Hydrogeology Journal

, Volume 16, Issue 6, pp 1193–1205 | Cite as

Evaluation of groundwater in a three-aquifer system in Ramtha area, Jordan: recharge mechanisms, hydraulic relationship and geochemical evolution

Report

Abstract

The groundwater wells in the Ramtha region of Jordan are tapping three aquifers: the upper, intermediate and deep aquifers. The upper aquifer groundwater is tritiated and its stable isotopic composition varies over a wide range. This signifies short residence times and local recharge from an elevation around 600 m above sea level. The groundwater of the upper aquifer has an elevated level of \( {\text{NO}}^{ - }_{{\text{3}}} \), which is attributed to anthropogenic sources. The intermediate and deep aquifers are untritiated and have long residence times. The stable isotope results signify a recharge elevation for the intermediate aquifer higher than that for the upper aquifer. Stable isotopes in groundwater from both aquifers clustered along the eastern meteoric water line and demonstrate association with the dominant climate of Jordan. The groundwater of the intermediate aquifer is classified as Ca2+- \( {\text{HCO}}^{ - }_{{\text{3}}} \), which reflects circulation through a carbonate aquifer. There is evidence that leakage from the upper aquifer has influenced the isotopic and chemical makeup of the groundwater in an intermediate aquifer well. The groundwater of the deep aquifer has the highest temperature in the basin and its isotopic composition is much more depleted than both the upper and intermediate aquifers and plots on the global meteoric water line.

Keywords

Recharge altitude Paleohydrology Stable isotopes Contamination Jordan 

Résumé

Les puits de la région de Ramtha en Jordanie captent trois aquifères : les aquifères supérieur, intermédiaire et profond. L’eau de l’aquifère supérieur est tritiée et sa composition en isotopes stables varie dans un large intervalle. Ceci signifie des temps de séjour courts et une recharge locale à une altitude d’environ 600 mètres au-dessus du niveau de la mer. L’eau de l’aquifère supérieur a une teneur en \({\text{NO}}_3^ - \) élevée, qui est attribuée à des origines anthropiques. Les aquifères intermédiaire et profond ne sont pas tritiés et ont des temps de séjour longs. Les valeurs des isotopes stables indiquent une altitude de recharge pour l’aquifère intermédiaire plus élevée que pour l’aquifère supérieur. Les isotopes stables de l’eau des deux aquifères groupés le long de la droite des eaux météoriques orientale démontrent une relation avec le climat prédominant en Jordanie. L’eau de l’aquifère intermédiaire est de type Ca2+-\({\text{HCO}}_3^ - \), ce qui traduit une circulation dans un aquifère carbonaté. Il est évident qu’un apport de l’aquifère supérieur a influencé la composition isotopique et chimique da l’eau d’un puits dans l’aquifère intermédiaire. L’eau de l’aquifère profond a la température la plus élevée dans le bassin et sa composition isotopique est bien plus déprimée que dans les deux aquifères supérieur et intermédiaire et se situe sur la droite globale de l’eau météorique.

Resumen

Las perforaciones en la región de Ramtha de Jordania atraviesan tres acuíferos: los acuíferos superior, intermedio y profundo. El agua del acuífero superior contiene tritio y su composición isotópica varía en un rango amplio. Esto se interpreta como aguas de corto período de residencia recargadas localmente en una zona elevada a unos 600 m sobre el nivel del mar. El agua del acuífero superior posee elevadas concentraciones de \({\text{NO}}_3^ - \), de origen antropogénico. Las aguas de los acuíferos intermedio y profundo no contienen tritio y su período de residencia es largo. Los resultados de las concentraciones de isótopos estables sugieren que la recarga del acuífero intermedio proviene de alturas mayores que las correspondientes al acuífero superior. Los datos de isótopos estables de ambos acuíferos se agrupan a lo largo de la Línea Meteórica Este, y demuestra su asociación con el clima predominante en Jordania. El agua subterránea del acuífero intermedio se clasifica como Ca2+-\({\text{HCO}}_3^ - \), lo que refleja su circulación a través de un acuífero carbonático. Hay evidencias que las filtraciones desde el acuífero superior han influenciado las características químicas e isotópicas del acuífero intermedio. Las aguas del acuífero profundo son las de mayor temperatura en la cuenca, su composición isotópica es más reducida que aquella de los acuíferos superior e intermedio, y su posición gráfica se aproxima a la Línea Meteórica Mundial.

References

  1. Bajjali W (1990) Isotopic and hydrochemical characteristics of precipitation in Jordan. MSc Thesis, Jordan University, Jordan, 99 ppGoogle Scholar
  2. Bajjali W (2006) Recharge mechanism and hydrochemistry evaluation of groundwater in the Nuaimeh Area, Jordan using environmental isotope techniques. Hydrogeol J 14(1–4):180–191CrossRefGoogle Scholar
  3. Bajjali W, Abu-Jaber N (2001) Climatological signals of the paleogroundwater in Jordan. J Hydrol 243(1–2):133–147CrossRefGoogle Scholar
  4. Bajjali W, Al-Hadidi K (2006) Recharge origin, overexploitation, and sustainability of water resources in an arid area from Azraq basin, Jordan: case study. Nord Hydrol 37(3):277–292CrossRefGoogle Scholar
  5. Bajjali W, Clark I, Fritz P (1997) The artesian thermal groundwaters of northen Jordan: insights into their recharge history and age. J Hydrol 192:355–382CrossRefGoogle Scholar
  6. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  7. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall Englewood Cliffs, NJGoogle Scholar
  8. Fritz P, Suzuki O, Silva C, Salati E (1981) Isotope hydrology of groundwaters in the Pampa del Tamarugal, Chile. J Hydrol 53(1/2):161–184, 1981CrossRefGoogle Scholar
  9. Gat JR (1971) Comments on the stable isotope method in regional groundwater investigations. Water Resour Res 7:980CrossRefGoogle Scholar
  10. Gat JR (1981) Isotopic fractionation. In: Stable isotope hydrology, deuterium and oxygen-18 in the water cycle. IAEA Technical Report Series 210, IAEA, Vienna, pp 21–34Google Scholar
  11. Gat JR, Carmi L (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75:3039–3048CrossRefGoogle Scholar
  12. Hsu KJ (1963) Solubility of dolomite and composition of Florida groundwater. J Hydrol 1:288–310CrossRefGoogle Scholar
  13. Kharaka Y, Mariner RH (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naeser ND, McCulloh TH (eds) Thermal history of sedimentary basins, methods and case histories. Springer, New YorkGoogle Scholar
  14. Lloyd JW (1980) Aspects of environmental isotope chemistry in groundwaters in eastern Jordan. In: Arid zone hydrology: investigations with isotope techniques. Proceedings AG-158, IAEA, ViennaGoogle Scholar
  15. Moser H, Stichler W, Trimborn P (1983) Stable isotope studies on palaeowater. In: Palaeoclimates and palaeowaters: a collection of environmental isotope studies. IAEA, ViennaGoogle Scholar
  16. NJWRIPS (1989) Yarmouk Basin: water resources study. Internal report, Water Authority of Jordan, Amman, Jordan, 222 ppGoogle Scholar
  17. Quennell AM (1951) The geology and mineral resources of the (former) Trans-Jordan. Colon Geol Miner Res 2:85–115Google Scholar
  18. Rozanski K (1985) Deuterium and oxygen-18 in European groundwaters: links to atmospheric circulation. Chem Geol 52:349–363Google Scholar
  19. Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic pattern in modern global precipitation. In: Swart PK, Lohman KC, McKenzie J, Savin S (eds) Climate change in congenital isotopic records. Geophysical Monograph 78, American Geophysical Union, Washington, DC, pp 1–36Google Scholar
  20. Saqqar M, Matar A, Bajjali W (1989) Performance evaluation of wastewater treatment plants in Jordan and their effect in groundwater. Internal report, Water Authority of Jordan, Amman, JordanGoogle Scholar
  21. Sonntag C, Klitzsch E, Lohnert EP, El-Shazly EM, Munnich KO, Junghans Ch, Thorweihe U, Wesrroffer K Swailem FM (1979) Paleoclimatic information from deuterium and oxygen-18 in carbon-14 dated north Saharian groundwaters. In: Groundwater formation in the past. Proc. Symp. Isotope Hydrology 1987, vol 2, Neuherberg, Germany, June 1978, IAEA, Vienna, pp 569–581Google Scholar
  22. Vogel JC (1970) Carbon-14 dating of groundwater. In: Proc. Symp. Isotope Hydrology 1970, Vienna, March 1970, IAEA, Vienna, pp 225–237Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Biology and Earth SciencesUniversity of Wisconsin-SuperiorSuperiorUSA

Personalised recommendations