Advertisement

Hydrogeology Journal

, Volume 16, Issue 3, pp 499–510 | Cite as

Groundwater vulnerability assessment and evaluation of human activity impact (HAI) within the Dead Sea groundwater basin, Jordan

  • Ahmad Al-HanbaliEmail author
  • Akihiko Kondoh
Report

Abstract

Groundwater vulnerability to contamination was determined within the Dead Sea groundwater basin, Jordan, using the DRASTIC model and evaluation of human activity impact (HAI). DRASTIC is an index model composed of several hydrogeological parameters and, in this study, the recharge parameter component was calculated as a function of rainfall, soil permeability, slope percentage, fault system, and the intersection locations between the fault system and the drainage system, based on the hydrogeologic characteristics of hard-rock terrain in an arid region. To evaluate the HAI index, a land use/cover map was produced using an ASTER VNIR image, acquired for September 2004, and combined with the resultant DRASTIC model. By comparing the DRASTIC and HAI indices, it is found that human activity is affecting the groundwater quality and increasing its pollution risk. The land use/cover map was verified using the average nitrate concentrations in groundwater associated with land in each class. A sensitivity analysis was carried out in order to study the model sensitivity. The analyses showed that the depth to water table and hydraulic conductivity parameters have no significant impact on the model, whereas the impact of vadose zone, aquifer media, and recharge parameters have a significant impact on the DRASTIC model.

Keywords

DRASTIC Groundwater management Dead Sea Geographic information systems Jordan 

Résumé

La vulnérabilité des eaux souterraines envers les contaminations a été étudiée sur le bassin hydrogéologique de la Mer Morte en Jordanie, en utilisant le modèle DRASTIC et l’évaluation de l’impact des activités humaines (HAI). DRASTIC est un modèle indexé composé de plusieurs paramètres hydrogéologiques ; dans la présente étude, le paramètre “alimentation” a été calculé comme une fonction des précipitations, de la perméabilité du sol, de la pente, de la fracturation et des positions des intersections entre système de drainage et fracturation, sur la base des caractéristiques hydrogéologiques des roches dures en région aride. Afin d’évaluer l’indice HAI, une carte d’occupation des sols a été construite à partir d’une image ASTER VNIR datant de septembre 2004, puis combinée avec le modèle DRASTIC résultant. La comparaison des indices DRASTIC et HAI fait apparaître que l’activité humaine affecte la qualité des eaux souterraines et augmente les risques de pollution. La carte d’occupation des sols a été validée par les concentrations en nitrates dans les eaux souterraines associées au terrain dans chaque classe. Une analyse de sensibilité a été effectuée dans le but d’étudier la sensibilité du modèle. Les analyses ont montré que la profondeur de la surface piézométrique et la perméabilité n’ont pas d’impact notable sur le modèle, tandis que l’impact de la zone non-saturée, la matrice de l’aquifère et les paramètres d’alimentation ont une influence significative sur le modèle DRASTIC.

Resumen

La vulnerabilidad a contaminación de agua subterránea en la cuenca del Mar Muerto, Jordania, fue determinada usando el modelo DRASTIC y la evaluación de impacto de actividad humana (HAI). DRASTIC es un método index compuesto de varios parámetros hidrogeológicos y, en este estudio, el parámetro de descarga fue calculado como una función de la precipitación, permeabilidad del suelo, porcentaje de pendiente, sistema de fallas, y las áreas de intersección entre sistema de fallas y sistema de drenaje, considerando las características de terreno de roca dura en una región árida. Para evaluar el index HAI, un mapa de uso de suelo/cubierta fue producido usando una imagen ASTER VNIR, obtenida en Septiembre 2004, y que fue combinada con el modelo DRASTIC resultante. Por medio de una comparación entre los resultados de DRASTIC y HAI, se encontró que la actividad humana está afectando la calidad del agua subterránea e incrementando el riesgo de contaminación. El mapa de uso de suelo/cubierta fue verificado usando las concentraciones promedio de nitrato en agua subterránea asociadas con cada tipo de suelo. Un análisis de sensibilidad fue realizado para estudiar la sensibilidad del modelo. El análisis mostró que los parámetros profundidad al nivel del agua y conductividad hidráulica no tienen impacto significativo en el modelo, mientras que el impacto de los parámetros zona vadosa, tipo de acuífero, y recarga tienen un impacto significativo en el modelo DRASTIC.

Notes

Acknowledgements

We express our deep gratitude to the Earth Remote Sensing Data Analysis Center (ERSDAC) and the Jordanian Ministry of Water and Irrigation (MOI) for providing the necessary data for this research. Further thanks go to Dr. T. Ngigi for his cooperation. The authors are also grateful for the careful revision and suggestions of Prof. P. Renard, the reviewers, and Sue Duncan.

References

  1. Al-Adamat RAN, Foster IDL, Baban SMJ (2003) Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, Remote sensing and DRASTIC. Appl Geogr 23:303–324CrossRefGoogle Scholar
  2. Al-Khashman O (2004) Heavy metals distributed in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan. Atmos Environ 38:6803–6812CrossRefGoogle Scholar
  3. Al-Khashman O (2007) Determination of metal accumulation in deposited street dusts in Amman, Jordan. Environ Geochem Health 29:1–10CrossRefGoogle Scholar
  4. Aller L, Bennett T, Lehr JH, Petty RH, Hackett G (1987) DRASTIC: A standardized system for evaluating groundwater pollution potential using hydrogeologic settings. US EPA Report 600/2-87/035, Robert S. Kerr Environmental Research Laboratory, Ada, OKGoogle Scholar
  5. Asmar BN, Ergenzinger P (1999) Estimation of evaporation from the Dead Sea. Hydrol Process 13:2743–2750CrossRefGoogle Scholar
  6. Babiker IS, Mohamed MAA, Hiyama T, Kato K (2005) A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci Total Environ 345:127–140CrossRefGoogle Scholar
  7. Banat KM, Howari FM, Al-Hamad AA (2005) Heavy metals in urban soils of central Jordan: Should we worry about their environmental risks? Environ Res 97:258–273CrossRefGoogle Scholar
  8. Batjes NH, Rawajfih Z, Al-Adamat R (2003) Soil data derived from SOTER for studies of carbon stocks and change in Jordan (Ver. 1.0; GEFSOC project). ISRIC-World Soil Information, technical report 2003/04, ISRIC, Wageningen, The NetherlandsGoogle Scholar
  9. Bender F (1974) Geology of Jordan. Borntraeger, Berlin, GermanyGoogle Scholar
  10. Bender H, Hobler M, Klinge H, Schelkes K (1989) Investigation of groundwater resources in central Jordan. Desalination 72:161–170CrossRefGoogle Scholar
  11. Closson D, Abou Karaki N, Klinger Y, Hussein MJ (2005) Subsidence and sinkhole hazard assessment in the southern Dead Sea area, Jordan. Pure Appl Geophys 162:221–248CrossRefGoogle Scholar
  12. Denny SC, Allen DM, Journeay JM (2007) DARSTIC-Fm: a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Colombia, Canada. Hydrogeol J 15:483–493CrossRefGoogle Scholar
  13. El-Naqa A (1994) Estimation of transmissivity from specific capacity data in fractured carbonate rock aquifer, central Jordan. Environ Geol 23:73–80CrossRefGoogle Scholar
  14. ERSDAC (Earth Remote Sensing Data Analysis Center) (2005) ASTER User’s Guide Part-I version 4.0, ERSDAC. http://www.ersdac.or.jp/eng/index.E.html
  15. Gogu RC, Dassargues A (2000) Sensitivity analysis for the EPIK method of vulnerability assessment in a small karstic aquifer, southern Belgium. Hydrogeol J 8:337–345CrossRefGoogle Scholar
  16. JICA (Japan International Cooperation Agency) (2001) The study on water resources management in the Hashemite Kingdom of Jordan. Final report, JICA, TokyoGoogle Scholar
  17. Kim YJ, Hamm SY (1999) Assessment of the potential for groundwater contamination using DRASTIC/EGIS technique, Cheongju area, South Korea. Hydrogeol J 7:227–235CrossRefGoogle Scholar
  18. Lodwick WA, Monson W, Svoboda L (1990) Attribute error and sensitivity analysis of map operations in geographical information systems: suitability analysis. Int J Geogr Info Syst 4:413–428CrossRefGoogle Scholar
  19. Napolitano P, Fabbri AG (1996) Single parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In: Kovar K, Nachtnebel HP (eds) Proc HydroGIS: application of geographical information systems in hydrology and water resources management, IAHS Publ. 235, IAHS, Wallingford, UK, pp 559–566Google Scholar
  20. National Geospatial-Intelligence Agency (2006) http://geoengine.nima.mil.. Cited 20 May 2006
  21. Osborn NI, Eckenstein E, Koon KQ (1998) Vulnerability assessment of twelve major aquifers in Oklahoma. Technical report 98-5, Oklahoma Water Resources Board, Oklahoma City, OK, USAGoogle Scholar
  22. Parker DH (1970) The hydrogeology of the Mesozoic-Cenozoic aquifers of the western highlands and plateau of east Jordan. UNDP/FAO, AG 2: SF/Jor 9, Technical report no. 2, FAO, Rome, 424 ppGoogle Scholar
  23. Piscopo G (2001) Groundwater vulnerability map, explanatory notes, Castlereagh Catchment. NSW Department of Land and Water Conservation, Sydney, Australia. http://www.naturalresources.nsw.gov.au/water/pdf/castlereagh_map_notes.pdf. Cited 20 May 2006
  24. Powell JH (1988) The geology of Karak. Map sheet No. 3152 III. Bulletin 8, NRA, Amman, JordanGoogle Scholar
  25. Rimawi O, Salameh E (1988) Hydrochemistry and groundwater system of the Zerka Ma’in-Zara thermal field, Jordan. J Hydrol 98:147–163CrossRefGoogle Scholar
  26. Secunda S, Collin ML, Melloul AJ (1998) Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. J Environ Manage 54:39–57CrossRefGoogle Scholar
  27. Tesoriero AJ, Inkpen EL, Voss FD (1998) Assessing ground-water vulnerability using logistic regression. Paper from proceedings for the Source Water Assessment and Protection 98 Conference, Dallas, TX, April, 1998, pp 157–165Google Scholar
  28. US EPA (2003) EPA national primary drinking water standards, EPA report 816-F-03-016, US EPA, Washington, DCGoogle Scholar
  29. Vrba J, Zaporozec A (1994) Guidebook on mapping groundwater vulnerability. International Association of Hydrogeologists, Heise, Hanover, GermanyGoogle Scholar
  30. Werz H, Hötzl H (2007) Groundwater risk intensity mapping in semi-arid regions using optical remote sensing data as an additional tool. Hydrogeol J 15:1031–1049CrossRefGoogle Scholar
  31. Zwahlen F (ed) (2004) COST Action 620: vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report, Office of the Official Publications of the European Communities, Brussels, Belgium, 297 ppGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Center for Environmental Remote SensingChiba UniversityInage-kuJapan

Personalised recommendations