Advertisement

Hydrogeology Journal

, 16:1129 | Cite as

Estimating hydraulic conductivity using grain-size analyses, aquifer tests, and numerical modeling in a riverside alluvial system in South Korea

  • Jae-Yeol Cheong
  • Se-Yeong Hamm
  • Hyoung-Soo Kim
  • Eun-Joung Ko
  • Kyounghee Yang
  • Jeong-Hwan Lee
Report

Abstract

Hydraulic conductivity (K) for an alluvial system in a riverbank filtration area in Changwon City, South Korea, has been studied using grain-size distribution, pumping and slug tests, and numerical modeling. The alluvial system is composed of layers: upper fine sand, medium sand, lower fine sand, and a highly conductive sand/gravel layer at the base. The geometric mean of K for the sand/gravel layer (9.89 × 10−4 m s−1), as determined by grain-size analyses, was 3.33 times greater than the geometric mean obtained from pumping tests (2.97 × 10−4 m s−1). The geometric mean of K estimates obtained from slug tests (3.08 × 10−6 m s−1) was one to two orders of magnitude lower than that from pumping tests and grain-size analyses. K estimates derived from a numerical model were compared to those derived from the grain-size methods, slug tests and pumping tests in order to determine the degree of deviation from the numerical model. It is considered that the K estimates determined by the slug tests resemble the uppermost part of the alluvial deposit, whereas the K estimates obtained by grain-size analyses and pumping tests are similar to those from the numerical model for the sand/gravel layer of the riverside alluvial system.

Keywords

Grain-size analysis Hydraulic conductivity Numerical modeling Riverbank filtration South Korea 

Evaluation de la conductivité hydraulique en utilisant des analyses granulométriques, des tests d’aquifère et des modélisations numériques dans un système alluvial de berge en Corée du Sud

Résumé

La conductivité hydraulique (K) d’un système alluvial dans une zone de filtration de berge dans Changwon City, Corée du Sud, a été étudiée en utilisant la distribution de la granulométrie, les pompages d’essai et les essais par injection, et la modélisation numérique. Le système alluvial est formé de couches: supérieure de sable fin, intermédiaire de sable, inférieure de sable fin, et une couche très conductrice de sable/gravier à la base. La moyenne géométrique de K pour la couche de sable/gravier (9.89 × 10−1 m s−1), telle qu’elle est déterminée par les analyses granulométrique, était 3.33 fois plus élevée que la moyenne géométrique obtenue à partir de pompages d’essai (2.97 × 10−4 m s−1). La moyenne géométrique des évaluations de K obtenues à partir des essais par injection (3.08 × 10−6 m s−1) était inférieure de un à deux ordres de grandeur à celle obtenues à partir des pompages d’essai et des analyses granulométriques. Les estimations de K obtenues à partie des modélisations numériques ont été comparées à celles obtenues par les méthodes granulométriques, les essais par injection et les pompages d’essai afin de déterminer le degré d’écart avec le modèle numérique. On considère que les estimations de K déterminées à partir des essais par injection dépeignent la partie la plus superficielle du dépôt alluvionnaire, alors que les estimations de K obtenues à partir des analyses granulométriques et des pompages d’essai sont semblables à celles provenant du modèle numérique pour la couche de sable/ gravier du système alluvial de berge.

Estimación de la conductividad hidráulica usando análisis granulométricos, ensayos de acuíferos y modelación numérica en un sistema ribereño aluvial en Corea del Sur

Resumen

La conductividad hidráulica (K) de un sistema aluvial en un área ribereña de infiltración en la Ciudad de Changwon, Corea del Sur, ha sido estudiada a partir de distribuciones granulométricas, ensayos de bombeo y de pulso y modelación numérica. El sistema aluvial se compone de capas: una superior de arena fina, una intermedia arenosa, una inferior de arena fina, y una capa basal altamente conductiva de arena y grava. La media geométrica de K para la capa de arena y grava (9.89 × 10−4 m s−1), determinada por análisis granulométrico, resultó 3.33 veces mayor que la media geométrica obtenida en ensayos de bombeo (2.97 × 10−4 m s−1). La media geométrica de las estimaciones de K a partir de ensayos de pulso (3.08 × 10−6 m s−1) fue entre uno y dos órdenes de magnitud menor que aquellas provenientes de ensayos de bombeo y análisis granulométricos. Los valores de K provenientes de un modelo numérico se compararon con aquellos derivados de análisis granulométricos, ensayos de pulso y ensayos de bombeo a fin de determinar el desvío con respecto al modelo numérico. Se considera que las estimaciones de K de los ensayos de pulso representan los sectores más someros de los depósitos aluviales, en tanto que los valores de K obtenidos por los análisis granulométricos y los ensayos de bombeo son similares a aquellos derivados del modelo numérico para la capa de arena y grava del sistema ribereño aluvial.

Notes

Acknowledgements

This work was financially supported by the 21st Century Frontier R&D Program (project no. 3–4–3) of the Sustainable Water Resources Research Center, and by Pusan National University in the Post-Doctorate program 2008. The authors are grateful to two editors and two anonymous reviewers for their helpful comments on the manuscript.

References

  1. ASTM (1995) ASTM test method for particle size analysis of soils (D422–63). Annual Book of ASTM Standards, Soil and Rock (I), v. 04.08, American Society of Testing and Materials, West Conshohocken, PA, USAGoogle Scholar
  2. Bardet J-P, Young J (1997) Grain size analysis by buoyancy method. Geotech Test J 20:481–485CrossRefGoogle Scholar
  3. Beomhan Engineering (2003) Report on hydraulic influence study by riverbank filtrate production at Daesan-Myeon and Book-Myeon water plants (in Korean, title translated). Beomhan Engineering, Changwon City, KoreaGoogle Scholar
  4. Beyer W (1964) Zur Bestimmung der Wasserdurchlässigkeit von Kiesen und Sanden aus der Kornverteilung [On the determination of hydraulic conductivity of gravels and sands from grain-size distribution]. Wasserwirtschaft-Wassertechnik 14:165–169Google Scholar
  5. Boadu FK (2000) Hydraulic conductivity of soils from grain-size distribution: new models. J Geotech Geoenviron Eng 126:739–746CrossRefGoogle Scholar
  6. Bouwer H, Rice RC (1975) A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12:423–428CrossRefGoogle Scholar
  7. Butler JJ Jr (1998) The design, performance, and analysis of slug tests. Lewis, Boca Raton, FL, USAGoogle Scholar
  8. Butler JJ Jr, Healey JM (1998) Relationship between pumping-test and slug-test parameters: scale effect or artifact? Ground Water 36:305–313CrossRefGoogle Scholar
  9. Butler JJ Jr, Zlotnik VA, Tsou M-S (2001) Drawdown and stream depletion produced by pumping in the vicinity of a partially penetrating stream. Ground Water 39:651–659CrossRefGoogle Scholar
  10. Cardenas MB, Zlotnik VA (2003) A simple constant-head injection test for streambed hydraulic conductivity estimation. Ground Water 41:867–871CrossRefGoogle Scholar
  11. D’Andrea R (2001) Discussion on hydraulic conductivity of soils from grain-size distribution: new models. J Geotech Geoenviron Eng 127:899CrossRefGoogle Scholar
  12. Donga Construction, Daeduk Gongyeong (2000) Report on the construction of pumping wells for municipal water plant system in Daesan-Myeon area (in Korean, title translated). Donga Construction, Seoul Google Scholar
  13. Fetter CW (2001) Applied Hydrogeology. Prentice-Hall, Englewood Cliffs, NJ, USAGoogle Scholar
  14. Fox GA, DuChateau P, Durnford DS (2002) Analytical model for aquifer response incorporating distributed stream leakage. Ground Water 40:378–384CrossRefGoogle Scholar
  15. Glover RE, Balmer CG (1954) River depletion from pumping a well near a river. Am Geophys Union Trans 35:468–470CrossRefGoogle Scholar
  16. Hamm S-Y, Cheong J-Y, Ryu SM, Kim MJ (2002) Hydrogeological characteristics of bank storage area in Daesan-Myeon, Changwon City, Korea (main body written in Korean, and abstract written in English). J Korea Geol Soc 38:595–610Google Scholar
  17. Hantush MS (1965) Wells near streams with semipervious beds. J Geophys Res 12:2829–2838CrossRefGoogle Scholar
  18. Hazen A (1892) Some physical properties of sands and gravels. Annual Report, Massachusetts State Board of Health, Boston, pp 539–556Google Scholar
  19. Head KH (1984) Manual of soil laboratory testing, vol 1: soil classification and compaction tests. Pentech, LondonGoogle Scholar
  20. Hinsby K, Bjerg P, Andersen LJ, Skov B, Clausen EV (1992) A mini slug test for determination of a local hydraulic conductivity of an unconfined sandy aquifer. J Hydrol 136:87–106CrossRefGoogle Scholar
  21. Hiscock KM, Grischek T (2002) Attenuation of groundwater pollution by bank filtration. J Hydrol 266:139–144CrossRefGoogle Scholar
  22. Hunt B (1999) Unsteady stream depletion from ground water pumping. Ground Water 37:98–102CrossRefGoogle Scholar
  23. Hvorslev MJ (1951) Time lag and soil permeability in ground water observations. Bulletin no. 36, Waterway Experimentation Station, US Army Corps of Engineers, Vicksburg, MSGoogle Scholar
  24. HydroSOLVE Inc. (2000) AQTESOLV for Windows user’s guide. HydroSOLVE Inc. Reston, VA, USAGoogle Scholar
  25. Indelman P, Moltyaner G, Dagan G (1999) Determining the hydraulic conductivity spatial structure at the Twin Lake site by grain-size distribution. Ground Water 37:223–227CrossRefGoogle Scholar
  26. Jha MK, Jayalekshmi K, Machiwal D, Kamii Y, Chikamori K (2004) Determination of hydraulic parameters of an unconfined alluvial aquifer by the floodwave-response technique. Hydrogeol J 12:628–642CrossRefGoogle Scholar
  27. Kasenow M (2002) Determination of hydraulic conductivity from grain size analysis. Water Resources Publications, LLC, Highlands Ranch, CO, pp 47–84Google Scholar
  28. Kim NJ, Lee HK (1964) Geologic map of Yeongsan area (1:50,000). US Geological Survey, Reston, VAGoogle Scholar
  29. Kozeny J (1927) Uber kapillare leitung des wassers im boden: Sitzungsber [On capillary flow of water in soil], vol 136. Sitz Ber Akad Wiss Wien, Vienna, pp 271–306Google Scholar
  30. Landon MK, Rus DL, Harvey FE (2001) Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds. Ground Water 39:870–885CrossRefGoogle Scholar
  31. Mayer JR, Brinson J, George B (2002) Groundwater quality implications of bank-storage in a crystalline-rock setting. Environ Geosci 9:74–80CrossRefGoogle Scholar
  32. McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. US Geological Survey Techniques of Water-Resources Investigations, book 6, chap A1, US Geological Survey, Reston, VAGoogle Scholar
  33. Meyboom P (1961) Estimating ground-water recharge from stream hydrographs. J Geophys Res 66:1203–1214CrossRefGoogle Scholar
  34. Morel-Seytoux HJ, Verdin JP (1981) Extension of the Soil Conservation Service rainfall-runoff methodology for ungaged watersheds. Report FHWA/RD-81/060, Offices of Research & Development, Environmental Division, US Federal Highway Admin, Washington, DCGoogle Scholar
  35. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263:641–646CrossRefGoogle Scholar
  36. Reynolds RJ (1987) Diffusivity of a glacial outwash aquifer by the floodwave-response technique. Ground Water 25:290–299CrossRefGoogle Scholar
  37. Samjung Engineering (1999) Report on groundwater investigation regarding installation of pumping wells for municipal water supply in Daesan-Myeon, Changwon City area (in Korean, title translated). Samjung Engineering, Changwon City, KoreaGoogle Scholar
  38. Schultz G, Ruppel C (2002) Constraints on hydraulic parameters and implications for groundwater flux across the upland-estuary interface. J Hydrol 260:255–269CrossRefGoogle Scholar
  39. Selroos JO, Walker DD, Strom A, Gylling B, Follin S (2002) Comparison of alternative modeling approaches for groundwater flow in fractured rock. J Hydrol 257:174–188CrossRefGoogle Scholar
  40. Senthilkumar M, Elango L (2004) Three-dimensional mathematical model to simulate groundwater flow in the lower Palar River basin, southern India. Hydrogeol J 12:197–208CrossRefGoogle Scholar
  41. Shepherd RG (1989) Correlations of permeability and grain size. Ground Water 27:633–638CrossRefGoogle Scholar
  42. Slichter CS (1899) Theoretical investigation of the motion of groundwaters. Annual report, part 2, US Geological Survey, Reston, VA, pp 295–384Google Scholar
  43. Sophocleous M, Koussis A, Martin JL, Perkins SP (1995) Evaluation of simplified stream-aquifer depletion models for water rights administration. Ground Water 33:579–588CrossRefGoogle Scholar
  44. Spalding CP, Khaleel R (1991) An evaluation of analytical solutions to estimate drawdowns and stream depletions by wells. Water Resour Res 27:597–609CrossRefGoogle Scholar
  45. Strom EW (1998) Hydrogeology and simulation of groundwater flow in the Cretaceous-Paleozoic aquifer system northern Mississippi. US Geol Surv Water Resour Invest Rep 98–4171Google Scholar
  46. Theis CV (1941) The effect of a well on the flow of a nearby stream. Am Geophys Union Trans 22:579–588CrossRefGoogle Scholar
  47. Thornthwaite CW (1944) Report of the Committee on Transpiration and Evaporation, 1943–1944. Am Geophys Union Trans 25:683–693Google Scholar
  48. Uma KO, Bgboka BCE, Onuoha KM (1989) New statistical grain-size method for evaluating the hydraulic conductivity of sandy aquifers. J Hydrol 108:343–366CrossRefGoogle Scholar
  49. Vuković M, Soro A (1992) Hydraulics and water wells: theory and application. Water Resources Publications, Highlands Ranch, CO, USAGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jae-Yeol Cheong
    • 1
  • Se-Yeong Hamm
    • 1
  • Hyoung-Soo Kim
    • 2
  • Eun-Joung Ko
    • 1
  • Kyounghee Yang
    • 1
  • Jeong-Hwan Lee
    • 1
  1. 1.Division of Earth Environmental SystemPusan National UniversityBusanSouth Korea
  2. 2.Korea Institute of Water and EnvironmentKorea Water Resources CorporationDaejeonSouth Korea

Personalised recommendations