) The discovery, survey and settlement of Port Phillip. Williams and Norgate, LondonGoogle Scholar
  60. Salama RB, Otto CJ, Fitzpatrick RW (1999) Contributions of groundwater conditions to soil and water salinization. Hydrogeol J 7(1):46–64CrossRefGoogle Scholar
  61. SCA (1978) The dryland salting problem in Victoria: review, analysis and proposals. Soil Conservation Authority, VictoriaGoogle Scholar
  62. Selwyn ARC (1856) Report on artesian wells: votes and proceedings of the Legislative Assembly, Victoria, Australia, Government Printer, VictoriaGoogle Scholar
  63. Tickell SJ, King R (1992) Lake and lunette deposits near Beeac. Report 1992/14, Geological Survey of VictoriaGoogle Scholar
  64. Todd W (1835) The Todd Journal 1835. Andrew alias William Todd (John Batman’s recorder) and his Indented Head Journal 1835, Geelong Historical Society 1989, Geelong, Victoria Google Scholar
  65. Wasson RJ, Donnelly TH (1991) Palaeoclimatic reconstructions for the last 30,000 years in Australia: a contribution to prediction of future climate. Technical Memorandum 91/3, CSIRO Division of Water Resources, Canberra, AustraliaGoogle Scholar
  66. Williams MAJ, Dunkerlay DL, DeDeckker P, Kershaw AP, Stokes T (1993) Quaternary environments. Arnold, MelbourneGoogle Scholar
  67. Wagner R (2005) If the salt loses its savior...? Farm Pol J 2(4):7–17Google Scholar
  68. Withers WB (1870) The history of Ballarat from the first pastoral settlement to the present time, facsimile edn 1980. Queensberry Hill, Carlton, AustraliaGoogle Scholar
  69. Wood WE (1924) Increase of salt in soil and streams following the destruction of the native vegetation. J R Soc Western Australia 10:35–47Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • P. G. Dahlhaus
    • 1
    Email author
  • J. W. Cox
    • 2
  • C. T. Simmons
    • 3
  • C. M. Smitt
    • 4
  1. 1.School of Science and EngineeringUniversity of BallaratBallaratAustralia
  2. 2.CSIRO Land and WaterGlen OsmondAustralia
  3. 3.School of Chemistry, Physics and Earth SciencesFlinders University of South AustraliaAdelaideAustralia
  4. 4.Hyder Consulting Pty LtdMelbourneAustralia

Personalised recommendations