Hydrogeology Journal

, 16:1039 | Cite as

Ending groundwater overdraft in hydrologic-economic systems

Paper

Abstract

Groundwater overdraft occurs when extraction exceeds both natural and induced aquifer recharge over long periods. While ultimately unsustainable and invariably having detrimental effects, overdrafting aquifers is common and may be temporarily beneficial within a long-term water management strategy. Once a region chooses to end overdrafting, water management must change if increased water scarcity is to be avoided. Integrated water-management models allow aquifers and overdraft to be analyzed as part of a regional water-supply system. Incorporating economics into the model establishes a framework for evaluating the costs and effects of groundwater management actions on the entire system. This economic-engineering approach is applied in a case study of the Tulare Basin in California, USA, where previous economic studies showed optimal pumping depths have been reached. A hydro-economic optimization model is used to study the economic effects and water management actions that accompany ending overdraft. Results show that when overdraft is prohibited, groundwater banking using conjunctive-use infrastructure built between 1990 and 2005 largely annuls the cost of not overdrafting. The integrated economic-engineering approach quantifies effects of groundwater policies on complex regional water-resource systems and suggests promising strategies for reducing the economic costs of ending aquifer overexploitation.

Keywords

Over-abstraction Integrated groundwater management Hydro-economic modeling Tulare Basin USA 

Résumé

La surexploitation de l’eau souterraine intervient lorsque le prélèvement dépasse la recharge à la fois naturelle et induite de l’aquifère sur de longues périodes.Quoique non durable en fin de compte et ayant invariablement des conséquences préjudiciables, surexploiter les aquifères est courant et peut être avantageux temporairement dans une stratégie de gestion de l’eau à long terme. Une fois qu’une région choisit de mettre fin à la surexploitation, la gestion de l’eau doit changer si une rareté accrue de l’eau doit être évitée. Les modèles de gestion intégrés de l’eau permettent aux aquifères et à la surexploitation d’être analysés en tant qu’éléments d’un système régional d’alimentation en eau. L’incorporation de l’économique dans le modèle établit un cadre pour évaluer les coûts et les conséquences des actions de gestion de l’eau souterraine sur le système dans son entier. Cette approche d’ingénierie économique est appliquée à une étude de cas du Basin de Tulare en Californie, U.S.A., où des études économiques antérieures ont montré que des profondeurs optimales de pompage ont été atteintes. Un modèle d’optimisation hydro-économique est utilisé pour étudier les conséquences économiques et les actions de gestion de l’eau qui accompagnent l’arrêt de la surexploitation. Les résultats montrent que lorsque la surexploitation est interdite, le prélèvement d’eau souterraine mettant en œuvre l’infrastructure pour l’emploi conjoint des eaux superficielles et souterianes construites entre 1990 et 2005, annule dans une large mesure le coût de l’arrêt de la surexploitation. L’approche intégrée d’ingénierie économique quantifie les conséquences des politiques de l’eau souterraine sur des systèmes régionaux complexes de ressources en eau et suggère des stratégies prometteuses pour la réduction des coûts économiques résultant de l’arrêt de la surexploitation de l’aquifère.

Resumen

La sobre-explotación de aguas subterráneas ocurre cuando la extracción excede tanto la recarga natural como inducida del acuífero en períodos prolongados. Aunque en última instancia es una práctica no sustentable y que invariablemente tiene efectos perjudiciales, la sobre-explotación de acuíferos es frecuente y puede ser temporalmente beneficiosa dentro de una estrategia de corto plazo de gestión del agua. Cuando en una región se decide finalizar con la sobre-explotación, la gestión del recurso debe cambiar a fin de evitar la escasez de agua. Los modelos de gestión integrada de los recursos hídricos permiten analizar los acuíferos y la sobre-explotación como partes de un sistema regional de abastecimiento de agua. La incorporación en el modelo de aspectos económicos establece el marco para evaluar los costos y efectos sobre el sistema completo de acciones relacionadas con la gestión del agua subterránea. Esta aproximación económica-ingenieril se aplica a un caso de estudio en la Cuenca Tulare (California, USA), donde los estudios económicos previos demuestran que se han alcanzado profundidades óptimas de bombeo. Se usa un modelo de optimización hidro-económico para estudiar los efectos económicos y las medidas de gestión que se relacionan con la finalización de la sobre-explotación. Los resultados muestran que cuando se prohíbe la sobre-explotación, el almacenamiento de agua subterránea usando infraestructura de uso conjunto construida entre 1990 y 2005, anula en gran parte el costo de no sobre-explotar. La aproximación integrada económica-ingenieril cuantifica el efecto de políticas hídricas en sistemas regionales de recursos hídricos y sugiere estrategias promisorias para reducir los costos económicos de la finalización de la sobre-explotación de acuíferos.

Supplementary material

10040_2008_300_MOESM1_ESM.pdf (135 kb)
Electronic supplementary material (PDF 134 kb)

References

  1. Andrews ES, Chung FI, Lund JR (1992) Multilayered, priority-based simulation of conjunctive facilities. J Water Resour Plan Manage 118:32–53CrossRefGoogle Scholar
  2. Blomquist W, Schlager E, Heikkila T (2004) Common waters, diverging streams, linking institutions and water management in Arizona, California, and Colorado. Resources for the Future Press, Washington, DCGoogle Scholar
  3. Bredehoeft JD (1997) Safe yield and the water budget myth. Ground Water 35:929CrossRefGoogle Scholar
  4. Bredehoeft JD (2002) The water budget myth revisited: Why hydrogeologists model. Ground Water 40:340–345CrossRefGoogle Scholar
  5. Bredehoeft JD, Young RA (1970) The temporal allocation of ground water: a simulation approach. Water Resour Res 6:3–21CrossRefGoogle Scholar
  6. Bredehoeft JD, Young RA (1983) Conjunctive use of groundwater and surface-water for irrigated agriculture: risk-aversion. Water Resour Res 19:1111–1121CrossRefGoogle Scholar
  7. Bredehoeft JD, Papadopulos SS, Cooper Jr HH (1982) The water budget myth, scientific basis of water resource management. National Academy Press, Washington, DC, pp 51–57Google Scholar
  8. Bredehoeft JD, Reichard EG, Gorelick SM (1995) If it works, don’t fix it: benefits from regional groundwater management. In: El-Kadi AI (ed) Groundwater models for resources analysis and management. CRC, Boca Raton, FL, pp 103–124Google Scholar
  9. Brill TC, Burness HS (1994) Planning versus competitive rates of groundwater pumping. Water Resour Res 30:1873–1880CrossRefGoogle Scholar
  10. Brown G, Deacon R (1972) Economic optimization of a single-cell aquifer. Water Resour Res 8:557–564CrossRefGoogle Scholar
  11. Brozovic N, Sunding D, Zilberman D (2006) Optimal management of groundwater over space and time. In: Goetz R, Berga D (eds) Frontiers in water resource economics. Springer, Berlin, pp 109–136Google Scholar
  12. Burt O (1964) Optimal resource use over time with an application to ground water. Manage Sci 11:80–93CrossRefGoogle Scholar
  13. Cai XM, McKinney DC, Lasdon LS (2003) Integrated hydrologic-agronomic-economic model for river basin management. J Water Resour Plan Manage 129:4–17CrossRefGoogle Scholar
  14. CDWR (California Department of Water Resources) (1994) The California water plan update, 1993, Bulletin 160-93, CDWR, Sacramento, CAGoogle Scholar
  15. CDWR (California Department of Water Resources) (2005) California water plan update, vol 3, chapter 8, Tulare Lake Hydrologic Region, CDWR, Sacramento, CAGoogle Scholar
  16. CDWR (California Department of Water Resources) (2006) Planning and local assistance: groundwater level data. CDWR, Sacramento, CA. http://wdl.water.ca.gov/gw/. Cited 10 Dec 2006
  17. Custodio E (2002) Aquifer overexploitation: What does it mean? Hydrogeol J 10:254–277CrossRefGoogle Scholar
  18. Custodio E, Llamas R (2003) Intensive use of groundwater: introductory considerations. In: Llamas R, Custodio E (eds) Intensive use of groundwater. Swets, Lisse, The NetherlandsGoogle Scholar
  19. Draper AJ (2001) Implicit stochastic optimization with limited foresight for reservoir systems, PhD Thesis, Dept. Civil and Env. Eng., University of California at Davis, USAGoogle Scholar
  20. Draper AJ, Jenkins MW, Kirby KW, Lund JR, Howitt RE (2003) Economic-engineering optimization for California water management. J Water Resour Plan Manage 129:155–164CrossRefGoogle Scholar
  21. Feinerman E, Knapp KC (1983) Benefits from groundwater-management: magnitude, sensitivity, and distribution. Am J Agric Econ 65:703–710CrossRefGoogle Scholar
  22. Gardner DB (1979) Economic issues of groundwater management. Proceedings of the 12th Biennial Conference on Ground Water, Report no. 45, California Water Resources Center, Riverside, CA, pp 163–169Google Scholar
  23. Gisser M (1983) Groundwater: focusing on the real issue. J Polit Econ 91:1001–1027CrossRefGoogle Scholar
  24. Gisser M, Sanchez DA (1980) Competition versus optimal-control in groundwater pumping. Water Resour Res 16:638–642CrossRefGoogle Scholar
  25. Harou JJ, Lund JR (2007) Economic and water management effects of a no overdraft policy: California’s Tulare Basin. In: Ragone S, Hernández-Mora N, de la Hera A, Bergkamp G, McKay J (eds) The global importance of groundwater in the 21st Century: proceedings of the International Symposium on Groundwater Sustainability. National Groundwater Association, Westerville, Ohio, USAGoogle Scholar
  26. Hotelling H (1931) The economics of exhaustible resources. J Polit Econ 39:137–175CrossRefGoogle Scholar
  27. Howitt RE (1979) Is overdraft always bad? Proceedings of the 12th Biennial Conference on Ground Water. Report no. 45, California Water Resources Center, Riverside, CA, pp 50–61Google Scholar
  28. Howitt RE, Ward KB, Msangi SM (2001) Appendix A: statewide water and agricultural production model. In: Jenkins MW et al. (eds) Improving California water management: optimizing value and flexibility. Report No. 01-1, Center for Environmental and Water Resources Engineering, University of California at Davis, CAGoogle Scholar
  29. Jenkins MW (1991) Yolo county, California’s water supply system, conjunctive use without management, MSc degree project, University of California at Davis, USAGoogle Scholar
  30. Jenkins MW, Howitt RE, Lund JR, Draper AJ, Tanaka SK, Ritzema RS, Marques GF, Msangi SM, Newlin BD, Van Lienden BJ, Davis MD, Ward KB (2001) Improving california water management, optimizing value and flexibility. Report no. 01-1, Center for Environmental and Water Resources Engineering, University of California at Davis, CAGoogle Scholar
  31. Johnston RH (1997) Sources of water supplying pumpage from regional aquifer systems of the United States. Hydrogeol J 5:54–63CrossRefGoogle Scholar
  32. Kendy E (2003) The false promise of sustainable pumping rates. Ground Water 41:2–4CrossRefGoogle Scholar
  33. KFMC (Kern Fan Monitoring Committee) (2005) The 2001 Kern Fan area operations and monitoring report, KFMC, Bakersfield, CAGoogle Scholar
  34. Knapp KC, Olson LJ (1995) The Economics of conjunctive groundwater-management with stochastic surface supplies. J Environ Econ Manage 28:340–356CrossRefGoogle Scholar
  35. Knapp K, Vaux HJ (1982) Barriers to effective groundwater-management: the California case. Ground Water 20:61–66CrossRefGoogle Scholar
  36. Knapp KC, Weinberg M, Howitt R, Posnikoff JF (2003) Water transfers, agriculture, and groundwater management: a dynamic economic analysis. J Environ Manage 67:291–301CrossRefGoogle Scholar
  37. Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13:317–320CrossRefGoogle Scholar
  38. Koundouri P (2004a) Potential for groundwater management, Gisser-Sanchez effect reconsidered. Water Resour Res 40:13Google Scholar
  39. Koundouri P (2004b) Current issues in the economics of groundwater resource management. J Econ Surv 18:703–740CrossRefGoogle Scholar
  40. Kretsinger V, Narasimhan TN (2006) California’s evolution toward integrated regional water management: a long-term view. Hydrogeol J 14:407–423CrossRefGoogle Scholar
  41. Labadie JW (2004) Optimal operation of multireservoir systems: state-of-the-art review. J Water Resour Plan Manage 130(2):93–111CrossRefGoogle Scholar
  42. Lettenmaier DP, Burges SJ (1982) Cyclic-storage: a preliminary assessment. Ground Water 20:278–288CrossRefGoogle Scholar
  43. Llamas R, Custodio E (2003) Intensive use of groundwater, a new situation which demands proactive action. In: Llamas R, Custodio E (eds) Intensive use of groundwater. Swets, Lisse, The NetherlandsGoogle Scholar
  44. Llamas MR, Martinez-Santos P (2005) Intensive groundwater use, silent revolution and potential source of social conflicts. J Water Resour Plan Manage 131:337–341CrossRefGoogle Scholar
  45. McCarl BA, Dillon CR, Keplinger KO, Williams RL (1999) Limiting pumping from the Edwards Aquifer: an economic investigation of proposals, water markets, and spring flow guarantees. Water Resour Res 35:1257–1268CrossRefGoogle Scholar
  46. Meillier LM, Clark JF, Loaiciga H (2001) Hydrogeological study and modeling of the Kern Water Bank, University of California Water Resources Center, University of California at Davis, CAGoogle Scholar
  47. Molle F (2003) Development trajectories of river basins, a conceptual framework. Research Report 72, International Water Management Institute, Battaramulla, Sri LankaGoogle Scholar
  48. Moreaux M, Reynaud A (2004) Optimal joint management of a coastal aquifer and a substitute resource. Water Resour Res 40:10CrossRefGoogle Scholar
  49. Nishikawa T, Densmore JN, Martin P, Matti J (2003) Evaluation of the source and transport of high nitrate concentrations in ground water, Warren Subbasin, California. US Geol Surv Water-Resour Invest Rep 03-4009Google Scholar
  50. Noel JE, Howitt RE (1982) Conjunctive multibasin management: an optimal-control approach. Water Resour Res 18:753–763CrossRefGoogle Scholar
  51. Noel JE, Gardner BD, Moore CV (1980) Optimal regional conjunctive water management. Am J Agric Econ 62:489–498CrossRefGoogle Scholar
  52. NRC - National Research Council (1997) Valuing groundwater, economic concepts and approaches. National Academy Press, Washington, DCGoogle Scholar
  53. O’mara GT, Duloy JH (1984) Modeling efficient water allocation in a conjunctive use regime: the Indus Basin of Pakistan. Water Resour Res 20(11):1489–1498CrossRefGoogle Scholar
  54. Planert M, Williams JS (1995) Groundwater atlas of the United States, California, Nevada. HA 730-B, US Geological Survey, Reston, VAGoogle Scholar
  55. Provencher B, Burt O (1993) The externalities associated with the common property exploitation of groundwater. J Environ Econ Manage 24:139–158CrossRefGoogle Scholar
  56. Provencher B, Burt O (1994) Approximating the optimal groundwater pumping policy in a multiaquifer stochastic conjunctive use setting. Water Resour Res 30:833–843CrossRefGoogle Scholar
  57. Pulido-Velázquez M, Marques GF, Jenkins MW, Lund JR (2003) Conjunctive use of ground and surface waters: classical approaches and California’s examples. Proceedings of the XI World Water Congress, CD-ROM, Madrid, Spain, October 2003Google Scholar
  58. Pulido-Velazquez M, Jenkins MW, Lund JR (2004) Economic values for conjunctive use and water banking in southern California. Water Resour Res 40(3), W03401Google Scholar
  59. Pulido-Velazquez M, Andreu J, Sahuquillo A (2006) Economic optimization of conjunctive use of surface water and groundwater at the basin scale. J Water Resour Plan Manage 132:454–467CrossRefGoogle Scholar
  60. Reichard EG (1987) Hydrologic influences on the potential benefits of basinwide groundwater-management. Water Resour Res 23:77–91CrossRefGoogle Scholar
  61. Reinelt P (2005) Seawater intrusion policy analysis with a numerical spatially heterogeneous dynamic optimization model. Water Resour Res 41(5)Google Scholar
  62. SAIC (2003) Existing west (east) side conveyance and exchange facilities, technical memorandum for task 806 (807), Prepared for Friant Water User Authority, SAIC, Santa Barbara, CAGoogle Scholar
  63. Schuck EC, Green GP (2002) Supply-based water pricing in a conjunctive use system: implications for resource and energy use. Resour Energy Econ 24:175–192CrossRefGoogle Scholar
  64. Sophocleous M (2003) Environmental implications of intensive groundwater use with special regard to streams and wetlands. In: Llamas R, Custodio E (eds) Intensive use of groundwater. Swets, Lisse, The NetherlandsGoogle Scholar
  65. Theis CV (1940) The source of water derived from wells, essential factors controlling the response of an aquifer to development. Civil Eng 10:277–280Google Scholar
  66. Tsur Y (1990) The stabilization role of groundwater when surface-water supplies are uncertain: the implications for groundwater development. Water Resour Res 26:811–818Google Scholar
  67. Tsur Y, Graham-Tomasi T (1991) The buffer value of groundwater with stochastic surface-water supplies. J Environ Econ Manage 21:201–224CrossRefGoogle Scholar
  68. Tsur Y, Zemel A (1995) Uncertainty and irreversibility in groundwater resource-management. J Environ Econ Manage 29:149–161CrossRefGoogle Scholar
  69. USBR (US Department of the Interior, Bureau of Reclamation) (1997) Central Valley Project Improvement Act, Draft Programmatic Environmental Impact Statement. Documents and Model Runs (2 CD-ROMs). USBR, Sacramento, CAGoogle Scholar
  70. USACE (US Army Corps of Engineers) (1999) HEC-PRM Package. Hydrologic Engineering Center, Davis, CAGoogle Scholar
  71. Vaux HJ (1985) Economic aspects of groundwater recharge. In: Asano T (ed) Artificial recharge of groundwater. Butterworth, Boston, MA, pp 703–718Google Scholar
  72. Vaux HJ (1986) Water scarcity and gains from trade in Kern county, California. In: Frederick K (ed) Scarce water and institutional change. Resources for the Future, Washington, DCGoogle Scholar
  73. Young RA (1992) Managing aquifer over-exploitation: economics and policies. In: Simmers I, Villarroya F, Rebollo LF (eds) Selected papers on aquifer overexploitation. Heise, Hannover, Germany, pp 199–222Google Scholar
  74. Young RA, Bredehoeft JD (1972) Digital-computer simulation for solving management problems of conjunctive groundwater and surface water systems. Water Resour Res 8:533–548CrossRefGoogle Scholar
  75. Zektser S, Loaiciga HA, Wolf JT (2005) Environmental impacts of groundwater overdraft: selected case studies in the southwestern United States. Environ Geol 47:396–404CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.University College London Environment Institute and Department of Civil, Environmental and Geomatic EngineeringUniversity College LondonLondonUK
  2. 2.Department of Civil and Environmental EngineeringUniversity of California - DavisDavisUSA

Personalised recommendations